
INFORMATICA, 2013, Vol. 24, No. 3, 357–380 357
 2013 Vilnius University

Cloud Scheduling Optimization: A Reactive Model
to Enable Dynamic Deployment of Virtual
Machines Instantiations

Nik BESSIS1, Stelios SOTIRIADIS2∗, Fatos XHAFA3

Eleana ASIMAKOPOULOU1

1Department of Business Computing and Law

University of Derby, Kedleston Road, Derby, DE22 1GB, UK
2Intelligent Systems Laboratory (InteLLigence)

Department of Electronic & Computer Engineering,

Technical University of Crete (TUC), Chania, Crete, GR-73100, Greece
3Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya, Campus Nord, Ed. Omega,

C/Jordi Girona 1-3, 08034 Barcelona, Spain

e-mail: n.bessis@derby.ac.uk, s.sotiriadis@intelligence.tuc.gr, fatos@lsi.upc.edu,

eleana.asimakopoulou@googlemail.com

Received: March 2012; accepted: February 2013

Abstract. This study proposes a model for supporting the decision making process of the cloud
policy for the deployment of virtual machines in cloud environments. We explore two configurations,
the static case in which virtual machines are generated according to the cloud orchestration, and the
dynamic case in which virtual machines are reactively adapted according to the job submissions,
using migration, for optimizing performance time metrics. We integrate both solutions in the same
simulator for measuring the performance of various combinations of virtual machines, jobs and
hosts in terms of the average execution and total simulation time. We conclude that the dynamic
configuration is prosperus as it offers optimized job execution performance.

Key words: cloud computing, virtual machine scheduling, virtual machine migration, virtual
machine dynamic deployment.

1. Introduction

Over the recent years, the cloud paradigm emerged as one of the most important IT infras-
tructures for delivering services via the public Internet. This based on the clouds’ great
capability to offer virtualized configuration (computational power along with the required
software; Bessis et al., 2011). In such environments, massive computing capacity resides
at a remote space and could be delivered in the form of software, hardware, or developers
platform. These offered services have been encapsulated in application execution requests
posed by the end-users, and this is identical to the overall scheduling problem in Grid

*Corresponding author.

358 N. Bessis et al.

systems (Xhafa and Abraham, 2010). Hence, cloud computing share similar fundamental
elements with other large scale and distributed computing paradigms, e.g. clusters and
grids (Bessis et al., 2012b). To this extend, this work adapts the cloud definition (Carolan
and Gaede, 2009) that suggests that cloud is about “services that are encapsulated, have
an API, and are available over the network”.

This inclusive vision allows us to focus on how to orchestrate the cloud service dis-
tribution, rather than aim to the deployment of the underlying infrastructure. Usually, the
application tasks are submitted to a cloud datacenter through the user interface namely
also as broker. The latter acts on behalf of users and is responsible for the communica-
tion between cloud low-level organization and users. The tasks that arrive in the cloud are
forwarded for execution within the cloud datacenter. This virtualizes required computa-
tional power and software in small easy manageable chunks namely as Virtual Machines
(VMs). By the use of virtualization paradigm cloud provides the ability to deliver virtual
versions of hosts (nodes) by increasing the scalability of the overall setting. In addition,
the cloud could contain a lower number of physical machines and servers, and this reduces
the management time, maintenance labor and failures handling (Gong et al., 2010).

Similarly, one of the advantages of VMs is that physical space utilization could be
augmented within a cloud datacenter by virtualization (Bessis et al., 2012b). However,
this decision (taken by the hosts) for the most appropriate deployment of VM instantiation
method is a challenging task. This is to say that selecting VMs generation strategy could
be affected by various options. For example, a cloud could initialize a huge number of a
small scale VMs to handle more requests, and this will penalize the overall performance.
On the contrary, low number of VMs for increasing performance, could conclude with job
latencies because of non-availability.

In this work we suggest that the choice for selecting the VM generation strategy could
be based on reactively adaptive decisions taken by the hosts and based on historical, cur-
rent and expected job input. Specifically, by analyzing the characteristics of the cloud jobs
(cloudlets) we determine a more efficient VM instantiation model. This includes an ini-
tial appreciation of the job features, e.g. the number of submitted cloudlets, the physical
resources demanded and the scheduling allocation policy (Bessis et al., 2012a). Although
this practice seems more efficient in terms of enhancing the quality of service levels, yet
it compromises the overall performance due to the waiting time for VM deployment.

Thus cloud hosts need a sufficient amount of interval time delay of configuring VMs
from the very beginning (Lagar-Cavilla et al., 2011). It should be mentioned, that a VM
configuration typically includes the time for specifying physical resources (CPU, RAM
and storage space) and operating system (OS) installation along with the required soft-
ware set up. Thus, in the case of a large number of job submissions, the time needed to
analyze the jobs and produce the appropriate number of VMs sufficiently increases the in-
terval time for service management. Instantiating new VMs is a slow operation that usually
includes minutes e.g. in EC2 (Lagar-Cavilla et al., 2007).

A convenient method to propagate VMs in hosts is by deploying from a pool of pre-
configured and already executed VMs. Specifically, by using forking processing method
(Lagar-Cavilla et al., 2009), we explore the performance of the VMs average execution

Cloud VM Scheduling Optimisation 359

time. In forking, the generation happens by inheritance of the state of the parent thread and
creating a distinct child thread within a multithreaded environment.After forking, the VMs
are migrated from the pool and placed to available hosts for accepting job submissions.

In this work we explore static and reactive dynamic deployment of VMs instantiation.
First, we discuss the motivation (Section 2) and the related works (Section 3) for iden-
tifying relevant features. The rest of the paper is organized as follows. We discuss the
cloud parameters and model the algorithms of the VM instantiation (Section 4). Then,
we present the configuration specification (Section 5.1) and we analyze performance re-
sults from various metrics as extracted from a simulated static environment for certain
job variations to explore benchmarks (Section 5.2). Next, we integrate the dynamic re-
active instantiation using the forking method and simulate the VM migration within the
same environment of the static case (Section 5.3). Finally, we brief applicable scenarios
for dynamic VM instantiation (Section 6) and conclude in Section 7.

2. Motivation

There are several evolving motivations that cloud computing encompasses in the area of
VM deployment. These are mostly related with the association of virtualization paradigm
to the large size of clouds and the decision process on deploying VMs. In general, the chal-
lenge in managing virtualized environments efficiently is directly related with scheduling
(Frachtenberg et al., 2008). They describe that host VMs often operate with no coordi-
nation and knowledge of each other scheduling issues. The view is that scheduling will
play an important role in virtualized settings where performance and utilization matter
(Frachtenberg et al., 2008). Eventually, novel works should aim to the direction of orches-
trating the overall process of scheduling in twofold, firstly guests (VMs) within hosts and
secondly scheduling inside the guests OS.

