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Abstract. The paper deals with the application of the theory of locally homogeneous and isotropic
Gaussian fields (LHIGF) to probabilistic modelling of multivariate data structures. An asymptotic
model is also studied, when the correlation function parameter of the Gaussian field tends to infinity.
The kriging procedure is developed which presents a simple extrapolator by means of a matrix of
degrees of the distances between pairs of the points of measurement. The resulting model is rather
simple and can be defined only by the mean and variance parameters, efficiently evaluated by
maximal likelihood method. The results of application of the extrapolation method developed for
two analytically computed surfaces and estimation of the position of the spacecraft re-entering the
atmosphere are given.
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1. Introduction

Decision making and recognition of data patterns in real-life problems often refer to
model design using multidimensional data obtained by physical measuring or compu-
tational code. Such models arise in reconstruction of missing data, data extrapolation,
experimental design or optimization with costly computed objective function, when the
measurements or objective function values are available only partially, and forecasting
according to historically observed data. Any physical or computer experiment usually
brings many measures that may concern various quantities at a given time. No matter
in what topics they are, also, no matter how they have been obtained, in a physical or
computer experiment. The measure points, depending on a large number of parameters,
may have been chosen at random, or in a deterministic way. The results themselves de-
pend upon various parameters, and the choice and impact of these parameters are usually
unclear. But conversely, the number of data that are collected is typically small, because
each trial takes time and costs money. In some cases, the experiment may be dangerous,
or the favourable circumstances are rare, in all cases, it is costly.

Real-life problems, dealing with such data modelling are numerous. For example,
exploration of safety of a nuclear reactor in a critical state is related with extrapolation
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of measurement data obtained in steady functioning (Levenson and Rahn, 1981). In eco-
toxicology, the toxicity experiments are usually done upon a small number of species,
over a small number of days, and one wishes to extrapolate the results to a larger number
of species and to longer periods, etc. (Solomon et al., 2008). The study of trajectography
of a missile or spacecraft is both dangerous and quite costly, and requires forecasting
according to the measured trajectory data. Experimental design in chemical engineering
that aims to create new composite materials is often related with experiment planning
using the data obtained from a series of experiments, etc.

The structures in such data are explored in traditional deterministic or statistical ways.
However, the deterministic data analysis by interpolation or extrapolation uses some arti-
ficial assumptions and does not take into account the uncertainty related with data recon-
struction (Shepard, 1968; Shumaker, 1976). Indeeds, the representation of experimental
measuring or computer computation data is of a probabilistic nature, because, first, recov-
ered data present only better or worse approximation and are uncertain before reconstruc-
tion, and second, the measurement or computation errors should be taken into account,
too. Besides, the deterministic methods are quite inefficient when the dimensionality of
the problem is high, although it is often the case in real-life problems. In turn, the sta-
tistical methods such as a regression and correlation analysis mostly describe the local
properties of the data structure, say, linear or nonlinear trends, etc.

Following the considerations above, the concept of kriging has been developed deal-
ing with the techniques of interpolating the value of a random field in an unobserved
location from the observations of its value at nearby locations (Krige, 1951; Mattheron,
1963). Kriging computes the best linear unbiased estimator based on the probabilistic
modelling of the results of observations or computations of a homogeneous random field,
qualified by the expectation and the covariance function (Stein, 1999).

The Experimental Probabilistic Hypersurface (EPH) is a concept similar to kriging
which has been discussed to meet a need connected with the representation of the in-
formation on the data obtained in some way (Beauzamy, 2004). EPH should give a way
of anticipating, with some probability, a result associated with values of the parameters
that have never been met before, or have been lost, to “store” the existing information
(the measurements), and propagate it to any situation where no measurement has been
made. Thus, the result of EPH should be a density of probability above each point of the
configuration space (Beauzamy, 2004).

The paradigm of probabilistic modelling of the objective function with random fields
in the optimization has been proposed and developed (Mockus, 1968, 1989; Jones,
2007). This paradigm has been appeared rather fruitful and found many applications in
a Bayesian approach for global optimization, some heuristics for global search, extrapola-
tion of functions with many variables, termination of stochastic algorithms, etc. (Mockus
et al., 1997; Zilinskas, 1982; Bartkute and Sakalauskas, 2009; etc.).

Random Gaussian fields are widely met in probabilistic modelling. For instance,
modelling using homogeneous and isotropic Gaussian fields (multivariate stationary pro-
cesses) has found many applications in bioinformatics, engineering and physics, when
data are observed in the experiment or computed by a certain computer code (Adler,
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1981; Bogush and Elkins, 1986; Goff et al., 1994; Chamon, 1996; Lopez-Caballero and
Modaressi-Farahmand-Razavi, 2010; Zaichik and Alipchenkov, 2010; etc.). The proper-
ties of Gaussian field models depend in essence on the covariance function, qualifying
the interdependence of points at which the measurement or computing experiments were
performed. For instance, continuity or differentiability of the samples of random field
depends on the continuity or differentiability of the covariance function, etc. Since the
covariance function depends on the distance between the points of measurement or ob-
servation, the interrelations of multivariate data modeled with random Gaussian field are
described by a matrix of pairwise distances among these points. Recently the matrices of
squares of Euclidean distances have been explored best, however, matrices with arbitrary
degrees of pairwise distances are not studied enough.

This paper analyses the properties of locally homogeneous and isotropic Gaussian
fields (LHIGF) that are limiting for random fields covariance function of which can be
expressed by the Taylor formula in the neighbourhood of zero point. The class presented
has a transparent geometrical interpretation and enables us to model multivariate data,
using the matrix of distances among the points of measurement or observation. The paper
rests as follows: the LHIGF is introduced and discussed in the next section, asymptotic
properties of kriging procedure are considered in Section 4 deriving new extrapolation
formulas, the results of computer modelling and numerical application of the kriging
procedure developed are presented in Sections 5 and 6.

