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Abstract. A new pseudo-random number generator (PRNG) is proposed. The principle of the
method consists in mixing chaotic maps produced from an input initial vector. The algorithm uses
permutations whose positions are computed and indexed by a chaotic function based on linear con-
gruences. The performance of this scheme is evaluated through statistical analysis. Such a cryp-
tosystem lets appear significant cryptographic qualities for a good security level.
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1. Introduction

Nowadays, telecommunication networks and especially the internet have become com-
mon tools in everyday of life. From simple data transmission to a high sensitive data stor-
age, the need to develop methods to secure these transactions has become a concern for
many researchers. Thus, all these constraints made that the randomness in data process-
ing has become a key element for security. The generation of pseudo-random numbers
is a subject which continue to impassion the researchers since a few decades. Indeed,
a pseudo-random number generator (PRNG) is defined as an algorithm enabling to gen-
erate a sequence of numbers with properties of randomness. The design of the generator
is important in the choice of its application. One way to design such a pseudo-random
number generator is connected to the chaos theory (Alvarez and Li, 2006; Zheng et al.,
2008; Patidar and Sud, 2009a). Since the nineties, many researchers have shown that
an interesting relationship between cryptography and chaos exists. These chaotic sys-
tems are characterized by their high sensitivity to initial conditions and some properties
like ergodicity and random behaviors. This extreme sensitivity to the initial conditions
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makes chaotic system very important for cryptographic applications and developments
of pseudo-random number/bit generator (Po-Han et al., 2004; Cecen et al., 2009; Orúe
et al., 2010; Patidar and Sud, 2009b; Pareek et al., 2010; Guyeux et al., 2010). Indeed,
sequences of numbers presenting properties of randomness can always be produced but
a rigorous mathematical analysis is necessary to evaluate the level of randomness and the
efficiency of the generator.

In this paper an algorithm using a chaotic function is developed for the generation of
multiple pseudo-random sequences. The algorithm uses permutations whose positions are
computed and indexed by a chaotic function based on linear congruences. These chaotic
permutations are achieved iteratively on this inital vector to produce two chaotic maps.
These maps are xored in order to produce one sequence which is the output of the al-
gorithm. The choice of producing and xoring two chaotic maps enlarges the complexity
of the system and increases the difficulty for an attacker to extract sensitive informations
from the outputs. The outputs produced by our generator can be used in several secure
cryptographic applications or even as simple random sequenses for numerical simula-
tions.

This paper is structured as follows. The description of the method as well as the
chaotic function analysis are given in Section 2. Section 3 presents the statistical anal-
ysis applied on a set of generated pseudo-random sequences. The security analysis of the
generator is achieved in Section 4, before concluding.

2. The Proposed Cryptosystem

The core of the PRNG algorithm is based on the contruction of two chaotic maps obtained
by permuting and shuffling the positions of an initial input vector. The permutation func-
tion is inspired by recurrence functions used for linear congruential generators (Janke,
2002). Here, the chaotic function is constructed and used to compute the positions ac-
cording to an initial vector. These positions are shuffled during the generation process
through an internal modulo operator which is extended to the whole size of the vector.
In order to initate the permutation process, an input vector Vin of size N and a starting
seed are necessary. The function uses a degressive modulo C related to the size of the
input vector and is defined by the following recurrence relation:

Xn+1 =
[
[X2

nmod C] × Xn + Xinit

]
mod C, (1)

where X0 = g, Xinit = g2, the seed value g ∈ {1, . . . , M } with M = N × log2 N . The
space of the seed values g is limited to M in order to avoid any problem of periodicity.
The value of C is initialized to M − 1 and decremented after each iteration. The positions
are computed with a memory effect. Indeed the new computed positions Xn represent
the values of the old positions already shuffled. So, the value of a position can move
several times before fixing. The principle of the proposed chaotic function is to shuffle
the initial positions 1, . . . , M by starting of an initial seed value X0. Before giving the
general algorithm which constitutes the PRNG, we characterize the chaotic behavior of
the function of (1) in the following (see Section 2.1).
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2.1. Chaotic Behaviour of the Function of Recurrence