Although, there are still no strong literature directions in virtualization scheduling,
the characterization of dynamic allocation of customized VM images is of increasingly
importance due to the large variety of services and multi-hosted environments (Frachten-
berg et al., 2008). The notion of the dynamically virtualized setting is also presented in
literature (Diaz et al., 2011). The authors present the Future Grid, a testbed to perform ex-
periments in HPC, grids and clouds. Within it, developers use VMs for not simply storing
a guest image but rather focus on the way an image is created through a method known as
templating. It has been stated that it is possible at any time to regenerate an image based
on the template that is used to install the software stack onto a bare operating system. In
this way, the development of a customized image repository not only provides functional
advantages, but it also provides structural advantages aimed to increase efficient use of
the storage resources (Diaz et al., 2011).

Thus, it is vital to consider new ways of deploying VMs for increasing the quantity of
provided services, while at the same time hiding the low level functionality from the end-
users. This has been highlighted in past (Foster and Kesselman, 2004) that users should
be able to invoke any desired operation, however, without regarding how the instances
are implemented within the environment. They continue that on the lower level various

360 N. Bessis et al.

implementation directions could be applied including stochastic or reactive virtualization
of services. Similarly, it has been emphasized the need for customized tools and service
in a Cloud (Younge et al., 2011). Particularly, they imply that in order to meet user needs
an easy to customize environment is required, and virtualization emerges this capability.
In this settings service implementation is a requested operation and sandboxed in services
that may be virtual provided through an interface, which in turn may be virtualized as
well (Foster and Kesselman, 2004). This implies that more levels of virtualization might
be applied when the service integration process taking place.

With these in mind, our motivation and contribution is to explore and contrast whether
virtual machines that are generated according to the cloud host equals or else the execution
performance as if virtual machines were reactively adapted according to the job submis-
sions.

3. Related Works

This section presents the related works are discussed within the area of VM deployment. In
general the term virtualization refers to the organization of virtual chunks of the physical
hosts for splitting the computational power. Usually, the cloud administrator configures
VMs in a custom way to meet user requirements. However, as the number of users in-
creased, it becomes apparent that a more automatic way needed for VMs creation. Various
works (Lagar-Cavilla et al., 2007) discuss that the current solutions include substantial la-
bor effort of the cloud administrator. In this way resources could be remain in idle state, as
it is difficult for a developer to take highly level decisions when a large number of services
request execution. For addressing this shortage, various solutions have been developed
that mainly aim to the VM life cycle provisioning.

Initially, those include the migration of ready states of VMs among hosts for achieving
automation of VMs scheduling. There are two generic classifications of migration proce-
dures in this area, called process migration and live migration. Process migration is an old
studied approach, which includes the procedure of transferring a process from one ma-
chine (host resource) to another (remote resource). Live migration, conversely, provides
the capability to move VMs from one machine to another while processes still running.
Process and live migration share advantages and drawbacks, however a detailed appreci-
ation of these methods is beyond the aim of this study.

Thus, initially, the copy on reference solution (Zayas, 1987) is an old way to process mi-
gration and was the basic for developing the memory-on-demand method (Lagar-Cavilla
et al., 2007). Using this method, VMs are cloned on reference by duplicating their state.
This raises questions regarding the state transfer mechanism and the level of transparency.
Other work (Vrable et al., 2005) illustrates a more advanced solution that uses the copy-
on-write technique. In this way VMs are cloned from a static template that does not pro-
vide migration among VMs to different hosts. Similarly, a different study (Sapuntzakis et

al., 2002) uses a lazy copy-on-reference solution. Using secondary storage devices, allow
the copy of processes among VMs by achieving a low-bandwidth consumption model. At
last, in other work authors perform an experiment to virtualize a large number of nodes for

Cloud VM Scheduling Optimisation 361

mimicking an experiment (Gong et al., 2010). Their results show that requires a significant
amount of time to instantiate the whole network of nodes.

A migration mechanism is presented in literature (Zhang et al., 2000) that first vacates
tasks from node to node and then re-instantiate those to the target set. The authors suggest
that migration when combined with backfilling can be beneficial in terms of utilization.
However, results show that the maximum utilization does not change from the whole sys-
tem perspective. A different solution (Bustos, 2003) is based on percentage loading at
node. The solution uses a proactive library for the migration of jobs, and a multicast chan-
nel to coordinate the nodes. The experimental analysis shows low resource utilization at a
medium average throughput.To continue, the Zap (Osman et al., 2002) is a system to allow
process migration of domains called pods. However, this model has limited success pri-
marily because of the difficulty of encapsulating the state of a running application. Next,
the sandpiper (Wood et al., 2012) is a system that initiates migration using automation of
monitoring tasks and by detecting hotspots it determines a new mapping of physical to
virtual resources. However, this system does not support replication services automation.
Finally, a storage migration-scheduling algorithm has been implemented (Zhang et al.,
2011) for improving storage and I/O performance during migration. The benefits include
the minimization of extra traffic, and the efficient handling of large image sizes.

Different from all the aforementioned solutions, our work address the problem of low
latency replication of VMs (Lagar-Cavilla et al., 2011). The authors (Lagar-Cavilla et al.,
2009) suggest that by using the VM fork abstraction clones could be easily instantiated and
transferred as replicas to the same or different hosts. Furthermore, they present a solution
called SnowFlock that offers significant advantages in VM cloning. Firstly, it decreases the
time that needs for a clone to be instantiated by only copying the state critical state along
with the VM memory image, and secondly, by modifying the guest kernel minimizes the
bandwidth transfer. Conclusively, the authors prove through their experimental analysis
that their solution overcomes concerns from aforementioned works in terms of minimized
interval time of VM cloning (less than 1000 ms).

In this work our focus is on exploring the VM instantiation from the perspective of
different job submissions, so we do not aim to explore the migration low-level infrastruc-
ture. In our work, we extend the application of the forking method (Lagar-Cavilla et al.,
2009) in a cloud environment with the assumption that VM migration is less than 1000
ms. Based on this, we present our VM instantiation analysis by exploring and contrasting
job execution performances when using static and dynamic VM cases.

4. Designing the Cloud Exchanging Model

A key feature in optimizing a cloud performance is the level of gratification that the setting
could offer to the users job submissions (Bessis et al., 2012b). In this section we take the
user view and we explore the VM instantiation that is correlated to job characteristics. Let
us first define the terms of static and reactive dynamic deployment for VMs instantiation.

• As static case we define the deployment of VMs in which there is a fixed number of
VMs that are instantiated by the hosts. Specifically, static VMs are established from

362 N. Bessis et al.

the cloud administrator and are not drawn up from the users queries and requests for
service executions.
• As dynamic case we define the vigorous deployment of VMs in which instantiation

is based on different criteria and may vary on time. This is to say that VMs are
generated based either on the number of jobs enter the environment. In addition,
VMs could be migrated as a way of further enhancing the cloud performance.

Based on that we present the cloud life cycle for a cloudlet submission. The rational-
ity behind this decision is to explore a static cloud and extract performance results by
exploring the setting for certain job variations and various VMs number. Thus, we first
analyze the VM instantiation process by modeling the algorithms of the cloud compo-
nent. Then, we integrate algorithms within a simulator for extracting results in static and
dynamic cases. The dynamic VMs are reactively adapted to auto-migration utilizing the
VM forking concept.