2. Locally Homogeneous and Isotropic Gaussian Fields

Let us consider probabilistic modelling of a real-valued function or a response surface the
values of which are obtained by observation and measurement or computing of a certain
code, etc. Since there is no additional information except the fact of measurement per-
formance at the experimental points, the surface that represents the objective function or
response surface may be constructed as a homogeneous Gaussian field Y (x, ω), x ∈ �n,
here ω ∈ (Ω, Σ, P ) is a random event in a probabilistic space (Matheron, 1963; Mockus,
1989; Jones, 2001). At this stage, all the parameters might be considered as equivalent,
because it is unknown which ones will be preponderant. So a distance between the mea-
surement points is taken, which is symmetric with respect to the various parameters, there
are no weights. Hence, homogeneity and isotropy assumptions imply the surface under
construction to be a sample of the Gaussian field with a constant mean vector

EY (x, w) = μ, (1)

constant variance

E
(
Y (x, w) − μ

)2 = σ2, (2)

σ2 > 0, and the correlation function

E
(
Y (x′ ′, ω) − μ

)
·
(
Y (x′, ω) − μ

)
/σ2 = ρ(r), (3)
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depending on the distance between two points τ = |x′ − x′ ′ |. The correlation function
should necessarily be a positively defined function (Matern, 1986; Bisgaard and Sasvari,
2000). Of course, the correlation function of a homogeneous and isotropic Gaussian field
also satisfies the natural assumptions: |ρ(τ)| � 1, ρ(0) = 1, and ρ(τ) → 0, as τ →
∞. In the one-dimensional case a homogeneous Gaussian field becomes a stationary
Gaussian process.

The sample properties of the homogeneous Gaussian field depend, in essence, on the
correlation function. Say, it is well known that samples of the Gaussian field are contin-
uous with probability one (almost surely, a.s.), if the correlation function is continuous
in the neighborhood of zero, i.e., when limr→+0ρ(r) = 1, (Adler, 1981; Pottgoff, 2010).
Similarly, the samples of a random Gaussian field are differentiable, if the correlation
function is twice differentiable (Pottgoff, 2010). Note, that the derivative of a random
Gaussian field with respect to a certain component of x is a random Gaussian field again
covariance function of which is equal to the second derivative of the covariance function
of the original field.

The exponential correlation function is often applied to probabilistic modeling using
a random field:

ρ(τ) = e−( τ
λ )δ

, (4)

where γ > 0 is a scaling parameter, 0 < δ � 2. Hence, the samples of a random Gaussian
field with the exponential correlation function are continuous a.s., as δ � 0. Similarly,
the samples of random Gauusian field with exponential correlation function (6) are dif-
ferentiable a. s. with respect to x components, as δ = 2. Conclusions on the continuity
and differentiability of Gaussian field samples are very important, because the functions
and response surfaces considered in multi-dimensional extrapolation, global optimiza-
tion, etc., are mainly continuous or differentiable.

Note that if n = 1, δ = 1, the resulting one-dimensional model with the exponen-
tial correlation function is a stationary Markov process, called as an Ornstein–Uhlenbeck
process. Thus, the exponential function is a natural correlation in one dimension, since
it corresponds to a Markov process. In two dimensions this is no longer so, although
the exponential is a common correlation function in geostatistical work and kriging as
well. Whittle (1954) determined the correlation corresponding to a stochastic differential
equation of Laplace type noise, which describes a second order autoregression on a dis-
crete lattice process (see, also Lim and Teo, 2009). Following this model, a class of the
Whittle-Matern correlation function has been developed, presented by Goff and Jordan
(1988) to parameterize the smoothness of realizations of the corresponding random field.

Let us confine ourselves to locally homogeneous and isotropic Gaussian fields
(LHIGF) further, i.e., assume the homogeneity and isotropy assumptions to be valid in
a certain convex bounded set D ⊂ �n. Of course, homogeneous and isotropic random
fields are locally homogeneous and isotropic ones, too. Assume, for simplicity, the set of
local homogeneity and isotropy to be a ball D ⊂ �n of diameter diam(D) > 0. Thus,
the requirements of constant mean (1), variance (2) and dependence of correlation (3)
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on the distance between the points of measurement of LHIGF are valid in the set of ho-
mogeneity and isotropy D. Note that LHIGF are not ergodic in general. The example of
a non-ergodic locally stationary Markov process with independent increments is consid-
ered below.

EXAMPLE 1. Let us consider the sum of two Wiener processes

W (x) = W+(x) + W−(x), x ∈ �, (5)

where both Wiener processes W+(x) and W−(x) have the same parameter σ2 > 0, start
away from the ends of the interval D = [−γ/2, γ/2] and continue to both sides of the real
number axis. Then one can be sure that W (x) is a locally stationary Gaussian process on
the interval D with mean μ = 0, variance σ2 ·d and the correlation function ρ(τ) = 1− τ

γ .

In fact, the expressions of variance

EW 2(x) =
{

σ2 · γ, x ∈ D,

2|x| · σ2, x /∈ D.
(6)

and the covariance function:

EW (x) · W (y)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ2 · (γ − |x − y|), x, y ∈ D,

σ2 · (γ/2 + sign(x) · y), |x| � γ/2, y ∈ D,

σ2 · (γ/2 + sign(y) · x), |y| � γ/2, x ∈ D,

2 · σ2 · min(|x|, |y|), x � −γ/2, y � −γ/2 or x � γ/2, y � γ/2,

0, x � −γ/2, y � γ/2 or y � −γ/2, x � γ/2,

(7)

follows in an elementary way from the properties of Wiener processes. Independence of
increments and Markovity of the process W (x) follow from analogous properties of the
processes W−(x) and W+(x).

3. Kriging Using LHIGF

The aim of kriging is to estimate the value of a real-valued function or response surface
at a certain point by the values of the function given at some other points. Thus, assume
to be given the data set of K n-dimensional points

X =
(
x1, x2, . . . , xK

)
, (8)

xi ∈ �n, 1 � i � K, and values of some response function

Y =
(
y1, y2, . . . , yK

)T
, (9)
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obtained at these points by means of physical measurement or simulation by computer,
etc.

Let us briefly overview the kriging procedure under the assumption that the values
of sample Y be following from the homogeneous and isotropic Gaussian field Y (x, ω),
defined by mean μ, variance σ2 and a certain correlation function ρ(τ). Thus, the depen-
dences among points (9) are described by the correlation matrix:

Σ = [ρij ]K1 , (10)

where ρij = ρ(|xi − xj |), 1 � i, j � K.
Usually the parameters of random fields are calibrated by the maximal likelihood

method. Maximal likelihood estimates (MLE) of mean and variance are as follows (Adler,
1981; Jones, 2001; Stein et al., 2004):

μ̃ =
TT · Σ− · E

ET · Σ−1 · E
, (11)

σ̃2 =
(y − μ̃ · E)T · (y − μ̃ · E)