The chaotic behaviour of the chaotic function given by (1) is characterized and analysed
through their Lyapunov exponents. For dynamical systems, the Lyapunov exponent char-
acterizes the velocity of evolution between two near trajectories and is given, for discrete
dynamical system, by Wolf et al. (1985), Aurell et al. (1997):

λ(x0) = lim
n→∞

1
n

n∑
i=1

ln |f ′(xi)|, (2)

with xn+1 = f(xn), x0 and x0 + ε being two near initial conditions. A quantitative mea-
surement of chaotic behaviour of the function is given by the positive values of Lyapunov
exponent (i.e., λ > 0). Here, the initial conditions are corresponding to the seed values g

and the Lyapunov exponents between the suites of positions generated for two consecu-
tive seeds are computed. In fact, the function in (1) is not differentiable and an evaluation
of its derivative is obtained by finite difference. With such an approximation, the value of
Lyapunov exponent λ is given by:

λ(g) =
1
M

M∑
i=1

ln
∣∣∣∣Vg[i] − Vg′ [i]

g − g′

∣∣∣∣, (3)

where Vg and Vg′ correspond to position vectors generated by the seeds g and g′, respec-
tively. The seeds are gi = i, 1 � i � M , M = 10 240, the Lyapunov exponents λ(gi) are
computed for two near seed values (gi−1, gi) and shown in Fig. 1(a). All computed Lya-
punov exponents are positive and belong to the interval [7.69, 7.77]. Figure 1(b) shows
an example of computed positions, for two near seeds g1 = 9717, g2 = 9718, as function
of the position n. One can remark that the two trajectories are very different and exhibit
the sensitivity related to the initial seeds. The value log |Xn − X ′

n| as function of the po-
sition n for these two trajectories, is also presented (see Fig. 1(c)). Finally, for a chosen
seed value g = 977, the evolution of the Lyapunov exponent values as function of M is
also computed and presented in Fig. 1(d). All the Lyapunov exponents are positive and
confirm the chaotic behaviour of the analysed function based on linear congruences. Let
us turn to the whole algorithm of pseudo-random number generation.

2.2. Description of the Generator

Such a chaotic function is integrated in the pseudo-random number generator and the
algorithmic principle of the method consists in four steps:

1. An initial vector Vin of size N is selected (this choice is free). This vector Vin

is transformed into a binary vector V bin
in obtained by the binary sequences of Vin

taken in sequential order. Thus V bin
in contains only the values 0 and 1 and its size is

M = N × log2 N (preferably take N = 2x, x � 1).
2. A seed g ∈ {1, . . . , M } is chosen as initiator of the relation of recurrence given

by (1).
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Fig. 1. Behaviour of the function of (1): (a) Lyapunov exponent between generated suites for two consecutive
seeds (gi−1, gi), 1 � i � M = 10 240. (b) Sensitivity on the initial conditions as function of the iteration step.
(c) log difference between two sequences generated by the seeds g1 = 9717, g2 = 9718 and (d) Lyapunov
exponent as function of M for a fixed seed value g = 977.

3. Do loop for V bin
in [i], where i is the current position in V bin

in and construction of
a second vector component V bin

in [j] in a new chaotic position j = i + 1 + Xi+1

with (1). The elements of V bin
in are transformed to V bin

in [i] = Z3 and V bin
in [j] = Z1

with

Z1 = V bin
in [i], (4)

Z2 = V bin
in [j] = V bin

in (i + 1 + Xi+1), (5)

Z3 = Z1 ⊕ Z2, (6)

where the symbol ⊕ represents the exclusive OR operation bit-by-bit. This process
is achieved until the end of the loop.

4. The bits of V bin
in are gathered per package of log2 N in order to obtain the new

vector V1 of size N . This constitutes the steps for one round in the vector Vin using
the seed g.