4.1. The VM Instantiation Conceptual Analysis

Here, we analyze the VM instantiation concept by discussing the typical cloudlet life
cycle within a cloud datacenter. Specifically, we assume that there is one cloud with
various datacenters D = [d1, d2, . . . , dn] that each of these contains various hosts H =

[h1, h2, . . . , hn]. Each host generates a number of VMs VM = [VM1,VM2, . . . ,VMn] and
each VM accepts a set of cloudlets C = [c1, c2, . . . , cn] for job execution. For all cloudlets
∀cn ∈ C there is a specific configuration setting that contains the cloudlet characteristics.
These are the required number of processors cPEs, the length cL, the filesize cFS (input),
the output size cOS . Each cloudlet is associated with a utilization model for experimen-
tation, related either with a stochastic or a standard utilization threshold level. This study
incorporates both solutions to explore multiple threshold performance. In particular, the
static case implies that the utilization model attempts to execute all cloudlets by achieving
utilization threshold 100%. In dynamic case we test the utilization threshold in 80% thus
we assume that the rest 20% is utilized by the migration mechanism. These are extensively
discussed in Section 5.

Similarly to cloudlets, for all VMs ∀VMhn ∈ V there is a specific configuration setting
that contains the VM characteristics. These are the the name of the VMVNM , the VM size
VMS , the RAM VMRAM , the available million of instructions per second (MIPS) VMMIPS ,
the bandwidth speed VMBW , the number of processing cores VMPEs. In addition, each
VM is associated with a scheduling policy for cloudlets execution. These are extensively
discussed in Section 5.2.

As said previously each cloud contains hh hosts and for ∀Hh ∈H there is a configura-
tion setting that contains the host characteristics. These are the host idHID, the host MIPS
hMIPS , the number of cores hPEs, the RAM size hRAM , the storage hST , and the bandwidth
speed hBW . In addition each host is associated with a scheduling policy that controls the
allocation of VMs to hosts. This is to control the provisioning of physical resources for
VM instantiation (e.g. provisioning of PEs, RAM etc.). Different host provisioning poli-
cies are extensively discussed in Sections 5.3 and 5.4.

Cloud VM Scheduling Optimisation 363

Fig. 1. The cloud exchange model.

Thus, we define as cloud capacity for cloudlet execution the augmentation of physical
and virtual resources as given by formula (1). Specifically, the sum of cloud capacity is
equal to the product of the sums of datacenter, hosts and VMs number. As d(α) is denoted
the datacenter, as h(β) the datacenter host and as VM(γ) the host VM.

cloudcapacity=

dd
∑

α=1

d(α)×

hh
∑

β=1

h(β)×

VMVM
∑

γ=1

VM(γ) (1)

During the cloud life cycle the cloudlets submitted by the users through a broker to the
VMs for execution. In particular, the job distribution is based on the message exchanging
optimization (MEO) model (Bessis et al., 2012c). This allows a sophisticated dipersal of
messages in order to minimize the latency of the setting. It should be mentioned that these
jobs are identical to a real cloud application abstraction, thus we assume that the cloudlets
could represent either a single job or the smallest manageable chunk of a large parallel job
submission.

Figure 1 shows the cloud exchange model. Specifically, a user interacts with the bro-
ker for demanding service executions. The latter acts on behalf of the user and requests
from the environment specific resources in the form of resource capacity (Rodero et al.,
2010). The brokering model (Sotiriadis et al., 2012c) where we have detailed the topolo-
gies and interactions of brokers and meta-brokers. In the cloud setting, the general man-
agement platform offers the operational and business functionalities for responding to the
user request. Specifically, various processes take place within both components e.g. oper-
ational management involves security control, fault tolerance management, and eventually
scheduling coordination.The operational management is also responsible for the core mid-
dleware functionalities including VM orchestration via the hypervisor. The hypervisor is a
piece of software for controlling the VM deployment. The business functionalities, on the
other hand, include the Service Level Agreement (SLA) communicationprocess involving
payments and debts, which are decided prior to the service submission and scheduling.

During the exchange phase, cloudlets are submitted to the VMs through the broker for
job executions. The users do not have any knowledge on that, as the process is organized
by the broker who is responsible for binding cloudlets to VMs. Together various other

364 N. Bessis et al.

components initialize communication within the datacenter. It should be mentioned that
each a cloud registry monitors the whole procedure and the communication among users,
broker and datacenters. A finer detail of the most important functionalities of the cloud life
cycle will allow us to develop the interactions among key cloud components and identify
the VMs scheduling issues. These are based on the study of Calheiros et al. (2011) and
listed bellow:

• The cloud contains one or more datacenters, which are the resource providers.
• The cloud is supplied with a cloud broker that is responsible for the cloudlet submis-

sions to the hosts. It should be mentioned that additional brokering functionalities
could be applied e.g. to submit cloudlets to VMs based on specific rules.
• The cloud deploys VMs either by scratch or by VM migration etc. and informs the

broker for the level of availability.
• The cloud accepts the cloudlets from the broker and initializes the cloudlet submis-

sion phase.
• The cloudlet execution happens by the allocation policies as defined within the hosts

and VMs.

Hence, typically in a cloud environment job scheduling is a two-fold decision (Sotiri-
adis et al., 2012a) that includes the following:

• The host level scheduling that incorporates the way in which VMs allocated within
the host namely as the host allocation policy. This applies to the sharing of resource
in a time and space manner.
• The VM level scheduling that integrates the local job allocation policy (local re-

source management system). This includes the way in which jobs are executed in
the local queue (first-come-first-served local scheduler).

4.2. Modeling the Algorithmic Structure

This section demonstrates the algorithms of the cloud run-time phases including compo-
nents such as cloudlets, VMs and datacenters along with the job submission and execution
phases. Using these algorithms, we integrate our solution to model a cloud setting that ex-
plores the optimization methods for VM deployment. Specifically, this aims to explore
static and reactive dynamic deployment of VMs instantiations. For that reason we utilize
a forking processing method (Lagar-Cavilla et al., 2009), in order to discover the per-
formance of the VMs average execution time. It should be mentioned that in the forking
case, the generation happens by inheritance of the state of the parent thread that creates
a distinct child thread within a multithreaded environment. After forking, the VMs are
migrated from the pool and placed to available hosts for accepting job submissions. The
algorithms presented in this section demonstrate that procedure.

Figure 2 demonstrates the sequence diagram of the aforementioneddiscussion. Specif-
ically, it includes the initialization phase in which the cloud administrator configures the
host of the datacenter, and the VMs that deployed within. Then the broker accepts the
cloudlet submission from the user and redirects jobs to the VMs for execution. Algo-
rithm 1 demonstrates the cloudlet initialization phase that includes the cloudlet lenght,

Cloud VM Scheduling Optimisation 365

Fig. 2. The sequence diagram of the cloud life-cycle.

