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Abstract. Based on an example, we describe how outcomes of computational experiment can be
employed for study of stability of numerical algorithm, provided that related theoretical proposi-
tions are not proven yet. More precisely, we propose a systematic and generalized methodology,
how to investigate the influence of the weight functions α(x) and β(x), present in the integral
boundary conditions, on the stability of difference schemes, for some class of parabolic equations.
The ground of the methodology is the investigation of the spectrum of a matrix, defining the tran-
sition to the upper layer of the difference scheme. Spectral structure of this matrix is analysed by
both analytic method and computational experiment.

Keywords: parabolic equation, nonlocal integral condition, difference scheme, stability, computa-
tional experiment.

1. Introduction and Problem Statement

It is a common practice in research, related to numerical analysis, to employ a computa-
tional experiment, alongside of a theoretical study. Such a practice started a few decades
ago, with advent of powerful computers. Nowadays, even more mighty environments
(clusters, grids, supercomputers) are available for scientific computing, making computa-
tional research possible for truly demanding (two-dimensional, three-dimensional, etc.)
problems.

The distinguishing feature of computational research is that one performs computa-
tions (on a computer or in some computational environment), aiming to reveal yet un-
known patterns, laws, trying to suggest conjectures – instead of seeking to illustrate,
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verify or explain already proven theoretical propositions. Years from now, computational
research has proved useful for studying phenomena and processes in physics, described
by differential models, see, for example the work Samarskii (1979). These days, com-
putational experiment is part of research in many fields of informatics. In Medvedev and
Dzemyda (2006), Medvedev et al. (2011) the computational experiment was used for data
analysis aiming to make conclusions about the effectiveness of the numerical methods.

In this paper, we demonstrate employment of computational experiment in a particular
branch (which is still under significant development) of numerical analysis – numeri-
cal algorithms for differential equations, subject to nonlocal boundary conditions. As
an example of such mathematical model, one-dimensional (in space variable) parabolic
equation, subject to one or two integral conditions (instead of frequently used classical
boundary conditions) is dealt with often.

Our choice of this particular problem has been motivated by different applications as
well as by interesting and not finally answered questions about the stability of difference
schemes. Cannon (1963) investigated the heat equation, subject to the specification of
energy. Day (1982) applied nonlocal conditions when dealing with problems of the linear
thermoelasticity theory. Yin (2004) considered a generalized model for theory of ion-
diffusion in channels. The thermostat problem with nonlinear nonlocal conditions was
investigated in the article Kalna and McKee (2004). A lot of differential equations of
various types with nonlocal conditions can be found in books of Schuegerl (1987) and
Nakhushev (1995).

In this work, we are going to focus on the parabolic equation

∂u

∂t
=

∂2u

∂x2
+ f(x, t), x ∈ (0, 1), t ∈ (0, T ], (1)

subject to two nonlocal integral conditions

u(0, t) = γ1

1∫
0

α(x)u(x, t) dx + μ1(t), (2)

u(1, t) = γ2

1∫
0

β(x)u(x, t) dx + μ2(t), (3)

instead of classical boundary conditions. The initial values are defined in a standard way:

u(x, 0) = ϕ(x). (4)

Here u(x, t) denotes an unknown function (a solution of the above differential problem),
γ1 and γ2 are given parameters (real numbers), f(x, t), α(x), β(x), μ1(t), μ2(t) and
ϕ(x) – given functions. Note that under the special case of γ1 = γ2 = 0 nonlocal integral
conditions (2), (3) become familiar (classical) boundary conditions.

Ekolin (1991) analysed the stability of a difference scheme for a parabolic equation
subject to integral condition, by applying maximum principle. Note though, that in this
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paper, proof of stability assumes essential boundedness of the quantities |γ1α(x)| and
|γ2β(x)|, in other words – the nonlocal conditions (2), (3) must be rather close to classical
ones. Čiegis et al. (2002), and Čiegis and Tumanova (2010) got more general results,
concerning stability (of the difference schemes) conditions. Wider reviews of such kind
problems are provided in the papers of Dehghan (2005, 2007), Ivanauskas et al. (2009).