The construction of the two chaotic maps consists in applying iteratively L and
T times the algorithm on the vector Vin in order to transform it into VL and VT , re-
spectively. The vectors VL (with L = Floor[T/2]) and VT (i.e., produced by applying
T − L rounds from VL) are two different chaotic vectors which are combined to produce
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the output vector:

Vout = VL ⊕ VT , (7)

which is the output pseudo-random sequence of size N . It should be noted that the gener-
ator consists in mixing permutation of positions through a xoring operation on the binary
elements of Vin for positions i and j. Moreover, in order to improve the security of the
algorithm, the sequence Vout is obtained by xoring VL and VT making the algorithm irre-
versible. As we should store two vectors of size N at most, the memory space complexity
is O(N).

In general case, the algorithmic processes for generating pseudo-random numbers are
interesting for the following reasons:

1. Repeatability: for chosen (and stored) seeds, a fully reproducing sequence of
pseudo-random numbers can be assured. That may be important in simulation
codes.

2. Usefulness: fast generation without limitation for a vast majority of implementa-
tions.

3. Standardization: reliability for quality and efficiency.

2.3. Round Number Selection T

A fundamental advantage of any kind of PRNG is the quality of keys. According to
the Kerckhoffs’ principle (Menezes et al., 1996), the security of a cryptosystem only
depends on its keys. In any cryptosystem, a poor key or a limited key space K induces
a weakness of the cryptosystem (i.e., which can be easily broken). Indeed, given today’s
computer speed, it is generally accepted that a key space of size smaller than 2128 is
not secure enough (Janke, 2002). The present algorithm consists in producing pseudo-
random vectors from keys. Each key is corresponding to two input data: (1) an initial
vector Vin of size N (or M in bits) and (2) a set of seed values gi, 1 � i � T . At each
round, each seed gi has a value in the interval {1, . . . , M }. Therefore, the total number
of possibility for the seed space is MT . In order to satisfy the condition MT > 2128,
avoiding any brute-force attack, the minimum number of rounds T1 is:

T1 = Floor

[
128

log2 M

]
+ 1, (8)

with Floor[x] is the largest integer not greater than x. This condition T = T1 assures the
minimum entropy limit for the seed space but not necessarily the randomness quality of
the output vector Vout. Indeed, an initial vector Vin with very low Shannon’s entropy can
necessitate T � T1. Therefore, the number of rounds T is also related to the distribution
of bits ‘0’ and ‘1’ in Vin. Assuming that in Vin, the occurency of the bit ‘0’ has a prob-
ability p0(0) (resp. p0(1) = (1 − p0(0)) for the bit ‘1’), then at each new round t, the
probability pt(0) is iteratively modified by:

pt(0) = [p2
t−1(0) + (1 − pt−1(0))2] ∀t � 1, (9)
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and the limit of the suite pt(0) must converge to 0.50 to assure a maximum Shannon’s
entropy in the output vector Vout. The goal is to find the number of rounds T2 satisfying
the relation:

lim
t→T2

pt(0) = 0.50 − ε1, (10)

with ε1 a fixed numerical tolerance (here ε1 = 0.001). The value T2 can be large for Vin

with very low Shannon’s entropy or small for Vin with Shannon’s entropy closed to its
maximum (i.e., 1 in base 2). Finally, the algorithm must also assure high sensitivity to
the inital input vector Vin. Indeed, by using the same set of seed values with two near
initial vectors Vin and V ′

in, the security level can not be maximum if sensitivity is not
guaranteed and will produce high correlation between the output vectors Vout and V ′

out.
In order to avoid this situation, an additional hypothesis must be taken into account. By
considering two initial input vectors Vin and V ′

in of size M (in bits) and differing by only
one bit, the probability s0 of identical elements between these two vectors is equal to
s0 = (M − 1)/M . This probability decreases according to the number of rounds as:

sr = s2
r−1 ∀r � 1, (11)

and must satisfy:

lim
r→T3

sr � ε2, (12)

where ε2 is the acceptable criterion of similitude between binary sequences (e.g., ε2 is
fixed to 0.005, assuming a rate of identical bits smaller than 0.5%). The minimum number
of round T3 satisfying the (12) is:

T3 = Floor

[
log2

(
ln(ε2)
ln(s0)

)]
+ 1. (13)

With these three indicators T1, T2 and T3, the number of rounds is given by:

T = max{T1, T2, T3}. (14)

This number of rounds T is automatically computed from the knowledge of the input vec-
tor Vin and permits to satisfy simultaneously the criteria of key space entropy, maximum
Shannon’s entropy and sensitivity to initial conditions (initial input vector and seeds).
As an example, for an initial vector of size N = 1024 (i.e., M = 10 240, T = 16),
the cryptosystem permits to produce exactly 10 24016(� 2213) different pseudo-random
sequences. For the generation of an unspecified pseudo-random sequence, the parameters
which must remained secret are:

(1) the arbitrary initial input vector Vin of size N ;
(2) the set of T seed values {g1, . . . , gT } with each seed value gi ∈ {1, . . . , M }.
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3. Statistical Analysis

The purpose of this section is to present the approaches which are used to analyse the
qualities of the produced pseudo-random sequences. These qualities are investigated fol-
lowing both aspects: randomness properties of each individual sequence and correlation
between multiple sequences. In order to achieve this objective, two approaches are pro-
posed.

3.1. Approach 1

This first approach consists in evaluating the randomness quality of the sequences Vout

produced by the algorithm. Therefore, the sequences are evaluated through statistical
tests suite NIST (National Institute of Standards and Technology of the U.S. Govern-
ment). This suite consists in a statistical package of fifteen tests developped to quantify
and to evaluate the randomness of (arbitrarily long) binary sequences produced by ei-
ther hardware or sotware based cryptographic random or pseudorandom number genera-
tors (Rukhin et al., 2010). For each statistical test, a set of pvalue is produced and is com-
pared to a fixed significance level α = 0.01 (i.e., only 1% of the sequences are expected
to fail). Therefore, a sequence passes a statistical test for pvalue � α and fails otherwise.
In case of testing multiple sequences at the same time, each test define a proportion η

as the ratio of sequences passing succesfully the test relatively to the total number of
sequences Nk (i.e., η = n[pvalue � α]/Nk). This proportion η is compared to an accept-
able proportion ηaccept which corresponds to the ratio of sequences which should pass
the test (Rukhin et al., 2010). These NIST tests are achieved on the three following kind
of sequences: individual sequences, concatened sequence, and modified sequences.

1. Individual sequences: The randomness quality of each sequence belonging to a sub-
set of sequences is analysed directly by NIST tests. The Nk sequences V k

out of
binary size M (with 1 � k � Nk) are individually tested and the results are given
as ratio of success compared to a fixed threshold. The provided information is the
randomness of each sequence.

2. Concatened sequence: A new sequence is constructed by concatening all the indi-
vidual sequences: Vcat = {V 1

out, . . . , V
Nk
out} of binary size Nk × M . The random-

ness quality of this new sequence is also analysed directly by the NIST tests. The
provided information is the randomness of the concatened sequence and the binary
internal correlation.

3. Modified sequences: M modified sequences Vmod of size Nk are constructed by
collecting for each position 1 � j � M the binary value of each sequence V k

out.
Therefore, V j

mod = {V 1
out[j], . . . , V

Nk
out[j]}. The NIST tests are applied on such

modified sequences in order to analyse the correlation between the Nk produced
sequences. This analyse provides informations on the hidden linear structure of
a group of sequences produced with near seed values.
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3.2. Approach 2

The purpose of this second approach is to check the correlation between the produced
pseudo-random number sequences. In contrast to previous approach (Approach 1.2), the
correlation between sequences are analysed globally by computing the Pearson’s corre-
lation coefficients of each pair of sequences (Cheng et al., 2004). Let the two sequences
kx = [x1, . . . , xN ] and ky = [y1, . . . , yN ], we have:

CP =
∑N

i=1(xi − x) · (yi − y)