Algorithm 1: The cloudlet initialization phase

input : cLIST : The container of cloudlets (in the form of an array)
cL: The length of the cloudlet
cFS: The cloudlet filesize
cOF : The cloudlet output size
cPEs: The number of cores (PEs)
cc[]: The cloudlet (in the form of an array of subcloudlets)
userID: The user ID
x: cloudlet number
cUM : The utilization model (defined for experimental purposes)

output: The cloudlet formation

for cc = [i, i++, x] do
cc [i1] ← (i , cL, cPEs, cFS , cOF , cUM)
cc [i2] ← userID (i)

cc [i3] ← cLIST [i]

end

number of coes (processing elements – PEs), the number of cloudlets and the utilization
model. Specifically, the last one implies that the hosts wil be utilized if there is computa-
tional power available.

Algorithm 2 demonstrates the configuration setup of the VM deployment.

366 N. Bessis et al.

Algorithm 2: The VM initialization phase

input : VMLIST : The container of VMs (in the form of an array)
VMS : The size of the VM
VMPES: The number of CPU cores (PEs)
VMRAM : The RAM size
VMMIPS: The available MIPS
VMBW : The bandwidth speed
VMNAME: The VM name
VMy :The VM (in the form of an array of sub-VMs)
userID: The user ID
y: Number of VMs
VMSP: The VM allocation policy (VM scheduling)

output: The VM formation

for VMH = [i, i++, y] do
VMVM [i1] ← (i , VMS , VMPES, VMRAM , VMMIPS, VMBW , VMNAME , VMSP)
VMVM [i2] ← VMLIST [i]

end

Algorithm 3: The datacenter initialization phase

input : hostLIST : The container of hosts (in the form of an array)
hostID: The host ID
hostPEs: The number of CPU cores (PEs)
hostRAM : The RAM size
hostST : The storage size
hostMIPS: The available MIPS
hostBW : The bandwidth speed
hostH : The current host
z: The number of hosts
hostSP: The VM allocation policy (VM scheduling)
hostPP: The host provisioining policy (host scheduling)

output: The datacenter hosts initizalization

for hostH = [i, i++, z] do
hostH [i1] ← (i , hostS , hostID, hostPEs, hostRAM , hostST , hostMIPS, hostBW ,
hostSP, hostPP)
hostH [i2] ← hostLIST [i]

end

Algorithm 3 illustrates the datacenter initialization phase which includes the host for-
mation. It contains information regarding the host PEs, RAM, MIPS, bandwidth etc. as
well as the number of VMs to be instantiated along with the VM allocation policy.

Cloud VM Scheduling Optimisation 367

Algorithm 4: The cloudlet submission and execution phase

input : dcB : The datacenter broker
dcID: The datacenter ID
VMLIST : The VM instantiated list
cLIST : The cloudlet instantiated list
x: Number of cloudlets
y: Number of VMs
HostAlloctionPolicy: The VM scheduling policy
VMAllocationPolicy: The cloudlet scheduling policy
createVM : The VM creation function
createC : The cloudlet instantiation function
getC : The function to get cloudlets
sumbitC : The submission function
run: A function to indicate the execution of policies

output: The cloudlet submission and execution

dcB(dcID)
VMLIST []←createVM (dcB , y)
cLIST []←createc(dcB , x)
for all hostH [i] do

run (hostBW , hostSP, hostPP)
HostAllocationPolicy(hosti)
for all VMVM [i] do

run (VMSP)
VMAllocationPolicy(VMi)
for all cC [i] do

run (cUM)
end

end

end

Algorithm 4 demonstrates the cloudlet submission phase that comprises the precon-
ditions of initialization phase (Algorithm 1) and the host allocation policy included at the
host level. It demonstrates also the cloudlet execution phase based on the precondition of
the cloudlet submission phase (Algorithm 1). This includes the scheduling that happens
at the local level within the VM. Specifically, it includes the datacenter broker and ID de-
scription, the VM instantiated list, the number of cloudlets and VMs, the host allocation
policy as well as operations for creating, submitng and executing requests.

Within the timeframe of Fig. 2, that represents the cloud life cycle by incorporating
the interactions between Algorithms 1, 2, 3 and 4, various allocation policies and utiliza-
tion strategies are taking place. Specifically, the diagram contains two actors, the end-user
who submits the cloudlets, and the administrator who is responsible for initializing com-
ponents. This concludes the discussion of the VM instantiation model as happened within

368 N. Bessis et al.

the hosts of the cloud datacetner. The next sections contain the configuration of the simu-
lation environment, and the discussion of the static and dynamic VMs instantiation cases.
We firsly explore the results of the cloud simulator with a variation of the cloudlet in-
put number and secondly, we present the dynamic reactive workload deployment case in
whcih generation of VMs based on VMs migrations from a pool of available VMs.

5. Performance Modelling of the VM Instantiation

Herein we integrate the model of a typical cloud by using the algorithms of Section 4.2
within a simulation setting.

5.1. The Experiment Configuration

The simulation environment is based on the CloudSim (Calheiros et al., 2011), a frame-
work for modeling and simulating clouds and their services. CloudSim allows control of
(a) large scale clouds, (b) datacenters, brokers and scheduling policies in a self-contained
fashion, (c) adaptability of the virtualization technology for creating multiple virtualiza-
tion services, and (d) flexibility of the processing cores to switch between time and space
shared allocation policies. In addition, we have utilized functionalities implemented in the
SimIC (Sotiriadis et al., 2013a) such as the deployment of VMs. In particalar, the SimIC
aims of achieving interoperability, flexibility and service elasticity while at the same time
introducing the notion of heterogeneity of multiple clouds configurations. Based on that
we configure our experiment to contain the characteristics of Table 1.

As selected metrics we utilize the total simulation time that represents the time that the
cloud requires to execute a bunch of cloudlets as given by the formula (2). The variable I
represents an integer number greater than 0.

TotalSimulationTime=

n
∑

set=1

FinishSimulatorTime.Cloudlet[i]. (2)

In addition we use the average execution time that a cloudlet set requires to be executed
as given from formula (3). The variable named as Cl denotes a typical cloudlet.

AverageExecutionTime(ClSet)=

(n
∑

set=1

Cl.FinishTime[i]

)

/ClCount[i]. (3)

Table 1
The cloud experiment configuration of hosts, VMs and cloudlets.

Host VM Cloudlet

PEs: 1 PEs: 1 PEs: 1
Ram: 2048 (mb) Ram: 1048 (mb) Ram: 1000 (mb)
Storage: 1 000 000 (mb) Size: 1000 (mb) File size: 100 (mb)
MIPS: 1000 MIPS: 150 Output size: 100 (mb)
Bandwidth: 10 000 (mb/s) VM name: Xen User ID: 1
Allocation Policy: In time Allocation Policy: In time Utilization Model: Full

Cloud VM Scheduling Optimisation 369

Next, we explore the VM instantiation performance which is analogous to a combina-
tion of the number of cloudlets, VMs and hosts. After, we integrate the dynamic case that
contains the VM migration specification and the experimental analysis. Both solutions
are implemented in the Cloudsim simulation framwork which is an alternative for utiliz-
ing resources and evaluating static and dynamic hypothesis. Specifically, static presents
the experimental analysis of the exploration of the testbed for identifying the performance
of the hosts, VMs and cloudlets for certain job variations.