The method, based on investigation of the spectral structure of difference opera-
tors with nonlocal conditions, for examination of the stability of the difference schemes
for parabolic equations (with nonlocal conditions) has been widely used during the last
decade (Gulin et al., 2006; Ivanauskas et al., 2009; Sapagovas, 2008). Other works, em-
ploying study of the spectral structure of difference operators (with nonlocal conditions),
are the papers of Čiupaila et al. (2004), Jesevičiūtė and Sapagovas (2008), Sapagovas
and Štikonas (2005). Differently from differential or difference operators with classical
boundary conditions, the spectral structure of the operators with nonlocal conditions can
be rather complicated (Sapagovas and Štikonas, 2005). In many cases the spectral struc-
ture was successfully investigated by using both analytic and numerical methods in one
study (Skučaitė et al., 2010; Štikonas, 2011).

In the paper of Dehghan (2005) the problem (1)–(4) was solved using various differ-
ence methods, for example, Crandall’s formula. Applying this algorithm the differential
equation (1) is replaced by the difference equation

un+1
i − un

i

τ
=

(
1
2

+
1

12s

)
Λun

i +
(

1
2

− 1
12s

)
Λun+1

i + gn
i , (5)

where

Λun
i =

un
i−1 − 2un

i + un
i+1

h2
, s =

τ

h2
,

τ = T/M , h = 1/N , and gn
i approximates the function f(x, t) in the point (xi, tn).

Integrals in (2) and (3) are replaced by Simpson’s rule. Such difference scheme (with
particularly chosen gn

i ) approximates the differential problem (1)–(4) with approximation
error O(h4 + τ2). In the work of Dehghan (2005) it was stated that the discussed scheme
is stable. In the paper of Martin-Vaquero and Vigo-Aguiar (2009a) Crandall’s formula
was modified, some inaccuracies were corrected. Three testing problems were solved in
the same paper of Martin-Vaquero and Vigo-Aguiar (2009a), proving, according to the
authors of that paper, high accuracy of the method discussed.

In the article of Martin-Vaquero and Vigo-Aguiar (2009b) another family of difference
methods was investigated. Therein τ = h and p-level (p = 2, 3, 4, 5) difference schemes
were proposed. As a special case, an efficient scheme with accuracy O(h4 + τ4) was
discussed (in general, approximation errors of the analysed algorithms were shown to
be O(hp−1 + τp−1)). If p = 2, the method under consideration presents a well-known
implicit scheme, where (1) is replaced by the difference equation

un+1
i − un

i

τ
= Λun+1

i + fn+1
i , τ = h. (6)
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When p = 2, the stability of the scheme is proven, while the stability in the cases
p = 3, 4, 5 is claimed to follow analogously.

Another important (and interesting) question is the impact of the weight functions
α(x) and β(x) (appearing in the nonlocal conditions (2) and (3)) on the stability of a dif-
ference scheme. None of the papers of Dehghan (2005), Martin-Vaquero and Vigo-Aguiar
(2009a, 2009b) address this question.

The aim of our paper is to investigate using the computational experiment the influ-
ence of the nonlocal conditions (2) and (3) on the stability of difference schemes, based
on (5).

From computational point of view, to achieve this goal we were presented with de-
manding (in terms of CPU time) task. We have implemented a tool for computing all
eigenvalues of a square matrix (of order, which in computational experiments exceeds
100). This tool produces output pretty fast (even on a personal computer) for single
combination of parameters γ1 and γ2 (and with all other parameters and functions of
mathematical model and algorithm fixed). However, to obtain a full and detailed picture
of spectral structure (of a difference operator) dependence on the nonlocal conditions
(2) and (3), one has to run computations in two-dimensional (γ1, γ2) parameters space.
Moreover, computational experiment must be repeated with many different combinations
of the weight functions α(x) and β(x). Therefore, we were in demand for much more
efficient (compared to a personal computer) computing platform. Two such platforms
were available for us: (1) BalticGrid grid environment and (2) supercomputer deployed
in Digital Science and Computing Centre of Vilnius University, Faculty of Mathematics
and Informatics.