[
∑N

i=1(xi − x)2]1/2 · [
∑N

i=1(yi − y)2]1/2
, (15)

where x =
∑N

i=1 xi/N and y =
∑N

i=1 yi/N are the mean values of kx and ky , re-
spectively. A strong correlation occurs between two sequences for CP � ±1 and no
correlation or absence of monotonic association corresponds to CP ≈ 0. These Pearson’s
correlation coefficients are computed for each pair of sequences and the distribution of
their values is presented by a histogram. The Pearson’s correlation coefficients are also
compared with the nonparametric correlation estimators as the Kendall and Spearman
correlation which are known to be resistant to outlying observations and non normal
distribution data (Taylor, 1987; Croux and Dehon, 2010). Spearman’s correlation coef-
ficient CS varies from −1 to +1 and the absolute value of CS describes the strength
of the monotonic relationship. Similar to Spearman’s rank-order correlation coefficient,
Kendall’s CK correlation coefficient is designed to capture the association between two
ordinal (not necessarily interval) variables.

3.3. Analysis of a Subspace of Pseudo-Random Sequences

In this section, a subspace of sequences is considered and analysed. These sequences are
produced from consecutive seed values belonging to the total seed space K. This analy-
sis puts forward the quality of the outputs produced following a change of consecutive
seeds. For the generation, we consider the two following input data: one initial input vec-
tor Vin = [0, . . . , 1023] of size N = 1024 (i.e., M = 10 240, and T = 16) and the
sequences of T seed values {g1, . . . , g16} with {g1, . . . , g14} = {10, 1984, 3001, 47,
10 115, 489, 3420, 5019, 137, 9612, 2089, 737, 7437, 89}, g15 ∈ {1, . . . , 4} and g16 ∈
{1, . . . , 10 240}. The total number of generated sequences is Nk = 4 × 10 240 = 40 960,
each sequence has a size of 10 240 bits and the seed values gi for 1 � i � 14 are chosen
in {1, . . . , 10 240}.

3.3.1. Analysis with Approach 1
The results obtained by Approach 1 (1–3) on the 40 960 sequences, are given in Table 1.
For the tests “NonOverlappingTemplate”, “RandomExcursions” and “RandomExcur-
sionsVariant” the smallest percentage of all subtests are presented. Due to the unadapted
size of the individual sequences (only 10 240 bits per sequence in contrast to 419 430 400
bits for the concatened sequence and 40 960 bits for each modified sequence), these last
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Table 1

Results of the NIST tests using Approach 1 on the 40 960 generated sequences for individual, concatened
and modified sequences. The ratio η of pvalue concerns individual and modified sequences while the pvalue

concerns the concatened sequences

Test name Indiv. Seq. Vout Concat. Seq. Vcat Modif. Seq. Vmod

η result pvalue result η result

Frequency 99.03 Success 0.6936 Success 98.82 Success

Block-Frequency 99.01 Success 0.7740 Success 99.02 Success

Cumulative Sums (1) 99.06 Success 0.4846 Success 98.14 Success

Cumulative Sums (2) 99.02 Success 0.2366 Success 98.04 Success

Runs 98.94 Success 0.7489 Success 99.21 Success

Longest Run 98.99 Success 0.1637 Success 98.33 Success

Rank 99.10 Success 0.7278 Success 98.92 Success

FFT 98.95 Success 0.6470 Success 98.82 Success

Non-Overlapping 97.93 Success 0.0401 Success 98.40 Success

Overlapping 97.32 Success 0.1916 Success 99.02 Success

Universal – Success 0.3965 Success 98.43 Success

Approximate Entropy 98.58 Success 0.2101 Success 98.73 Success

Random Excursions – Success 0.2938 Success 98.10 Success

Random E-Variant – Success 0.0633 Success 98.10 Success

Serial (1) 98.85 Success 0.1567 Success 99.02 Success

Serial (2) 98.96 Success 0.2624 Success 99.02 Success

Linear Complexity 98.46 Success 0.2187 Success 98.73 Success

two tests and the “Universal” test are not applicable. We notice that the results of the tests
are satisfactory for the whole set of tested outputs. The sequences pass successfully the
NIST tests for individual sequences, for the constructed concatened sequence and for the
modified sequences. These results show the quality of the produced sequences with the
pseudo-random number generator.