5.2. The Static VM Performance

We first explore the cloud simulator with a variation of the cloudlet input number. Here,
it should be mentioned that the VM allocation policy includes the scheduling of cloudlets
to VMs in a twofold mean as presented in Calheiros et al. (2011). Firstly the space shar-
ing policy in which cloudlets are placed in the queue when there are free PEs (number of
cores) available. Secondly, the time-sharing policy indicates that at any given time mul-
tiple cloudlets could be allocated within the cores of a VM. The same policies could be
applied in the case of the VM to hosts allocation policy. This means that VMs can either
queued in space or in time with respect to the cores installed in the host. In this experiment,
we have utilized the time-sharing policy for both cloudlet and VM scheduling, thus multi-
VMs instantiation within the host cores. It should be mentioned that queuing in hosts and
VMs allocation happens in a first-come-first-serve scheduling (Cloudsim Lab, 2012).

With respect to the utilization model, the static case selects VMs in a stochastic man-
ner. That means that cloudlets are submitted to VMs randomly and aim to reach a 100%
utilization level. Finally, the provisioning policies of physical resources (CPU, RAM, etc.)
are executed in order to provide the best guaranteed service; this is to allocate a resource
whenever it is available (Buyya et al., 2010). Specifically, the cloudlets number varied
from 1 to 250, while the VMs number is fixed to 50. The whole setting runs within 50
hosts of one datacenter. Figure 3 shows the behavior of the simulator in terms of average
execution time and simulation time.

The results show that the average execution and the simulation times are constantly
increased in a linear way. In addition, the average execution time is increased with a lower
rate than the simulation runtime. This means that in the case of a high peak workload
the average execution time will stay in rational levels, however, the whole simulation time
that represents the complete service time will be huge. This is because of the operations
happened within the simulated environment e.g. due to communication latencies. Specif-
ically, Fig. 3 illustrates that for a big cloudlet submission input the total simulation time
(simulation clock) indicator (the total cloud service execution time) raise in a higher rate
than the average execution time. This could cause significant problems in the case of a
huge workload submission.

In a different experiment, we execute 10 to 100 VMs with a fixed number of 1000
cloudlets within an environment of 50 hosts in one datacenter. Figure 4 demonstrates the
performance of the simulator when the specification is set to the values of Table 1. It is
apparent that as the number of VMs increases with constant values of hosts and cloudlets

370 N. Bessis et al.

Fig. 3. Static job executions for 1 to 250 cloudlets in non-reactive deployment 1 to 50.

Fig. 4. Static deployment of VM instantiation performance for input submission of 1000 cloudlets in non-reac-
tive setting.

the average execution and simulation times decrease significantly. Especially, for VMs
number greater than 50 the values increase with a lower rate. In the case of 100 VMs the
total execution time decreases dramatically and almost becomes identical to the average
execution time. This means that for the specific configuration, and with the VMs number
greater than 100 the system reaches a steady state. In the next experiment we monitor the
performance of 1 VM when executed in 1 to 20 hosts. Figure 5 shows the performance of
the simulation for the specification of Table 1.

In Fig. 6, as the hosts number varied the job input of 1000 cloudlets that run in 10
VMs shows a decrease trend in the average execution and simulation times. In the case of
hosts number greater than 5 the rate comes in a steady state for both metrics. We present
the experimental configuration and results from static and dynamic cases in Table 2 im-
plemented in Cloudsim. The next section presents figures that illustrate those values. Ex-
ecution times are in milliseconds (ms).

Cloud VM Scheduling Optimisation 371

Fig. 5. Static deployment of VM instantiation performance for input submission of 1000 cloudlets in non-reac-
tive setting.

Fig. 6. The static and non-reactive benchmark results (average simulation and total execution time).

Table 2
The comparison of average execution times and simulation times fro static and dynamic cases.

Hosts 50 50 50 50 50

Cloudlets 1000 1000 1000 1000 1000

VMs 10 25 50 75 100

Average execution time (static) 808 328 1168 1164 1164

Total simulation time (static) 1600 640 320 320 320

Average execution time (dynamic) 437 364 355 351 348

Total simulation time (dynamic) 824.6 1039.6 1039.6 1039.6 1039.6

5.3. The Static VM Performance

This section presents the dynamic reactive workload deployment case that generates VMs
based on VMs migrations from a pool of available VMs. For modeling this functionality
we assume that the cloud administrator has previously configured a set of VMs. Utilization

372 N. Bessis et al.

Fig. 7. Average execution and simulation times of 1000 cloudlets with dynamic migration of reactive VMs
instantiation.

is based on migration of VMs within a physical space of the same host (Calheiros et al.,
2011). Specifically, migration utilization policy selects a host with the least computational
power due to utilization increase caused by the VM allocation. Thus, in the experiment
we set the utilization threshold to 80%, so the system tries to keep the host utilization
(CPU) under the specific utilization threshold. The rest 20% of the utilization consumed
by the migration operations. In this case the migration includes a duplication of the actual
VM by using the forking method (Lagar-Cavilla et al., 2009) as described in Section 2.
Specifically, each time a cloudlet submitted to the broker for execution, the datacenter
offers an additional functionality that allows VMs to be migrated rather than created from
the beginning. For experimental purposes we did not implement the VM forking solution
for VM duplication, however, we have defined the delay of migration by formula (4).

MigrationDelayVMi =
VMRAMi

VMBWi

+ (fVMi × constVMi). (4)

We extend the formula of (Cloudsim Lab, 2012) and we measure the delay of the
division of the VMRAM by the bandwidth speed VMBW in addition to the result of a coef-
ficient value that represents the extra delay. This corresponds to forking latency time fVMi

(Lagar-Cavilla et al., 2009) multiplied by a constant variable constVMi to control the rate
of latency. For example in this experiment we set the fi in 1000 (ms.) and the consti in 10,
that means that the delay is actually 10 times greater ((10)4). This happens because we
want to perform the experiment with a worst-case scenario. By performing migration of
tasks in a simulated forking environment, we allow VM instantiation in a dynamic case.
This is to say that when there is no availability in terms of computational power, new VMs
are generated from a virtual resource pool to handle the demanded workload.

Figure 7 presents the performance of the testbed by measuring the average execution
and simulation times when dynamic instantiation occurs. The specification includes the
execution of 1000 cloudlets when the VM numbers are varied from 10 to 100.

Cloud VM Scheduling Optimisation 373

Fig. 8. Average execution time of 1000 cloudlets with the dynamic migration of reactive VMs instantiation in
comparison with the static case of Fig. 6.

Figure 7 results show the average execution decreases while the simulation time in-
creases. In addition, when the VMs number is greater than 25 the system goes to a stable
state with cloudlets execution to be under 400 ms. However, the total simulation time is
increased significantly. For VMs number greater than 25 the testbed offers a stable state in
which execution of 1000 cloudlets happens in less than 1000 ms. Figure 8 demonstrates
the results of the average execution time by comparing the static benchmarks (as presented
in Fig. 6) and the dynamic instantiation for the same VMs variation (10 to 100).