Beside the tool for computational spectral analysis, a differential solver, based on the
difference scheme, has been implemented, too.

All tools were written in C programming language, calling subroutines of GNU Sci-
entific Library and adapted for BalticGrid and supercomputer. Compared to C, high-level
programming languages (e.g., under open source license: Python, Octave; commercially
licensed: Mathematica, MATLAB, Maple) would allow a simpler implementation, but
some issues (speed, portability, availability) may also arise, especially when compiling
and executing code in such platforms as grid and supercomputer. Note though, that alter-
native implementation (in some high-level programming language) can be employed for
testing of developed software.

We state the main result of this paper as follows. The stability of the difference
scheme, approximating the differential problem (1)–(4) essentially depends on the weight
functions α(x) and β(x), and not on their absolute values, but on their integral character-
istics. This dependence can be determined by the spectral structure of transition matrix
of two-level difference scheme. The spectral structure is studied by combining analytic
methods with computational experiment.

2. Investigation of Difference Schemes with Nonlocal Conditions

In this section we shall consider methodology, how the stability of schemes with non-
local conditions can be investigated. The main ideas of the methodology are provided
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in the works of Gulin et al. (2006), Jachimavičienė et al. (2009), Sapagovas (2008).
Let us replace the problem (1)–(4) by the following weighted (with weight σ) differ-

ence scheme

un+1
i − un

i

τ
= σΛun+1

i + (1 − σ)Λun
i + gn

i , i = 1, 2, . . . , N − 1, (7)

un+1
0 = γ1

(
α, un+1

)
+ μn+1

1 , (8)

un+1
N = γ2

(
β, un+1

)
+ μn+1

2 , (9)

u0
i = ϕi, i = 0, 1, . . . , N. (10)

Here

(
α, un+1

)
=

h

3

(
α0u

n+1
0 + αNun+1

N + 4
N/2∑
i=1

α2i−1u
n+1
2i−1 + 2

N/2−1∑
i=1

α2iu
n+1
2i

)
,

i.e., (α, un+1) is the expression of the Simpson’s rule. The value (β, un+1) is defined
analogously. The number N is even, gn

i is some approximation of the function f(x, t).
For example,

(1) when σ = 1, gn+1
i = fn+1

i , then (7) turns into the implicit equation (6), approxi-
mation error is O(h2 + τ);

(2) when σ = 1/2, gn+1
i = f

n+1/2
i , we get symmetric Crank–Nicolson scheme, ap-

proximation error is O(h2 + τ2);

(3) when σ =
1
2

− h2

12τ
, gn+1

i = f
n+1/2
i +

h2

12
Λf

n+1/2
i , (7) coincides with the Cran-

dall’s formula (5), approximation error O(h4 + τ2) – the so called scheme of in-
creased order of accuracy (Samarskii, 2001).

Let us take the difference scheme (7)–(9) written down in a standard way on the
(n + 1)th layer (when t = tn+1)

un+1 = Sun + f̄n, (11)

here un = (un
1 , un

2 , . . . , un
N −1) and S – square matrix of order N −1. From the conditions

(8) and (9) we express un+1
0 and un+1

N through other unknowns of the same layer, to get
the system of two equations

un+1
0 =

1
D

( N −1∑
i=1

α̃iu
n+1
i + μ̃n+1

1

)
, (12)

un+1
N =

1
D

( N −1∑
i=1

β̃iu
n+1
i + μ̃n+1

2

)
. (13)
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Here α̃i, β̃i, μ̃n+1
1 , μ̃n+1

2 are some known expressions (that will not be employed further
in the paper), depending on the values γ1, γ2, αi, βi, μn+1

1 , μn+1
2 , and

D =

∣∣∣∣∣∣∣∣∣
1 − γ1α0h

3
− γ1αNh

3

− γ2β0h

3
1 − γ2βNh

3

∣∣∣∣∣∣∣∣∣
. (14)

The following Lemma is stated without proof (which is straightforward).

Lemma 1. If

|γ1αi| � M, |γ2βi| � M,

and Mh < 3/2 (i.e., h is sufficiently small), then D > 0.