3.3.2. Analysis with Approach 2
The coefficients of correlation between each pair of the 40 960 generated sequences are
computed with (15) and the distribution of these coefficients CP is presented in Fig. 2(a).
The histogram shows that the computed coefficients are very close to 0 and included in
the interval [−0.04, 0.04]. The absolute value of each coefficient is smaller than 0.04
and most than 98.48% of the coefficients have an absolute value smaller than 0.025. That
clearly shows a weak correlation between the sequences.

Moreover, these Pearson’s correlation coefficients are also compared with the non-
parametric Kendall’s CK and Spearman’s CS correlation estimators (see Fig. 2(b)). We
can remark that these three indicators (Pearson CP , Spearman CS and Kendall CK) have
similar values and the absolute values of Kendall’s coefficients are smaller than Pearson’s
coefficients.

The outputs of PRNG must have both strong quality of randomness and strong in-
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Fig. 2. Distribution of (a) the Pearson’s coefficients CP on the interval [−0.04, 0.04], for the tested keys and
(b) comparison with Spearman CS and Kendall CK correlation coefficients.

dependence between these outputs. The results of the analysis obtained with the two
approaches, show the randomness level of the pseudo-random sequences and the quasi
independence that may exist between a group of sequences produced with the PRNG.

4. Security Analysis

The security analysis of any PRNG should also be evaluated against attacks as well as its
application domain. Therefore, the analysis must take into account all the critical points
of the cryptosystem and must meet cryptographic requirements (Alvarez and Li, 2006).
In the present case, the investigated points are: the size of the key space, the key sen-
sitivity, the key choice, the randomness quality of the ouputs and weak key generation.
These points are investigated through the three following attacks: Guess-and-Determine
Attack (Ahmadi and Eghlidos, 2009), Distinguishing Attack (Coppersmith et al., 2002)
and Differential Attack (Biham and Shamir, 1993).

4.1. Key Space

A good generator of (pseudo-)random sequences should have a large key space in order
to make brute-force attacks infeasible. It is generally accepted that a key space of size
smaller than 2128 is not secure enough (Janke, 2002). Here, the key space is constructed
by taking into account this constraint and permits to generate MT distinct key sequences,
with T = max{T1, T2, T3} (see (14)). By example, for N = 1024 (i.e., M = 10 240
and T = 16), the algorithm enables to produce about 2213 pseudo-random sequences.
Therefore, the key space size is large enough to resist brute-force attacks. Such a large
space of keys is a necessary condition, but not sufficient. Indeed, all the produced keys
must also be cryptographically strong and uncorrelated.

4.2. Key Sensitivity

The sensitivity on the key is an essential factor for the pseudo-random generation based
on chaos. Indeed, only a small deviation in the input should cause a large change in the
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output. Here, the key is given by two kinds of inputs: a set of seed values kin and one
initial vector Vin. Therefore, the key sensitivity analysis must be achieved on these two
inputs.

4.2.1. Seed Value Sensitivity
The first part of key sensitivity concerns the seed values. Actually in the test of
correlation (Section 3), this seed sensitivity was already tested due to the selected
near seed values. To bring an additional response, a large pseudo-random sequen-
ce V a

out of size N = 4 194 304 (i.e., M = 92 274 688 and T = 29) is pro-
duced. For this output pseudo-random sequence V a

out, the input initial vector is
Vin = [0, . . . , 4 194 303] and the set of seed values ka = {g1, . . . , g28, g

a
29} is

{1984, 194, 21 294, 1 299 314, 12 314, 10, 74 120, 1 230 014, 951 210, 194, 70 553, 2835,
19 800, 9 299 314, 83 721, 610 990, 2120, 65 521, 39, 1 239 094, 9 230 014, 16 630 010,