K
, (12)

where E = (1, 1, . . . , 1)T is the vector-row with K components equal to 1, Σ > 0.
If the correlation function involves some other parameters, their MLE can also be

obtained by respective maximization of the likelihood function.
Assume the vector of correlations between a certain point x ∈ �n and points of

measurement (8) to be given: τ(x) = (τ1, τ2, . . . , τK)T , τi = ρ(|xi − x|), 1 � i � K.
The predicted function value at this point is random, in general and distributed normally
N(y(x), s(x)) with the mean equal to conditional expectation of the Gaussian field at the
point x:

y(x) = E
(
Y (x, ω) | Y (x1, ω) = y1, Y (x2, ω) = y2, . . . , Y (xK , ω) = yK

)
,

y(x) = μ̂ + τ(x)T · Σ−1 ·
(
Y − E · μ̂

)

= Y T · Σ−1 ·
(

τ(x) + E · 1 − τ(x)T · Σ−1 · E

ET · Σ−1 · E

)
. (13)

Variance of predictor (13) is equal to

s2(x) = σ̂2 ·
(

1 − τ(x)T · Σ−1 · τ(x) +
(1 − r(x)T · Σ−1 · E)2

ET · Σ−1 · E

)
, (14)

where the first part on the right-hand side of (14) corresponds to the conditional variance
and the last term can be interpreted as representing the uncertainty without knowing μ

exactly, but rather having to estimate it from the data (Adler, 1981; Jones, 2001).
Denote the symmetric matrix of degrees of distances between the pairs of measure-

ment points (8) by

A =
[
rδ
ij

]K

1
, (15)
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where 0 < δ � 2, rij = |xi − xj |, 1 � i, j � K and assume, the correlation function
be satisfying the property:

ρ(τ) = 1 − a · τ δ

γδ
+ O

((
τ

γ

)2·δ)
, (16)

where a = dρ(τ)
dτ |t=+0, γ > 0, 0 < δ � 2. For instance, the exponential function

(4) presents an example of the correlation function, which met the latter assumption, as
a = 1. Thus, the correlation matrix can be represented now as:

Σ = E · ET − a · A

γδ
+ O

(
γ−2·δ). (17)

Theorem 1. Let the set of vectors X = (x1, x2, . . . , xK), xi ∈ �n, 1 � i � K, and
set of values of a certain response function at these points Y = (y1, y2, . . . , yK)T be
given, where the matrix of degrees of pairwise distances between points of measurement
A = [rδ

ij ]
K
1 , 0 < δ � 2, rij = |xi − xj |, 1 � i, j � K, is non-singular: |A| �= 0, and

E · A−1 · ET �= 0. Assume that the values of measurements Y follow to the homogeneous
and isotropic Gaussian field having the mean μ, the variance δ2 = d2 · γδ/a and the
correlation function ρ(τ), which satisfies property (16).

Then, the asymptotic MLE’s of field parameters are as follows:

μ̂ =
y · A−1 · ET

E · A−1 · ET
+ O

(
γ−δ

)
, (18)

δ̂2 · a

γδ
=

1
K

·
(

(yT · A−1 · E)2

ET · A−1 · E
− yT · A−1 · y

)
+ O

(
γ−δ

)
. (19)

The proof is presented in Appendix 1. It is based on the inverse with Sherman-
Morrison formula (Horn and Johnson, 1991):

(
E · ET − a · A

γδ

)−1

=
γδ

a
·
(

A−1 · E · ET · A−1

ET · A−1 · E − a/γδ
− A−1

)
. (20)

Let us denote d2 = a · σ2/γδ. Then MLE of the parameter d2 is given by (19). Hence,

σ̂2 =
←2

d · γδ/a.

Theorem 2. Let the conditions of Theorem 1 be valid. Besides, assume that τ(x) =
(τ1, τ2, . . . , τK)T , τi = |xi − x|δ, 1 � i � K, 0 < δ � 2, is the vector of degrees of
the distances between a certain point x ∈ �n and points of the set of measurement X .
The predicted function value at this point according to the kriging procedure (13), (14) is
as follows

y(x) = yT · A−1 ·
(

τ(x) − E · ET · A−1 · τ(x) − 1
ET · A−1 · E

)
+ O

(
γ−δ

)
, (21)
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the variance of which is:

s2(x) = d̂2

(
(ET · A−1 · τ(x) − 1)2

ET · A−1 · E
− τ(x)T · A−1τ(x)

)
+ O

(
|τ |δ
γδ

)
. (22)

The proof is given in Appendix 1, too.
Let us consider two univariate examples. The first one demonstrates the kriging for a

locally stationary process with independent increments (see Example 1).

EXAMPLE 2. Let us consider a locally stationary Gaussian process with the mean, vari-
ance, and the correlation function ρ(τ) = 1 − τ/2, defined on the interval D = [−1, 1]
(see Example 1). Assume that the points of observations are arranged in an increasing
order: −1 � x1 < x2 < · · · < xK � 1.

Now the correlation matrix looks like E · ET − A
2 . It is easy to make sure that the

inverse of the distance matrix A = [|xi − xj |]K1 is a modified tridiagonal matrix:

A−1 =
1

2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

xK − x1
− 1

x2 − x1

1

x2 − x1
0 . . .

1

x2 − x1

−1

x2 − x1
− 1

x3 − x2

1

x3 − x2
. . .

0
1

x3 − x2

−1

x3 − x2
− 1

x4 − x3
. . .

. . . . . . . . . . . .
0 0 0 . . .
1

xK − xK−1

1

xK − xK−1

1

xK − x1
0 0 . . .

0
1

xK − x1

0 0

0 0

. . . . . .

0 0
−1

xK−1 − xK−2
− 1

xK − xK−1

1

xK − xK−1

1

xK − xK−1

1

xK − x1
− 1

xK − xK−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using (18), (19) and (20), it is easy to make sure that MLE of parameters of the
process considered are expressed in the following way:

μ̂ =
y1 + yK

2
, (23)

d̂2 =
1

2 · K
·

K−1∑
i=1

(yi+1 − yi)2

(xi+1 − xi)
. (24)
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Next, one can make sure that the kriging predictor of this process is a simple linear
interpolation:

y(x) = yi+1 · x − xi

xi+1 − xi
+ yi · xi+1 − x

xi+1 − xi
, (25)

with the variance:

s2(x) = d̂ 2 · (x − xi) · (xi+1 − x)
xi+1 − xi

, (26)

if the point, in which the response value should be predicted, is between two measurement
points: xi � x � xi+1. Now assume, the point, in which the response value should be
predicted, is out of the interval [x1, xK ]. For instance, let x > xK . Then the predictor is
coincident with the closest observed value: y(x) = yK , and the variance of the predictor
depends on the distance from this point: s2(x) = 2 · d̂2 · (x − xK), x � xK .