We conclude from Lemma 1, that the expressions (12) and (13) are well-defined, if
the grid step h is sufficiently small.

By substituting the expressions of un+1
0 and un+1

N into the difference equation (7) (in
the cases of i = 1 and i = N − 1, respectively), we get the equality (11), in which

S = (I + τσA)−1(I − τ(1 − σ)A), (15)

where I is the identity matrix, and square matrix A of order N − 1 is defined as follows:

A =
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − a1 −1 − a2 −a3 · · · −aN −2 −aN −1

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . 2 −1

−b1 −b2 −b3 · · · −1 − bN −2 2 − bN −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

ai =
α̃i

D
, bi =

β̃i

D
.

The matrix A differs from a tridiagonal matrix only by first and last rows, which are
full. An eigenvalue problem for this matrix could be presented as an eigenvalue problem
for a difference operator with nonlocal conditions.
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Lemma 2. An eigenvalue problem of the matrix A (of order N − 1) is equivalent to an
eigenvalue problem of the following difference operator (with nonlocal conditions):

Λui + λui = 0, i = 1, 2, . . . , N − 1, (17)

u0 = γ1(α, u), (18)

uN = γ2(β, u). (19)

Lemma 2 has been proven in the paper of Sapagovas (2008), having assumed that
integrals in the conditions (2) and (3) are approximated by the trapezoid rule. In the case
of Simpson’s rule proof is analogous.

The study of Sapagovas (2008) also contains proofs of the following statements,
which we shall formulate as Theorems 1 and 2. We shall employ them in Section 3.

Theorem 1 (Sapagovas, 2008). If all eigenvalues λi(A) (of the matrix A) are real and
positive or meet the condition Re λi(A) > 0, then

(1) if 1/2 � σ � 1, then ρ(S) = max
1�i�N −1

|λi(A)| < 1;

(2) if 0 � σ < 1/2, then ρ(S) < 1 with some additional constraint on τ/h2.

The condition ρ(S) < 1 assures the stability of the difference scheme. That is, the
criterion Re λi(A) > 0 presents the sufficient condition for the stability of the difference
scheme (11). This condition could be weakened to the condition Re λi(A) � 0. But if
at least one eigenvalue (of the matrix A) is such that Re λi(A) < 0, the scheme be-
comes unstable. We have come to this conclusions by performing sizeable computational
experiment.

One of the main objectives (investigating the stability of the scheme (11)) was to
obtain simply verifiable condition, equivalent to the existence of the eigenvalue λ = 0 of
the matrix A (or, in other words – of the difference operator (17)–(19)).

Theorem 2 (Sapagovas, 2008). The number λ = 0 is the eigenvalue of the difference
operator (17)–(19) if and only if the point (γ1, γ2) rests on the characteristic curve

{
(α, x)(β, 1) − (β, x)(α, 1)

}
γ1γ2 +

{
(α, 1) − (α, x)

}
γ1 + (β, x)γ2 − 1 = 0.

(20)

In general, the curve (20) defines a hyperbola in the coordinate plane (γ1, γ2). However,
depending on values of α(x) and β(x), it can degrade to a line, two lines or even be an
empty set. If α(x) � 0 and β(x) � 0 (α(x) �≡ 0, β(x) �≡ 0), as x ∈ (0, 1), then the
curve (20) can present a hyperbola (with asymptotes, parallel to the coordinates axes) or
the line (if one branch of hyperbola digresses to infinity and another one becomes a line).

In Fig. 1 the characteristic curve (20), defining a hyperbola in the case of α(x) > 0,
β(x) > 0 (as x ∈ (0, 1)) and (α − β, x) > 0, is displayed.

Two branches of the hyperbola divide the whole coordinate plane (γ1, γ2) into three
unbounded domains (or two domains, if the characteristic curve presents a line). One part
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Fig. 1. The hyperbola (20) in the coordinate plane (γ1, γ2), with α(x) = 1, β(x) = x.

of the coordinate plane, to which the point (0, 0) belongs, we mark as S1, and the other
two as S2 and S3 (see Fig. 1). When γ1 = γ2 = 0, all N − 1 eigenvalues of the problem
(17)–(19) are real and positive. Therefore, in the vicinity of the point (γ1 = 0, γ2 = 0)
(that is, in some subset of the domain S1) the entire spectrum of the matrix A is positive
too, hence the difference scheme (11) is stable here.