324, 19 201, 75 245, 365 257, 820 0014, 10 000, 745 309}. Moreover, with the same input
initial vector Vin, two slightly differing sets of seeds kb and kc are also considered with
kb = {g1, . . . , g28, g

b
29} and kc = {g1, . . . , g28, g

c
29} to produce V b

out and V c
out, respec-

tively. These two sets differ by only one bit in the last seed value ga
29 = 745 309 (i.e.,

gb
29 = 745 308 and gc

29 = 745 310 in the sets kb and kc, respectively). The analysis
of the sensitivity to the seed value consists in computing the correlation coefficients be-
tween the produced sequences V a

out, V b
out and V c

out. The results are given in Table 2.
These coefficients are closed to 0 and the tested sequences are very different. Moreover,
in order to illustrate such a sensitivity to the seed value, a new sequence is also con-
structed and is corresponding to the difference between two pseudo-random sequences:
V diff

out = |V a
out − V b

out|. This V diff
out is projected in 256 gray-levels and the associated im-

age is presented in Fig. 3(a). If the two sequences V a
out and V b

out are random, the new
one V diff

out should not present any linear structure. Therefore, the correlation (Approach 2
applied on the lines of the image) is evaluated and presented in Fig. 3(b). All the coeffi-
cients are in the interval [−0.08, 0.08] and 99.04% of coefficients have a value smaller
than 0.055. The correlation between the lines of the image is weak. The results obtained
here show that the sequences seem to be very different. This illustrates the sensitivity of
the cryptosystem to the initial seeds.

4.2.2. Initial Vector Sensitivity
The second part of the key sensitivity concerns the input initial vector Vin and the cryp-
tosystem, to be efficient, must also be very sensitive to this last one. Here, a complete

Table 2

Correlation coefficients between the three pseudo-random sequences produced with slightly different seed sets
ka, kb and kc

Outputs 1/2 V a
out/V b

out V a
out/V c

out V b
out/V c

out

Pearson’s correlation coef. 0.000787 0.000175 0.000248

Spearman’s correlation coef. 0.000786 0.000170 0.000240

Kendall’s correlation coef. −0.000010 −0.000026 −0.000005
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Fig. 3. Illustration of (a) the corresponding image in gray-level of the sequence V diff
out obtained from the dif-

ference of two pseudo-random sequences produced with two slightly different seed sets ka, kb. (b) Correlation
histogram between the lines of the image.

knowledge of the used seed values gi (1 � i � T ) and only partial information on
the initial vector Vin are considered. Let the initial vector of size N = 4 194 304 to be
V a

in = [0, 1, 2, . . . , 4 194 303] and the set of seed values kin = ka given previously.
With such a fixed kin, two additional initial vectors V b

in and V c
in differing from V a

in

by only one bit are also considered (e.g., V b
in = [1, 1, 2, . . . , 4 194 303] and V c

in =
[0, 0, 2, . . . , 4 194 303]). If the cryptosystem is sensitive to the initial input vector then the
produced outputs V a

out, V b
out and V c

out should also be very different and not correlated.
The correlation coefficients between these three produced sequences are computed and
presented in Table 3. With such a difference of only one bit in the initial vector, the pro-
duced sequences V a

out, V b
out and V c

out are very different and not correlated. To illustrate
the sensitivity to the initial vector, a sequence corresponding to the difference between the
two sequences V a

out and V b
out is also constructed and is given by V diff

out = |V a
out − V b

out|.
This sequence V diff

out is projected in 256 gray-levels and the associated image is pre-
sented in Fig. 4(a). Moreover, the correlation (Approach 2 applied on the lines of the
image) is computed and presented in Fig. 4(b). All the coefficients are into the interval
[−0.08, 0.08] and 99.16% of them have an absolute value smaller than 0.057. The lines
of the image present a weak correlation. The results show that the sequences are very
different and the high sensitivity of the cryptosystem related to the initial input vector.