The next example illustrates how the kriging procedure of a stationary process tends
to that of a locally stationary process with independent increments, considered above.

EXAMPLE 3. Let us consider a stationary process with the exponential correlation func-
tion ρ(τ) = e− τ

γ , mean μ and variance σ2 = d2 · γ. Assume the points of observations
to be arranged in an increasing order: −1 � x1 < x2 < · · · < xK � 1.

The probabilistic model considered is a well-known Ornstein–Uhlenbeck process

(Gillespi, 1996). Denote ρi = e− xi −xi−1
γ = 1 − xi −xi−1

γ + O(γ−2). So MLE of the
Ornstein–Uhlenbeck process parameters (Valdivieso, 2008) are approximated as follows:

μ̂ =
y1 +

∑K
i=2

yi −ρi ·yi−1
1+ρi

1 +
∑K

i=2
1−ρi

1+ρi

=
y1 + yK

2
+ O(γ−1),

d̂ 2 = σ̂2/γ =
1

K · γ
·
((

y1 − μ̂
)2 +

N∑
i=2

(yi − μ̂ − ρi · (yi−1 − μ̂))2

1 − ρ2
i

)
(27)

=
1

2 · K

K∑
i=2

(y − y)2

xi − xi−1
+ O(γ−1), (28)

which correspond to (23) and (24). After simple manipulations one can make sure that
the kriging predictor and its variance are approximated in a similar way:

yi(x) = μ̂ +
(yi − μ̂) · (ρ∗,i−1 − ρi · ρi,∗) + (yi − μ̂) · (ρi,∗ − ρi · ρ∗,i−1)

1 − (ρi)2

= yi+1 · x − xi

xi+1 − xi
+ yi · xi+1 − x

xi+1 − xi
+ O(γ−1), (29)
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σ2(x) = d̂ 2 · 1 + (ρi)2 − (ρ∗,i−1)2 − (ρi,∗)2

1 − (ρi)2

= d̂ 2 · (x − xi) · (xi+1 − x)
xi+1 − xi

+ O(γ−1), (30)

that corresponds to (25), (26).
Suppose further that the points of measurement are obtained from the bounded set of

homogeneity and isotropy D. Omitting higher order terms in (16) and taking, for sim-
plicity, a = 1 the correlation function is obtained:

ρ(τ) = 1 − τ δ

γδ
. (31)

Let us show that the function introduced can be applied to correlation modeling among
measurements (9) performed at points (8) under the appropriated value of parameter γ.

Theorem 3. Let the set of vectors X = (x1, x2, . . . , xK), xi ∈ D ⊂ �n, 1 � i � K be
given. If the matrix of degrees of pairwise distances between the points of measurement
A = [rδ

ij ]
K
1 , 0 < δ � 2, rij = |xi − xj |, 1 � i, j � K, is non-singular: |A| �= 0,

and E · A−1 · ET �= 0, then the matrix Σ = E · ET − A
γδ is positively defined, as

γδ > 1/ET · A−1 · E.

The proof is given in Appendix 1.
Assume the values of measurements Y be normally distributed with the mean μ, the

variance δ2 = d2 · γδ/a and the correlation function (31). The theorems proved and
examples considered allow us to introduce the MLE of the parameters

μ̂ =
y · A−1 · ET

E · A−1 · ET
, (32)

d̂ 2 =
1
K

·
(

(yT · A−1 · E)2

ET · A−1 · E
− yT · A−1 · y

)
, (33)

the kriging predictor:

y(x) = yT · A−1 ·
(

τ(x) − E · ET · A−1 · τ(x) − 1
ET · A−1 · E

)
, (34)

with the variance:

s2(x) = d̂ 2 ·
(

τ(x)T · A−1 · τ(x) − (ET · A−1 · τ(x) − 1)2

ET · A−1 · E

)
. (35)

It is easy to make sure that the kriging predictor (34) is coincident with the val-
ues of response surface at measured points. The variance s2(x) derived in (35) may be
used as a measure of uncertainty of the prediction, because it is smaller for the points
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close to the measured ones, tends to zero at measurement points, and increases, when
the distance to measurements increases. Besides, variance (35) decreases in an arbitrary
point x, when the number of measurements K increases, i.e., the Gaussian density of
N(y(x), s(x)) efficiently describes the hypothetic surface to be explored. It is convenient
to use parametrization μ, d2 of the model considered instead a μ, σ2, because, in such
a case, predictor (34) and variance (35) do not depend on the scaling parameter γ. Thus,
an asymptotic LHIGF model is built, described only by two parameters μ and d2, which
enables us to create the kriging predictor, applicable to extrapolation by means of the
matrix of degrees of distances between the measurement points.

EXAMPLE 4. Let us consider set (8) displayed on K vertices of a regular simplex, the
lengths of edges of which are equal to r, and the values of the response function on
vertices of the simplex are y1, y2, yK . Assume, for simplicity δ = 1.

Now the distance matrix has a simple shape: A = r · H, H = [Hij ]K1 , Hij = 1, i �=
j, Hii = 0, 1 � i, j � K. It is quite obviously that the inverse of the distance matrix
is of a similar shape: A−1 = [A−1

ij ]K1 A−1
ij = 1

r·(K−1) , i �= j, A−1
ii = 1

r·(K−1) − 1
r ,

1 � i, j � K. Using (32), (33), we obtain MLE’s of parameters:

μ̂ =
∑K

i=1 yi

K
, d̂ 2 =

∑K
i=1(yi − μ̂)2

K
.

Thus, the kriging predictor (34) becomes:

y(x) = μ̂ −
K∑

i=1

(
yi − μ̂

)
· τi(x)

r
,

the variance (35) of which is:

s2(x) = d̂ 2 ·
( K∑

i=1

τ2
i (x) − (

∑K
i=1 τ2

i (x))2

K
− 2·r ·

∑K
i=1 τ2

i (x)
K

+
(K −1)·r2

K

)
,

here τ(x) = (τ1, τ2, . . . , τK)T , τi = |xi − x|, 1 � i � K, is the vector of distances
between a certain point x ∈ �K and the simplex vertices.

4. Extrapolation of Test Surfaces by LHIGF Kriging Predictor

Let us consider two examples of extrapolation of surfaces given by multivariate functions
using LHIGF kriging procedure.

EXAMPLE 5. Let hypothetic surface be derived with the expression:

f(x, y) =
√

(x − 5)2 + (y − 5)2. (36)

The shape of this function is depicted on Fig. 1.
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Fig. 1. Hypothetic surface (36). Fig. 2. Extrapolated surface with kriging.