Specifically, Fig. 8, compares the average execution time with and without migration. It
is clear that the dynamic case with migration outperforms the static solution. Specifically,
for VMs number greater than 50 the static solution gets stable (under 100 ms.) while the
dynamic case for VMs number greater than 25 it offers a stable state with execution time
under 40 ms. A unique situation is the case of 25 VMs, in which the solution offers the
same results for both cases.

Figure 9 shows the results of the total simulation time by comparing the static and the
dynamic instantiation for the same VMs variation (10 to 100) with the same configuration.

Figure 9, demonstrates the testbed performance with regards to the total simulation
time. In this case the non-migration solution outperforms the reactive because of the la-
tencies happens due to VM migrations. It should be mentioned that the initial appreciation
that delay is set to ten times higher than the non-migration is the reason for the high delay
numbers. However, when the number of VMs is greater than 25 the solution is getting in
steady execution level under 1000 ms.

Figure 10 demonstrates the indicators of the number of VM migrations, the SLA vi-
olations and the energy consumption according to the model of (Beloglazov and Buyya,
2010) in the reactive dynamic migration case when the VMs are varied from 10 to 100.
For experimental purposes the determination of SLA violations is measured by the dif-
ference between total requested and allocated MIPS divided by the total requested MIPS
(Calheiros et al., 2011).

374 N. Bessis et al.

Fig. 9. Total simulation time of 1000 cloudlets with the dynamic migration of reactive VMs instantiation in
comparison with the static and non-reactive case of Fig. 6.

Fig. 10. Number of migrations, SLA violation and energy consumption for reactive VM instantiation.

In Fig. 10, the indicators related with VM migration show that for higher number of
VMs the number of VM migrations is increased. This happens because the experiment
aims always to achieve a better distribution of cloudlets among VMs. In addition, the
number of SLAs violations, which is related with the requested and allocation MIPS, is
slightly increase. At last, the energy consumption (measured by the model of Beloglazov
and Buyya, 2010), increases significantly due to the extra computational power needed by
the datacenter for migrating VMs.

To conclude, by comparing static and dynamic reactive cases we could argue that a
dynamic VM deployment causes a higher number of energy consumption because of the
higher total simulation time, however, the average execution time of cloudlets has been
well optimized. Specifically, the average value of the average execution times in dynamic

Cloud VM Scheduling Optimisation 375

case is 371 ms. while in static case is 926 ms. In contrary, the average simulation time
in static case is 640 ms. while in the dynamic case is 997 ms. Thus, a future challenge is
to identify ways of minimizing the simulation time in order to reach the average levels of
static instantiation 640 ms.

Nevertheless, if the perspective is from the view of the user, by reactively utilizing
dynamic migration of VMs instantiation, a better quality of service level have been pre-
sentes because of the optimization of the average execution time of the cloudlets, which
represents the running time of the jobs. The next section illustrates various scenarios in
which the dynamic solution could be applied. The common aim of each one is to enhance
the agility and flexibility of the cloud by dynamically instantiating VMs.

6. Implications of Deploying Dynamic VMs Instantiations

The following five scenarios reflect the benefits of the dynamic deployment of VMs in-
stantiation.

• Service consolidation and isolation: Over the years it will be common to organize
services from multiple providers to be collaborative. Similarly, IT infrastructure can
be seen as a large established service. A flexible solution includes the deployment of
VMs in hosts by sandboxing the required workload into small virtual chunks. How-
ever, this static view arises questions regarding the agility in serving the different
levels of workload requests. A more advanced solution is the dynamic deployment
of VMs instantiations. As presented in Sections 5.2 and 5.3 the performance met-
rics of times present an improved performance in executed those requests. In other
words, the benefit by consolidating workloads will be increased by migrating VMs
within the environment. Similar to consolidation, isolation defines that application
services could be separated from each other. With reactive VMs management unde-
sired interactions and conflicts could be eliminated.
• Security and consistency of applications: This implies the creation of VMs for each

of the user application. Thus, VMs are generated according to the requirementsof the
user in a reactive manner, rather than in a static deployment case. Again, the dynamic
case will be able to control the security and reliability based on the SLAs signed
among providers and consumers. As presented in Section 5.3 the SLA violations in
the simulation environment is increased with a slower rate for large number of VMs
and cloudlets.
• Testing of applications: In the case of testing, virtualization allows the concurrent use

of products when implemented in different virtual machines. This is a very handy
solution for customers that require developing their own applications and for ad-
ministrators as well. In advance, the reactive deployment of VMs instantiations will
make testing more efficient as migration will allow the faster execution of heavy
testing situations to remote idle hosts.
• Disaster management: As datacenter conditions change due to unforeseen situations,

migration is the key to move workloads in real time. With this, users do not expect

376 N. Bessis et al.

to suffer from any significant interruptions to the service availability. Critical case in
disaster management includes the orchestration of the environment to act in a pre-
dictable manner by prioritizing tasks when a disaster incidence occurs. This includes
the movement of active VMs to idle or spare datacenter hosts within a convenient
time.
• Energy consumption: The effects of migrating VMs in a cloud environment offer

significant advantages like resource distribution and energy consolidation. However,
due to migration the consumption of energy is increased; thus a challenge is to find
scenarios in order to optimize the power consumption. Such scenarios are presented
in literature (Beloglazov and Buyya, 2010), in the case of a power consolidation
setting, the power overhead of migration is much less than without consolidation.

These scenarios are different in terms of the perspective of the decision maker for VMs
deployment. However, the common overall aim to enhance the agility and flexibility of the
cloud by dynamically instantiating VMs. For example, in scenario 1 workloads are sand-
boxed in VMs on demand from the perspective of the computational power, while scenario
2 involves application services from the user perspective. Eventually, we consider that dy-
namic and reactive deployment of VMs will play an important role in the deployment of
VMs instantiations, especially when large-scale clouds occur.

7. Conclusions

In this work we present the VM instantiation analysis in a cloud environment. To this
extend, we have compared the static and dynamic instantiations (with VM migration) by
using CloudSim as the simulation testbed. The analysis presented herein shows that in
dynamically reactive model of VMs instantiation the average execution times using VM
migration outperforms the result found in the static case. However, this compromises the
overall system time (simulation time) and the energy consumption levels. This is because
we initially set the delay of VM migration to the highest delay levels. Nevertheless, as
the primary view of the paper was to increase the quality of service levels from the users
perspective, the overall service execution time levels (represented by the average execution
time) have been optimized for the specific configuration.

Opportunities for further research include extending the functionality of the allocation
policies and the utilization model in order to achieve decrease simulation times as well as
decrease energy consumption levels. A future direction is to incorporate cloud datacenters
and allow tasks to be migrated between different hosts belonging to various datacenters.
Challenges to this direction include the implementation of the InterCloud environment
(Sotiriadis et al., 2012b), a setting for exchanging cloudlets and VMs among interoperable
clouds for improving the quality of service levels.