If, for any γ1, γ2, the matrix A would not possess complex (with non-zero imaginary
part) eigenvalues (note that A is asymmetric, except of the case γ1 = γ2 = 0), then in the
entire domain S1 the difference scheme would be stable. It is worth mentioning that in
the domains S2 and S3 one or two negative eigenvalues usually exist. Numerical evidence
suggests that in regions (of the coordinate plane (γ1, γ2)), where negative eigenvalues are
present, the difference scheme is unstable.

However, the existence of complex eigenvalues can have essential impact on the sta-
bility (see Tests 1–4 in Section 3).

3. Results of Computational Experiment

We are going to perform four specific numerical tests, which have been dealt with in the
papers of Martin-Vaquero and Vigo-Aguiar (2009a, 2009b).

Test 1. Let’s deal with the problem (1)–(4) and take

α(x) = β(x) = x. (21)

The functions f(x, t), μ1(t), μ2(t) and ϕ(x) were chosen such that the exact solution
of the problem would be

u(x, t) =
(

x

t + 1

)2

, (22)

for any values of γ1, γ2.
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Fig. 2. The line (20) in the coordinate plane (γ1, γ2), with α(x) = β(x) = x.

The characteristic curve in this case is the line (see Fig. 2)

γ1 + γ2 − 6 = 0.

In Fig. 3 the properties of the spectrum of the matrix A are presented.
The part of the plane (γ1, γ2), where at least one negative or holding the property

Re λi(A) < 0 eigenvalue exists, is displayed in the gray background. If the point (γ1, γ2)
depends to the gray background domain, then, with these values of γ1, γ2, the difference
scheme (11) is unstable.

Analogously, in the region of white background all eigenvalues of the matrix A are
positive, and in the criss-crossed area of white background all eigenvalues possess the
property Re λi(A) > 0 (some eigenvalues in this region are complex, with non-zero
imaginary part). When the point (γ1, γ2) depends to any of these two regions, the differ-
ence scheme (11) is stable.

This test with the parameters γ1 = γ2 = 1 (we have marked this point in the right
part of Fig. 3) has been dealt with numerically in the papers of Martin-Vaquero and Vigo-
Aguiar (2009a, 2009b) and the stability of the difference method has been observed. Our
computer experiment with the same values γ1 = γ2 = 1 affirms that the difference
scheme (11) is indeed stable. Moreover, we have indicated values of γ1, γ2 such that the
difference scheme is unstable (Fig. 3, region of gray background).

Test 2. Now, we examine the problem (1)–(4) with

α(x) = x, β(x) = cos x, (23)

and the functions f(x, t), μ1(t), μ2(t), ϕ(x) defined so, that the exact solution would be

u(x, t) = e−(x + sin t). (24)
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Fig. 3. Properties of the spectrum of the matrix A in the plane (γ1, γ2). α(x) = x, β(x) = x, N = 200,
h = 0.005. Figure on the right presents the zoom of the figure on the left.

Fig. 4. Properties of the spectrum of the matrix A in the plane (γ1, γ2). α(x) = x, β(x) = cos x, N = 200,
h = 0.005. Figure on the right presents the zoom of the figure on the left.

In the papers of Martin-Vaquero and Vigo-Aguiar (2009a, 2009b) this test has been
solved numerically with

γ1 =
e

e − 2
≈ 3.78442, γ2 =

2
e + sin 1 − cos 1

≈ 0.662372.

We have marked this point in the right part of Fig. 4.
The authors of the last mentioned papers claim, that due to numerical results, obtained

in the time interval 0 � t � 1, the difference method is stable.
However, our results show, that situation concerning the stability of the difference

scheme is much more complicated.
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In the case under consideration, the characteristic curve (20) presents the hyperbola
(in the right part of Fig. 4 it coincides with the boundary of gray regions)

0.090γ1γ2 + 0.167γ1 + 0.382γ2 − 1 = 0.