Fig. 3. Hypothetic surface (37). Fig. 4. Extrapolated surface by kriging.

Let the values of function (36) be computed at points, randomly and uniformly dis-
tributed on the square [0 � x1 � 10, 0 � x2 � 10], N = 50 (see Table 1 in Appendix 2).
The extrapolation by the kriging predictor considered was built for this example using
the MATHCAD software. MLE’s of the parameters of the model are μ̂ = 7.702 and

d̂
2

= 0.145. The surface extrapolated according to conditional mean (30) is illustrated
on Fig. 2. A conditional probability density can be created, too. For example, suppose
y(x) = 0.445 and d(x) = 0.255 for x = 5, y = 5. Then the respective probabilistic
model is N(0.445, 0.255).

EXAMPLE 6. Let the next hypothetic surface with several local extremes, be derived by
the expression:

f(x, y) = 5 sin(x) + cos(y) +
√

(x − 5)2 + (y − 5)2. (37)

The shape of this function is presented in Fig. 3.
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The values of the function given in (33) were computed at the points, randomly and
uniformly distributed on the square [0 � x1 � 10, 0 � x2 � 10], N = 50 (see Table 2 in
Appendix 2). The kriging predictor was constructed for this example by the considered
approach using the MATHCAD software. MLE’s of the parameters of the model are

μ̂ = 8.802 and d̂
2

= 3.618. The surface extrapolated according to conditional mean
predictor (30) is depicted in Fig. 4.

Hence, the results of computer simulation show the applicability of the LHIGF ex-
trapolator as a probabilistic model for surfaces defined by multivariate functions.

5. Estimation of a Spacecraft Re-Entry

In addition, the considered approach has been applied in the approximation of the position
of a spacecraft entering the atmosphere. The computer code was used for data generation,
which simulates the fall down position on the Earth surface of a spacecraft re-entering the
atmosphere (http://scmsa.eu/).

Details of the re-entry model are as follows. A spacecraft is a hollow sphere of
50 cm diameter and one centimetre thick. The sphere is made of steel (volumic mass:
8030 kg/m3). Its weight is 247.25 kg and its surface is 1.57 m2. The re-entry of the
spacecraft into atmosphere takes place at the altitude of around 119,330 m from the Earth
surface. The model works in a fixed Coordinates Reference System (X, Y, Z) related to
stars. The Reference System centre is at the Earth centre. The Z axis corresponds to the
South pole – North pole axis. The X axis is in the Equator plane and is directed to the
Greenwich meridian. The Y axis is in the Equator plane and is orthogonal to the two
other axes.

The model input parameters are:

– the spacecraft coordinates at the re-entry: X, Y, Z(in meters);
– the spacecraft velocity at the re-entry given by: Vx, Vy, Vz (in m/s);
– the atmosphere density columns (one density value/1 km): Density in kg/m3;
– the aerodynamic coefficient of the Spacecraft: Cx;
– the model calculates spacecraft coordinates and spacecraft velocity on the base of

a 0.01 second iteration program.

The model works with the following input parameters:

– the spacecraft coordinates at the re-entry:

• [X, X + 1000 m, X − 1000 m];
• [Y, Y + 1000 m, Y − 1000 m];
• [Z, Z + 1000 m, Z − 1000 m];

– the spacecraft velocity at the re-entry given by Vx, Vy, Vz:

• [Vx, Vx + 10%, Vx − 10%];
• [Vy, Vy + 10%, Vy − 10%];
• [Vz, Vz + 10%, Vz − 10%];

– the atmosphere density columns (one density value/1 km):
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• [Density];
• [Density – 10%];
• [Density – 5%];
• [Density +5%];
• [Density +10%];

– the aerodynamic coefficient of the spacecraft:

• [Cx];
• [Cx − 10%];
• [Cx + 10%].

The numerical values of the parameters are:

– the spacecraft coordinates at the re-entry:

• X = [280,000, 281,000, 279,000] (three possible choices);
• Y = [4,800,000, 4,801,000, 4,799,000] (three possible choices);
• Z = [4,370,000, 4,371,000, 4,369,000] (three possible choices);

– the spacecraft velocity at the re-entry given by Vx, Vy, Vz:

• Vx = [2800, 3080, 2520];
• Vy = [1300, 1430, 1170];
• Vz = [−4500, −4950, −4050];

– the aerodynamic coefficient of the spacecraft:

• [0.5];
• [0.45];
• [0.55].

The result of the computer simulation is the distance in meters between the projected
position on Earth of the spacecraft at the time (T = 0 seconds) of the entry into the at-
mosphere and the final fall-down position of the spacecraft on Earth at the end of the
simulation. By crossing all of the combinations of the parameters, 10,935 simulations
have been obtained in total (http://scmsa.eu/), 90 simulations have been chosen
randomly out of these 10,935, that are given in Table 3 of Appendix 2.

The kriging predictor (32) of the spacecraft re-entering distance was constructed by
the considered approach. The estimated parameters of the model are as follows: μ =
252,560, d2 = 228,795. Next 10 values of simulation were used to evaluate the accuracy
of the method. In two last rows of Table 4 of Appendix 2 measured and approximated
values of spacecraft re-entering distance are given. The ratio of the standard error to the
average of the approximated value is about 0.5%.

6. Conclusions

A probabilistic model with a locally homogeneous and isotropic random field is proposed
to display multivariate data using the matrix of degrees of pairwise distances among the
points of observation or measurement. The model developed allows us to represent the
information obtained from any number of measures of the objective function in a com-
putational code or a physical experiment. This information can be “stored” as a density
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of probability around each point in the configuration space. The kriging procedure is built
in the paper using only precise information that some measurements gave some values,
and this precise value propagated as a probabilistic law. The kriging predictor developed
allows prediction (values in the future) or reconstruction of the missing data (values in the
past). The resulting model is rather simple and depends only on the mean and variance
parameters of the probabilistic model, which are efficiently estimated by the maximal
likelihood method. Application of the kriging procedure developed for extrapolation of
two analytically computed surfaces and estimation of the position of the spacecraft re-
entering the atmosphere illustrates the applicability of the proposed probabilistic model
of multivariate surfaces. Indeed, the model constructed might be generalised to a multi-
modal case and noisy measurements.
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Appendix 1

Proof of Theorem 1. Note that the matrix A is invertible. Besides, E · A−1 · ET > 0
according to Gower (1982). Next, one can make sure by means of inversion formula (20)
that

yT

(
E · ET − a · A

γδ
+ O

(
γ−2·δ))−1

· E

=
γδ

a
·
(

yT

(
A−1 · E · ET · A−1

ET · A−1 · E − a/γδ
− A−1

)
· E + O

(
γ−2·δ))

=
γδ

a
·
(

Y T · A−1 · E

ET · A−1 · E − a/γδ
+ O(γ−δ)

)
. (1A)

Similarly,

ET

(
E · ET − a · A

γδ
+ O

(
γ−2·δ))−1

· E

=
γδ

a
·
(

ET · A−1 · E

ET · A−1 · E − a/γδ
+ O

(
γ−δ

))
. (2A)

Combining both these expressions with (11) estimate (18) is obtained.
Estimate (19) is obtained in a similar way after some elementary manipulations using

(12), (20).