Finally, the work will aim to the inter-cloud model. The last one comes to expand cloud
capabilities in terms of quality of provisioned services and elasticity. In particular this the
Inter-Cloud Meta-Scheduling (ICMS) (Sotiriadis et al., 2013b)model presents an adaptive
environment that allows efficient service distribution among interoperable clouds. In such

Cloud VM Scheduling Optimisation 377

setting the effective VM migration will enhance the inter-cloud performance by allowing
the exchanging of VMs for dynamic situations.

References

Beloglazov, A., Buyya, B. (2010). Adaptive threshold-based approach for energy-efficient consolidation of vir-
tual machines in cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for

Grids, Clouds and e-Science (MGC’10). ACM, New York, Article 4, 6 pp.
Bessis, N., Sotiriadis, S., Pop, F. and Cristea, V. (2012). An architectural strategy for meta-scheduling in inter-

clouds. In: 1st International Workshop on Inter-Clouds and Collective Intelligence (iCCI-2012) in Conjunc-

tion with the 26th IEEE International Conference on Advanced Information Networking and Applications

(AINA-2012), Fukuoka, Japan, 26–29 March 2012, ISBN 978-1-7695-4652-0, pp. 1184–1189.
Bessis, N., Sotiriadis, S., Cristea, V. Pop, F. (2011). Modelling requirements for enabling meta-scheduling in In-

terCloud and inter-enterprises. In: Proceedings of the 3rd International Conference on Intelligent Networking

and Collaborative Systems (INCoS 2011), IEEE CSP.
Bessis, N., Sotiriadis, S., Cristea, V., Pop, F. (2012). Meta-scheduling issues in interoperable HPCs, grids and

clouds. International Journal of Web and Grid Services, (8)2, 153–172.
Bessis, N., Sotiriadis, S., Cristea, V., Pop, F. (2012). Optimizing the energy efficiency of message exchanging

for service distribution in interoperable infrastructures. In: 4th IEEE International Conference on Intelligent

Networking and Collaborative Systems (INCoS-2012), 19–21 September 2012, Bucharest, Romania, ISBN:
978-0-7695-4808-1, pp. 105–112.

Bustos, J. (2003). Robin hood: An active objects load balancing mechanism for intranet. In: Proceedings of the

Workshop de Sistemas Distribuidos y Paralelismo, Chile.
Buyya, R., Ranjan, R., Calheiros, R.N. (2010). InterCloud: utility-oriented federation of cloud computing en-

vironments for scaling of application services. In: Proc. of Conference on Algorithms and Architectures for

Parallel Processing. LNCS, Vol. 6081. Springer, Berlin, pp. 13–31.
Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R. (2011). CloudSim: a toolkit for mod-

eling and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1) 23–50.

Carolan, J., Gaede, S. (2009). Introduction to Cloud Computing Architecture. White paper 1st edition. Available
by Sun Microsystem, Inc.

Cloudsim, The Clouds Lab (2012). Cloudsim: a framework for modeling and simulation of cloud comput-

ing infrastructures and services. Available at http://www.cloudbus.org/cloudsim/. Accessed
28/02/2012.

Diaz, J., Laszewski, G., Wang, F., Younge, A.J., Fox, G.C. (2011). FutureGrid image repository: a generic cata-
log and storage system for heterogeneous virtual machine images. In: Proceedings of the 2011 IEEE Third

International Conference on Cloud Computing Technology and Science (CLOUDCOM’11). IEEE Computer
Society, Washington, pp. 560–564.

Foster, I., Kesselman, C. (2004). In: Nabrzyski, J., Schopf, J.M., Weglarz J. (Eds.). The Grid in a Nutshell. In

Grid Resource Management, Kluwer Academic, Norwell, pp. 3–13.
Frachtenberg, E., Schwiegelshohn, U. (2007). New challenges of parallel job scheduling. In: Frachtenberg, E.,

Schwiegelshohn, U. (Eds.), Proceedings of the 13th International Conference on Job Scheduling Strategies

for Parallel Processing (JSSPP’07). Springer, Berlin, pp. 1–23.
Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z. (2010). The characteristics of cloud computing. In: Proceedings

of the 39th International Conference on Parallel Processing Workshops (ICPPW), pp. 275–279.
Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad S., Stack, T., Webb, K., Lepreau, J. (2008). Large-scale

virtualization in the Emulab network testbed. In: Proceedings of the USENIX Annual Technical Conference,
Boston, MA.

Lagar-Cavilla, H.A, Tolia, N., De Lara, E., Satyanarayanan, M., O’Hallaron, D. (2007). Interactive
resource-intensive applications made easy. In: Campbell, R.H., Cerqueira R. (Eds.), Proceedings of the

ACM/IFIP/USENIX 2007 International Conference on Middleware (Middleware ’07). Springer, New York,
pp. 143–163.

378 N. Bessis et al.

Lagar-Cavilla, H.A, Whitney, J.A, Bryant, R., Patchin, P., Brudno, M., De Lara, E., Rumble, S.M., Satya-
narayanan, M., Scannell, A. (2011). SnowFlock: virtual machine cloning as a first-class cloud primitive.
ACM Transactions on Computer Systems 29(1), Article 2 (2011), 45 pp.

Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M., De Lara, E., Brudno, M., Satya-
narayanan, M. (2009). SnowFlock: rapid virtual machine cloning for cloud computing. In: Proceedings of

the 4th ACM European Conference on Computer Systems (EuroSys ’09). ACM, New York, pp. 1–12.
Osman, S., Subhraveti, D., Su, G., Nieh, J. (2002). The design and implementation of Zap: a system for migrating

computing environments. SIGOPS Operating Systems Review, 36(SI), 361–376.
Rodero, I., Guim, F, Corbalan, J, Fong, L., Sadjadi, S.M. (2010). Grid broker selection strategies using aggre-

gated resource information. Future Generation Computer Systems, 72–86.
Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M. (2002). Optimizing the migration

of virtual computers. SIGOPS Operating Systems Review, 36(SI), 377–390.
Sotiriadis, S., Bessis, N. Xhafa, F., Antonopoulos, N. (2012a). From meta-computing to interoperable infras-

tructures: a review of meta-schedulers for HPC, grid and cloud. In: 26th IEEE International Conference

on Advanced Information Networking and Applications (AINA-2012), Fukuoka, Japan, 26–29 March 2012,
ISBN 978-1-7695-4651-3, pp. 874–883.

Sotiriadis, A., Bessis N., Antonopoulos, N. (2012b). Towards InterCloud schedulers: A survey of meta-
scheduling approaches. In: Proceedings of the 6th International Conference on P2P, Parallel, Grid, Cloud

and Internet Computing (3PGCIC 2011), pp. 59–66.
Sotiriadis, S., Bessis, N., Antonopoulos, N. (2012c). Decentralized meta-brokers for inter-cloud: Modeling bro-

kering coordinators for interoperable resource management. In: 4th IEEE International Conference on In-

telligent Networking and Collaborative Systems (INCoS-2012), Chongqing, 29–31 May 2012, ISBN 978-1-
4673-0024-7/10, pp. 2475–2481.