Figure 4 employs graphical notations (regions with different background), matching
with those, defined in Test 1. That is, in Fig. 4, same as it was in Fig. 3, regions of
instability (of the difference scheme) appears in gray background.

The point (γ1 = 3.78442, γ2 = 0.662372) is in the zone of instability, but quite
close to the characteristic curve. With these values of γ1 and γ2 the matrix A possesses
one negative eigenvalue (approximately equal to minus one), all other eigenvalues are
positive. Because there exists only one negative eigenvalue λ1 ≈ −1 (λ1 = −0.999794,
if N = 100; λ1 = −0.999998, if N = 1000), calculations based on unstable difference
scheme in some bounded interval of time t (for example, 0 � t � 1) can look reliable
enough (error of the solution grows as e−λ1t, λ1 < 0). But this conclusion would be
a wrong one. In the left part of Fig. 5 we see how error of the solution grows, depending
on increasing time t. Even if the error is still small in the beginning, an exponential grow
of the error is observed soon. Therefore we conclude that the difference scheme is actually
unstable. It is worth mentioning, that in this case we witness analogous situation as it was
described in the paper Lin et al. (1997) for two-dimensional parabolic equation, i.e., the
error starts to grow unboundedly, as t increases.

Also, we have computed the case γ1 = −4, γ2 = 8, belonging to the stability region
(see Fig. 4). Evolution of the error, displayed in the right part of Fig. 5, confirms the
stability of the scheme.

Fig. 5. The error (in log scale) of the solution of the difference scheme (7)–(10) vs time t, provided that the
exact solution is defined by (24). α(x) = x, β(x) = cos x, T = 10, N = 200, h = 0.005. Solid curve
represents the case τ = 0.01 (σ = 599/1200 ≈ 0.499), dashed curve – the case τ = 0.00005 (σ = 1/3).
Figure on the left: γ1 = e/(e − 2) ≈ 3.78442, γ2 = 2/(e +sin 1 − cos 1) ≈ 0.662372. Figure on the right:
γ1 = −4, γ2 = 8.
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Fig. 6. Properties of the spectrum of the matrix A in the plane (γ1, γ2). α(x) = cos x, β(x) = x, N = 200,
h = 0.005. Figure on the right presents the zoom of the figure on the left.

The stability of the difference scheme essentially depends on the functions α(x), β(x).
Let’s compare two problems – one for α(x), β(x) defined by the functions (23), and
another one with the swapped functions

α(x) = cosx, β(x) = x. (25)

The regions of stability and instability of the later problem (when α(x) and β(x)
are chosen by the formulae (25)) are presented in Fig. 6 (the same as in Figs. 3 and 4
graphical notations of different background regions are employed). Note that in this case
the matrix A has no complex (with non-zero imaginary part) eigenvalues.

Therefore, if the point (γ1, γ2) is lower to both branches of the hyperbola (20) (be-
longs to the region of white background, see Fig. 6), all eigenvalues of the matrix A are
positive and the difference scheme is stable.

But, if the point (γ1, γ2) is between branches of the hyperbola (the matrix A pos-
sesses one negative eigenvalue) or above both branches of the hyperbola (two negative
eigenvalues of A appear), the difference scheme is unstable – since at least one nega-
tive eigenvalue exists. In Fig. 6 such points (γ1, γ2) are located in the region of gray
background.

By comparing Figs. 4 and 6, we conclude, that the values of (γ1, γ2) for which the
difference scheme is stable, essentially depend on the order ((23) or (25)), in which the
functions α(x) and β(x) are defined.

Test 3. In this test we choose (in the problem (1)–(4))

α(x) = 1 + x, β(x) = 0.
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Then, the characteristic curve (20) defines a line, parallel to the axis γ2:

γ1 =
6
5
.

Therefore, the regions of stability and instability are defined quite simply:

– the matrix A possesses one negative eigenvalue and the scheme is unstable if
γ1 > 6/5;

– the matrix A has no eigenvalues with the property Re λi(A) < 0 and the scheme
is stable, if γ1 < 6/5. More precisely, all eigenvalues of A are positive, when
−a < γ1 < 6/5, a ≈ 2.8; complex eigenvalues (with non-zero imaginary part),
holding the property Re λi(A) > 0 exist, when γ1 < −a.