Proof of Theorem 2. According to theorem assumptions and Gower (1982) the matrix A

is invertible and E · A−1 · ET > 0. It follows by means of inversion formula (20) that
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1 − τ(x)T · Σ−1 · E

= 1 −
(

E − a · τ(x)
γδ

)
·
(

E · E − a · A

γδ

)−1

· E

+ O
(

τ(x)δ

γδ

)

=
γδ

a
·
(

τ(x)T · A−1 · E − 1
ET · A−1 · E − a/γδ

+ o
(

|τ(x)|δ
γδ

))
. (3A)

Similarly, after elementary manipulations by virtue of (20) one can obtain that:

1 − τ(x)T · Σ−1 · τ(x)

= 1 −
(

E − a · τ(x)
γδ

)T

·
(

E · ET − a · A

γδ

)−1

·
(

E − a · τ(x)
γδ

)

+ O
(

|τ(x)|2·δ

γ2·δ

)

=
γδ

a
·
(

(ET · A−1 · τ(x) − 1)2

ET · A−1 · E − a/γδ
− τ(x)T · A−1 · τ(x)

+ O
(

|τ(x)|δ
γδ

))
. (4A)

Afterwards, (22) follows by means of (12), (20), (1A), (2A), (3A) and (4A). Formula
(21) is proved in a similar way.

Proof of Theorem 3. Let us consider the exponential correlation function ρ(τ) =
e−( τ

γ )δ

= 1 − ( τ
γ )δ + O( τ

γ )2·δ . It is well-known that this function is positively defined
(1986), hence, the corresponding covariance matrix of correlations among the points
of set X , and its inverse, defined by (20), will be non-negatively defined, too. Note,
according to theorem assumptions and Gower (1982) the matrix A is invertible and
E · A−1 · ET > 0. Hence it follows that the matrix A−1·E·ET ·A−1

ET ·A−1·E − A−1 should be
non-negatively defined because the error depending on γ can be made negligible as pos-
sible by increasing this parameter. In such a case, the matrix A−1·E·ET ·A−1

ET ·A−1·E−1/γδ − A−1 will

be positively defined, if γδ > 1/ET · A−1 · E. Thus, the matrix Σ = E · ET − A
γδ , being

the inverse of the latter matrix, should also be positively defined, if γδ > 1/ET · A−1 · E.
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Appendix 2
Table 1 Table 2

Data for Example 1 Data for Example 2
No x y f(x, y) No x y f(x, y)
1 0.0126842 1.4752 6.266 1 0.0127 1.4752 6.1072

2 1.9332302 1.416 9.5464 2 1.9332 1.416 4.717
3 5.850061 6.9288 0.808 3 5.8501 6.9288 2.1078

4 3.503081 4.2655 −0.533 4 3.5031 4.2655 1.6674
5 8.2283773 9.666 9.3566 5 8.2284 9.666 5.674

6 1.74129 1.5326 9.7241 6 1.7413 1.5326 4.7584
7 7.1049541 8.2167 7.1512 7 7.105 8.2167 3.8442

8 3.0398605 1.9135 3.8281 8 3.0399 1.9135 3.6563
9 0.9141127 8.1718 8.8201 9 0.9141 8.1718 5.1725

10 1.4731341 1.5556 9.9211 10 1.4731 1.5556 4.9297
11 9.8850847 7.3201 3.6958 11 9.8851 7.3201 5.408

12 1.1907973 2.7959 8.1034 12 1.1908 2.7959 4.4009
13 0.0892266 6.8224 6.5417 13 0.0892 6.8224 5.238

14 5.3166416 7.2191 −1.28 14 5.3166 7.2191 2.2416
15 6.0176413 1.2303 2.9265 15 6.0176 1.2303 3.9047

16 1.6624948 8.3466 9.2324 16 1.6625 8.3466 4.7264
17 4.5078589 5.1702 −3.933 17 4.5079 5.1702 0.5207

18 0.570559 4.2621 6.7558 18 0.5706 4.2621 4.4905
19 7.8331917 9.4934 9.3133 19 7.8332 9.4934 5.312
20 5.1987616 5.4954 −3.181 20 5.1988 5.4954 0.5338

21 8.7596822 4.7172 6.8608 21 8.7597 4.7172 3.7703
22 9.5589983 8.4696 4.4825 22 9.559 8.4696 5.7291

23 5.393415 4.5609 −3.446 23 5.3934 4.5609 0.5895
24 4.6207383 9.8295 −1.054 24 4.6207 9.8295 4.8444

25 8.6221953 7.3918 8.3823 25 8.6222 7.3918 4.3406
26 7.7965831 1.9601 8.7429 26 7.7966 1.9601 4.1306

27 9.9679564 8.3943 2.9181 27 9.968 8.3943 6.0168
28 6.1149269 5.0091 0.57 28 6.1149 5.0091 1.115

29 2.6621391 0.275 8.5407 29 2.6621 0.275 5.2718
30 8.4011913 5.7257 8.5963 30 8.4012 5.7257 3.4778

31 3.7585732 5.3132 −1.047 31 3.7586 5.3132 1.2803
32 6.7718677 8.4304 5.6633 32 6.7719 8.4304 3.8609

33 0.088171 6.576 6.5562 33 0.0882 6.576 5.1585
34 2.7588723 8.4214 5.4198 34 2.7589 8.4214 4.09

35 5.8791172 1.0995 2.4866 35 5.8791 1.0995 3.9984
36 8.3760762 3.1409 7.188 36 8.3761 3.1409 3.8541

37 4.8493058 2.8608 −3.77 37 4.8493 2.8608 2.1445
38 7.4372767 1.4028 9.0845 38 7.4373 1.4028 4.3451

39 4.5797574 8.3462 −2.056 39 4.5798 8.3462 3.3724
40 7.4441859 6.0024 8.1886 40 7.4442 6.0024 2.6418