Sotiriadis, S., Bessis, N., Antonopoulos, A., Anjum, A. (2013a). SimIC: designing a new inter-cloud simulation
platform for integrating large-scale resource management. In: 27th IEEE International Conference on Ad-

vanced Information Networking and Applications (AINA-2013), 25–28 March, Barcelona. IEEE Computer
Society, Washington, pp. 90–97.

Sotiriadis, S., Bessis, N., Kuonen, P., Antonopoulos, A. (2013b). The inter-cloud meta-scheduling (ICMS)
framework. In: 27th IEEE International Conference on Advanced Information Networking and Applications
(AINA-2013), 25–28 March, Barcelona. IEEE Computer Society, Washington, pp. 64–73.

Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A., Voelker, G., Savage, A. (2005). Scalability,
fidelity and containment in the Potemkin virtual honeyfarm. SIGOPS Operating Systems Review, 39(5),
148–162.

Wood, T., Shenoy, P., Venkataramani, A., Yousif, M. (2007). Black-box and gray-box strategies for virtual ma-
chine migration. In: Proceedings of the USENIX Conference on Networked Systems Design Implementation

(NSDI’07). USENIX Association, Berkeley, 17 pp.
Xhafa, F., Abraham, A. (2010). Computational models and heuristic methods for Grid scheduling problems.

Future Generation Computer Systems, 26(4), 608–621. ISSN 0167-739X.
Zayas, E. (1987). Attacking the process migration bottleneck. SIGOPS Operating Systems Review, 21(5) 13–24.
Zhang, Y., Franke, H., Moreira, J.E., Sivasubramaniam, A. (2000). The impact of migration on parallel job

scheduling for distributed systems. In: Bode, A., Ludwig, T. II, Karl, W., Wismuller, R. (Eds.). Proceedings

of the 6th International Euro-Par Conference on Parallel Processing (Euro-Par ’00). Springer, London,
pp. 242–251.

Zheng, J., Eugene Ng, T.S., Sripanidkulchai, K. (2011). Workload-aware live storage migration for clouds. In:
Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-

ments (VEE ’11). ACM, New York, pp. 133–144.
Younge, A.J., Henschel, R., Brown, J.T., Von Laszewski, G., Qiu, J., Fox., G.C. (2011). Analysis of virtualization

technologies for high performance computing environments. In: Proceedings of the 2011 IEEE 4th Interna-

tional Conference on Cloud Computing (CLOUD ’11). IEEE Computer Society, Washington, pp. 9–16.

Cloud VM Scheduling Optimisation 379

N. Bessis is a Head of Distributed and Intelligent Systems (DISYS) research group, a full
Professor and a Chair of Computer Science in the School of Computing and Mathematics
at University of Derby, UK. He is also an academic member in the Department of Com-
puter Science and Technology at University of Bedfordshire (UK). His research interest
is related to dynamic distributed environments such as grids, interclouds, crowds and in-
ternet of things. He is involved in and leading a number of funded research and commer-
cial projects in these areas. Prof. Bessis has published over 180 papers, won 3 best paper
awards and is the editor of 7 books and the Editor-in-Chief of the International Journal
of Distributed Systems and Technologies (IJDST). In addition, Prof. Bessis is a regular
reviewer and has served several times as a keynote speaker, conferences/workshops/track
chair, associate editor, session chair and scientific program committee member.

S. Sotiriadis is a research collaborator of the Intelligent Systems Laboratory (InteLLi-
gence) of the Department of Electronic & Computer Engineering, Technical University of
Crete (TUC) located in Chania. His research interests are related with Future Internet (FI)
application design, FI Architectures, inter-cloud and cloud computing and in general with
large scale distributed infrastructures. Other areas of interest include artificial intelligence
and interoperable systems and multithreaded simulation infrastructures. Stelios Sotiriadis
has published over 45 papers in conference proceedings and international journals as well
as he is program committee member and peer-reviewer of international conferences and
journals.

F. Xhafa holds a PhD in Computer Science from the Department of Languages and
Informatics Systems (LSI) of the Technical University of Catalonia (UPC), Barcelona,
Spain. He was a Visiting Professor at the Department of Computer Science and Informa-
tion Systems, Birkbeck, University of London, UK (2009/2010) and a Research Associate
at College of Information Science and Technology, Drexel University, Philadelphia, USA
(2004/2005). Dr. Xhafa holds a permanent position of Professor Titular at the Depart-
ment of LSI, UPC (Spain). His research interests include parallel and distributed algo-
rithms, combinatorial optimization, approximation and meta-heuristics, networking and
distributed computing, Grid and P2P computing. Dr. Xhafa has widely published in peer
reviewed international journals, conferences/workshops, book chapters and edited books
and proceedings in the field. Dr. Xhafa has an extensive editorial and reviewing service.
He is Editor in Chief of the International Journal of Space-based and Situated Computing,
and International Journal of Grid and Utility Computing, Inderscience Pubs. Dr. Xhafa is
actively participating in the organization of international conferences.

E. Assimakopoulou holds a first degree (University of Luton, UK), an MA in Architec-
ture (University of Westminster, UK) and a PhD in Managing Natural Disasters using Grid
Technology (LoughboroughUniversity, UK). She is a Visiting Lecturer at the Department
of Computer Science and Technology at the University of Bedfordshire, UK and currently,
a Visiting Researcher at the Distributed and Intelligent Systems (DISYS) research group,
University of Derby, UK. She is an editor of a book, conference track/workshops chair and
a regular reviewer in several international conferences and journals. Her research interests
include emergency management, response and planning for disasters, business continu-
ity, construction and risk management, resource management in distributed environments

380 N. Bessis et al.

(such as grids, clouds and inter-clouds) and also advanced ICT methods (such as grid,
clouds, crowd and other forms of applicable collaborative and distributed technologies)
for disaster management. Eleana has published over 40 refereed works in these areas.

Debesų kompiuterijos planavimo optimizavimas: reaguojantis modelis
virtualiosioms mašinoms dinamiškai diegti

Nik BESSIS, Stelios SOTIRIADIS, Fatos XHAFA, Eleana ASIMAKOPOULOU

Šis tyrimas siūlo sprendimų priėmimo proceso modelį virtualiosioms mašinoms diegti debesų
kompiuterijos aplinkoje. Mes tiriame dvi veiklos laiko metrikų optimizavimo konfigūracijas: sta-
tišką, kurioje virtualiosios mašinos yra sukuriamos pagal debesų kompiuterijos orkestravimą, ir di-
namišką, kurioje naudojant migravimą virtualiosios mašinos yra reaguojančiai adaptuojamos pagal
darbų pateikimus. Mes integruojame abu sprendimus tame pačiame simuliatoriuje, kad galėtume
matuoti įvairių virtualiųjų mašinų, darbų ir kompiuterių kombinacijų veiklą vidutiniu vykdymo ir
viso modeliavimo laikais. Galime daryti išvadą, kad dinamiška konfigūracija yra perspektyvi, nes
įgalina optimizuotą darbų vykdymo veiklą.