Test 4. In the paper of Martin-Vaquero and Vigo-Aguiar (2009a) the example from the
paper Day (1982) has been provided, α(x) and β(x) being chosen as

α(x) = −2δ2(2 − 3x), β(x) = 2δ2(1 − 3x). (26)

In this case the problem (1)–(4) portrays the quasi-static flexure of a thermoelastic
rod unit length. We consider this example by applying our method (subject to stability of
difference scheme) for the functions

α(x) = 2 − 3x, β(x) = 1 − 3x.

For these α(x) and β(x), the characteristic curve (20) degenerates into two lines (par-
allel to the coordinate axes γ1, γ2), crossing each other at the point (γ1 = 2, γ2 = −2)
(see Fig. 7).

Fig. 7. Properties of the spectrum of the matrix A in the plane (γ1, γ2). α(x) = 2 − 3x, β(x) = 1 − 3x,
N = 200, h = 0.005. Figure on the right presents the zoom of the figure on the left.
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The matrix A has no complex (with non-zero imaginary part) eigenvalues. Hence, in
the entire region {γ1 � 2, γ2 � −2} of (γ1, γ2) coordinate plane the difference scheme
is stable, but unstable in the rest of the coordinate plane.

Also, it should be noted that, if α(x) and β(x) are defined by the expressions (26),
the difference scheme is stable for all real values of δ.

4. Conclusions and Generalizations

In this study we propose a systematic and generalized methodology, how to investigate
the influence of the weight functions α(x) and β(x) (present in the integral boundary
conditions), on the stability of difference schemes. The ground of the methodology is the
investigation of the spectrum of a matrix, defining the transition to the upper layer of the
difference scheme. Main conclusions concerning the stability of the difference scheme
with nonlocal conditions are reached by complimenting the methodology mentioned with
computational experiment.

All conclusions of Section 3 are reached by performing extensive computational ex-
periment. In this paper we present only small part of it. During computational analysis
all eigenvalues of the matrix A were examined with different values of the grid step h

(but most often with the values h = 1/200 or h = 1/100). The eigenvalues for different
values of γ1, γ2 were calculated in the interval −200 � γ1, γ2 � 200. Generalizing the
results of Section 3 we could say that the stability of difference schemes essentially and
complicatedly depends on the weight functions α(x) and β(x).

Although we reached these conclusions by analysing spectrum of the matrix of the
difference operator, it is not the only method to investigate the stability. In many cases
the information about the stability of a difference scheme can be obtained from study
of the characteristic curve (20), expression of which is quite simple. We observed from
computational experiment that the zone of stability either coincides with the domain S1

(see Fig. 1) or it is part of the domain S1 (in the case when part of the eigenvalues
of the matrix A are complex, with non-zero imaginary part). Neither in the results of
computational experiment, presented in this paper, nor in other cases we have observed
the zone of stability would extend over the domain S1.

Investigating the problem of stability we were about to get at least partial answer to the
question: if the quite simple scheme (7)–(10) with σ = 1 and the functions α(x) and β(x)
is unstable, is it possible to build a stable difference scheme, by partially or essentially
modifying the (7)? Yet we have no positive answer. The indirect positive answers of some
other authors also do not persuade us. The question is still open.
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Skaičiavimo eksperimentas skirtumini ↪u schem ↪u su nelokaliosiomis
s ↪alygomis stabilumui tirti

Mifodijus SAPAGOVAS, Regimantas ČIUPAILA, Živilė JOKŠIENĖ,
Tadas MEŠKAUSKAS

Straipsnyje aprašyta metodika, kaip gauti naujus diferencialini ↪u lygči ↪u skaitini ↪u algoritm ↪u
rezultatus, naudojant skaičiavimo eksperiment ↪a kaip tyrimo metod ↪a. Pateikti nauji rezultatai apie
parabolini ↪u lygči ↪u su nelokaliosiomis integralinėmis s ↪alygomis skirtumini ↪u schem ↪u stabilum ↪a.