41 5.990413 2.5272 0.4036 41 5.9904 2.5272 2.6638
42 7.3500394 0.0162 10.888 42 7.35 0.0162 5.5101

43 5.7239872 8.0624 0.2874 43 5.724 8.0624 3.1468
44 1.5155716 2.1057 9.0123 44 1.5156 2.1057 4.5297
45 4.2516488 5.5319 −2.83 45 4.2516 5.5319 0.9181

46 5.1712005 1.1378 −0.197 46 5.1712 1.1378 3.866
47 7.5153642 7.5222 8.6039 47 7.5154 7.5222 3.5621

48 1.6899589 5.4343 8.9638 48 1.69 5.4343 3.3384
49 4.9188426 4.3671 −4.594 49 4.9188 4.3671 0.6381

50 6.9975295 6.9621 6.8539 50 6.9975 6.9621 2.8
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Table 3

90 results of simulation and the set of 90 input parameters used by the spacecraft re-entry model

Runs X
(m)

Y
(m)

Z
(m)

Vx

(m/s)
Vy

(m/s)
Vz

(m/s)
Cx Density

variation
(%)

Distance between
projected starting
position and fall
down position (m)

1 281,000 4,799,000 4,370,000 2520 1170 −4950 0.45 10 212,092.78

2 281,000 4,801,000 4,370,000 2800 1300 −4950 0.5 0 233,397.68
3 280,000 4,799,000 4,370,000 2800 1300 −4050 0.55 5 262,457.25

4 281,000 4,799,000 4,371,000 2520 1300 −4050 0.45 −10 259,118.97
5 279,000 4,801,000 4,369,000 3080 1430 −4050 0.55 −10 295,715.71

6 279,000 4,800,000 4,370,000 2520 1300 −4950 0.45 10 224,251.73
7 279,000 4,799,000 4,371,000 2520 1170 −4950 0.55 10 210,527.04

8 280,000 4,800,000 4,369,000 3080 1170 −4050 0.5 0 260,709.71
9 279,000 4,800,000 4,369,000 2520 1300 −4500 0.45 0 238,237.03

10 279,000 4,800,000 4,369,000 3080 1430 −4950 0.45 10 250,269.93
11 281,000 4,801,000 4,370,000 2800 1430 −4050 0.55 − 5 284,815.18

12 280,000 4,801,000 4,369,000 2800 1300 −4050 0.45 −10 270,292.55
13 279,000 4,800,000 4,371,000 2800 1170 −4500 0.5 10 234,038.95

14 280,000 4,800,000 4,369,000 2800 1430 −4950 0.5 0 242,122.46
15 280,000 4,799,000 4,369,000 2520 1300 −4500 0.55 −10 235,315.76

16 281,000 4,799,000 4,371,000 2800 1300 −4050 0.45 5 267,431.27
17 279,000 4,800,000 4,370,000 2800 1170 −4950 0.5 −10 221,753.08

18 280,000 4,800,000 4,370,000 2800 1170 −4050 0.55 −10 251,519.25
19 279,000 4,800,000 4,371,000 2520 1170 −4050 0.45 −10 245,512.17

20 279,000 4,800,000 4,369,000 3080 1300 −4050 0.45 − 5 278,851.77
21 280,000 4,799,000 4,370,000 2520 1430 −4050 0.45 − 5 272,908.62

22 279,000 4,799,000 4,369,000 2800 1300 −4500 0.45 5 244,501.31
23 279,000 4,799,000 4,370,000 2520 1300 −4500 0.45 5 237,277.62

24 279,000 4,801,000 4,370,000 3080 1430 −4050 0.5 5 296,416.81
25 280,000 4,801,000 4,371,000 2800 1300 −4950 0.5 0 234,666.60
26 280,000 4,800,000 4,370,000 2520 1430 −4500 0.45 5 252,837.89

27 281,000 4,801,000 4,370,000 3080 1170 −4050 0.5 0 264,289.84
28 279,000 4,801,000 4,369,000 2520 1170 −4050 0.45 − 5 243,564.25

29 279,000 4,801,000 4,370,000 3080 1300 −4950 0.5 −10 242,623.21
30 279,000 4,799,000 4,370,000 3080 1300 −4050 0.45 −10 279,460.41

31 279,000 4,801,000 4,371,000 3080 1300 −4050 0.5 5 280,665.20
32 279,000 4,799,000 4,369,000 2520 1430 −4500 0.5 10 247,064.94

33 280,000 4,800,000 4,371,000 3080 1430 −4500 0.5 − 5 273,419.71
34 281,000 4,800,000 4,370,000 2800 1430 −4500 0.55 − 5 260,566.53

35 279,000 4,800,000 4,370,000 3080 1170 −4500 0.45 −10 246,146.34
36 279,000 4,800,000 4,371,000 3080 1300 −4500 0.5 − 5 258,656.40

37 279,000 4,799,000 4,370,000 2800 1170 −4500 0.55 0 230,969.19
38 280,000 4,800,000 4,370,000 2520 1300 −4500 0.55 −10 238,434.02

39 279,000 4,799,000 4,370,000 2520 1170 −4050 0.5 10 237,998.19
40 281,000 4,801,000 4,371,000 2800 1170 −4950 0.5 −10 224,935.74

41 280,000 4,799,000 4,370,000 2800 1430 −4950 0.45 5 242,704.23
42 281,000 4,799,000 4,370,000 2520 1170 −4500 0.45 − 5 226,373.39

43 279,000 4,799,000 4,369,000 3080 1300 −4950 0.5 −10 237,721.87
44 280,000 4,799,000 4,371,000 2520 1300 −4500 0.5 0 238,035.92

45 280,000 4,801,000 4,371,000 2520 1300 −4950 0.55 − 5 226,603.43
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Runs X

(m)
Y

(m)
Z

(m)
Vx

(m/s)
Vy

(m/s)
Vz

(m/s)
Cx Density

variation
(%)

Distance between
projected starting
position and fall
down position (m)

46 279,000 4,799,000 4,369,000 2800 1170 −4500 0.55 − 5 230,281.39

47 281,000 4,801,000 4,371,000 2520 1170 −4050 0.45 5 245,270.02
48 279,000 4,800,000 4,370,000 2520 1300 −4500 0.55 −10 238,291.58

49 279,000 4,800,000 4,370,000 2520 1170 −4050 0.5 − 5 241,794.77
50 281,000 4,799,000 4,371,000 3080 1300 −4050 0.55 −10 278,121.87
51 279,000 4,800,000 4,371,000 2800 1300 −4500 0.55 − 5 247,723.44

52 281,000 4,800,000 4,369,000 2800 1170 −4500 0.5 0 232,861.02
53 279,000 4,800,000 4,371,000 3080 1300 −4500 0.45 5 258,741.08

54 279,000 4,801,000 4,369,000 2800 1430 −4500 0.5 − 5 262,041.17
55 281,000 4,800,000 4,369,000 2520 1430 −4050 0.55 − 5 270,100.91

56 281,000 4,799,000 4,371,000 2520 1170 −4950 0.5 −10 214,624.18
57 281,000 4,799,000 4,371,000 3080 1430 −4050 0.5 10 293,581.81

58 279,000 4,799,000 4,370,000 2520 1170 −4500 0.5 0 223,967.71
59 279,000 4,799,000 4,369,000 2520 1430 −4500 0.45 −10 251,745.01

60 279,000 4,799,000 4,369,000 3080 1170 −4500 0.5 5 239,098.46
61 279,000 4,801,000 4,371,000 2800 1170 −4500 0.55 − 5 236,424.58

62 280,000 4,799,000 4,369,000 2800 1430 −4050 0.45 0 281,537.57
63 281,000 4,801,000 4,369,000 3080 1300 −4050 0.55 5 276,116.98

64 281,000 4,800,000 4,371,000 3080 1170 −4500 0.55 −10 244,958.44
65 280,000 4,800,000 4,369,000 2800 1170 −4050 0.55 0 248,427.92

66 280,000 4,801,000 4,371,000 2520 1300 −4500 0.55 0 240,026.72
67 280,000 4,801,000 4,369,000 2520 1170 −4500 0.55 5 223,964.42

68 281,000 4,799,000 4,371,000 3080 1170 −4500 0.55 10 240,249.89
69 280,000 4,800,000 4,369,000 2520 1300 −4950 0.5 10 221,580.76

70 280,000 4,801,000 4,369,000 2800 1300 −4050 0.55 0 265,392.59
71 281,000 4,801,000 4,370,000 2800 1170 −4050 0.5 0 253,280.62

72 281,000 4,799,000 4,370,000 2520 1170 −4050 0.45 −10 242,704.32
73 279,000 4,799,000 4,369,000 2520 1430 −4050 0.45 −10 272,016.74

74 280,000 4,799,000 4,370,000 2520 1430 −4050 0.55 0 268,800.89
75 279,000 4,799,000 4,371,000 3080 1430 −4050 0.45 10 295,070.17
76 279,000 4,800,000 4,370,000 3080 1430 −4500 0.5 5 269,944.23

77 280,000 4,801,000 4,369,000 3080 1170 −4500 0.45 0 244,998.67
78 281,000 4,799,000 4,369,000 2800 1430 −4050 0.5 0 279,920.43

79 280,000 4,800,000 4,371,000 3080 1430 −4500 0.45 10 272,734.62
80 281,000 4,799,000 4,371,000 2800 1300 −4050 0.5 0 266,522.79

81 280,000 4,799,000 4,370,000 3080 1430 −4500 0.5 5 268,191.32
82 281,000 4,801,000 4,371,000 2520 1430 −4950 0.5 0 239,245.52

83 280,000 4,799,000 4,370,000 3080 1430 −4950 0.55 0 248,515.87
84 280,000 4,799,000 4,369,000 3080 1170 −4950 0.45 10 225,221.51

85 279,000 4,800,000 4,369,000 3080 1300 −4950 0.55 5 235,766.18
86 280,000 4,799,000 4,371,000 2800 1300 −4950 0.55 0 229,998.33

87 281,000 4,801,000 4,370,000 2520 1170 −4500 0.5 − 5 228,123.31
88 280,000 4,799,000 4,369,000 2800 1300 −4950 0.5 −10 230,023.95

89 281,000 4,799,000 4,369,000 3080 1170 −4500 0.5 −10 241,697.05
90 281,000 4,799,000 4,371,000 2800 1300 −4500 0.5 − 5 247,707.61
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Table 4

Comparison of the simulated and approximated distance between the projected starting position and fall down
position

Runs X
(m)

Y
(m)

Z
(m)

Vx

(m/s)
Vy

(m/s)
Vz

(m/s)
Cx Density

variation
(%)

Distance between
projected starting
position and fall
down position (m)

Approximated
distance
(m)

91 281,000 4,801,000 4,370,000 3080 1170 −4950 0.55 −10 230,026.58 236,383.98

92 279,000 4,801,000 4,369,000 2520 1170 −4050 0.5 −10 242,826.62 243,739.90

93 281,000 4,800,000 4,370,000 2520 1300 −4950 0.55 0 223076.11 231519.18

94 280,000 4,801,000 4,370,000 2520 1170 −4950 0.5 0 214,876.78 225,845.52

95 280,000 4,800,000 4,371,000 2520 1170 −4500 0.45 −10 229,920.46 240,656.65

96 280,000 4,799,000 4,371,000 2520 1170 −4050 0.5 0 240,949.89 252,944.45

97 281,000 4,799,000 4,371,000 2520 1430 −4500 0.55 10 248,935.24 244,524.39

98 279,000 4,801,000 4,371,000 2520 1430 −4500 0.55 0 253,660.41 243,268.28

99 280,000 4,799,000 4,370,000 2520 1170 −4950 0.5 5 211,200.83 224,797.25

100 280,000 4,800,000 4,370,000 3080 1430 −4050 0.5 −10 297,289.96 274,333.69
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Lokalieji ir izotropiniai Gauso laukai krikinge

Leonidas SAKALAUSKAS

Straipsnyje nagrinėjamas lokaliai vienalyči ↪u ir izotropini ↪u Gauso lauk ↪u panaudojimas dau-
giamači ↪u duomen ↪u struktūr ↪u tikimybiniam modeliavimui. Ištirtas asimptotinis modelis, gaunamas
artinant ↪i begalyb ↪e koreliacijos funkcijos parametr ↪a. Sukurta krigingo procedūra nesudėtingo eks-
trapoliatoriaus, priklausančio tik nuo atstum ↪u tarp matavimo tašk ↪u trupmenini ↪u laipsni ↪u, pavidalu.
Gautas modelis apibūdinamas tik vidurkio ir dispersijos parametrais, kurie gali būti ↪ivertinti di-
džiausio tikėtinumo metodu. Pateikiami dviej ↪u ekstrapoliavimo testini ↪u uždavini ↪u ir kosminio pa-
lydovo patekimo ↪i atmosfer ↪a apskaičiavimo rezultatai, gauti sukurtuoju metodu.