Table 3

Correlation coefficients between the three pseudo-random sequences produced with slightly different initial
input vectors V a

in, V b
in and V c

in with the set kin = ka

Outputs 1/2 V a
out/V b

out V a
out/V c

out V b
out/V c

out

Pearson’s correlation coef. 0.000050 0.000066 −0.000155

Spearman’s correlation coef. 0.000051 0.000086 −0.000105

Kendall’s correlation coef. 0.000038 0.000002 0.000020
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Fig. 4. Illustration of (a) the corresponding image in gray-level of the sequence V diff
out obtained from the dif-

ference of two pseudo-random sequences produced with two slightly different initial vectors V a
in, V b

in and
(b) correlation histogram between the lines of the image.

4.3. Choice of the Key: Initial Vector and Seeds

The choice of the input set of seeds kin and initial vector Vin is free but must not be
neglected. As an example, the initial vector Vin = [0, . . . , N − 1] was chosen to illustrate
that a high randomness quality can be obtained even with a simple vector. For a maximum
security level, both the set of seeds kin = {g1, . . . , gT } and Vin are parts of the secret key
and can come from a complex “source” (e.g., complex function, complex image, complex
physical process,..). The idea is that the set kin and the vector Vin can not be easily
founded without any information about how it was created. The choice of the inputs
(complex and secret) for the generation of pseudo-random sequences is an asset to the
cryptosystem but the vector Vin and the set kin need to be stored securely.

4.4. Quality of Pseudo-Random Sequences

A rigorous analysis would be necessary to determine the quality of a PRNG. Indeed,
whichever way the cryptosystem is designed, the produced output must be strong (i.e.,
random, decorrelated and sensitive). In the literature, various statistical tests are avail-
able to evaluate the randomness of binary sequences. Reference test suites for PRNGs
are TestU01 (Ecuyer and Simard, 2007), the NIST suite (Rukhin et al., 2010), and the
DieHARD suites (Marsaglia, 1996). Here, the NIST tests are used to quantify and to
evaluate the randomness level of sub-sets of produced pseudo-random sequences. The
correlation between such pseudo-random sequences were evaluated (see Approaches 1.2
and 2). The sensitivity to the key (seed and initial vector) was also tested. All the produced
pseudo-random sequences pass successfully all the statistical analysis.

4.5. Weak Key Generation

It is essential to have a large space of keys but it is also necessary to wonder if all the
keys are cryptographically strong and valid. It is mentioned in the suggested Rule 5 of
Alvarez and Li (2006) that, the key space from which valid keys must be chosen, should
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be precisely determinated in order to avoid non-chaotic regions. Therefore, a careful study
of the chaotic regions in the space of parameters is necessary in order to avoid weak or
degenerate keys. In our case, this study is not really useful indeed, the space of seeds is
already limited and optimized (per round) to avoid any problem of periodicity. Moreover,
at each round, the seed value g can be selected randomly from the set {1, . . . , M } and
then achieving all these values. The different statistical tests clearly show the quality
of tested sequences. Moreover, this chaotic region is very homogeneous. Therefore, the
proposed PRNG does not present weak or degenerate key region.

4.6. Guess-and-Determine Attack

Guess-and-determine attack is a general attack on stream ciphers (Ahmadi and Eghlidos,
2009). The strategy of this attack is to guess firstly the value of few unknown variables
of the cipher. Next, the remaining unknown variables are deduced by iterating the system
a few times and by comparing the produced pseudo-random sequence with the original
pseudo-random sequence. If these two sequences are identical, then the guessed values
are correct and the cryptosystem is broken, else the attack should be repeated with new
guessed values. Here, if the attacker does not possess the full initial vector Vin and the
complete set of seed values, he can not apply the attack. By considering that Vin is known
by the attacker, it seems that the attack discussed in reference (Ahmadi and Eghlidos,
2009) can not be applied on the proposed cryptosystem which is not of the same family
of involved stream ciphers. Indeed, the internal structure of the cipher algorithm is com-
pletely different. Here the vector Vin is an input, after a few rounds it becomes a vector
Vout of same size. An alternative way to apply this attack would be to guess and to fix the
L chosen seeds in order to create the map VL and to iterate the algorithm by searching
the T − L remaining seeds to produce VT before Vout. Once all the comparisons made
without success, the L input seeds are guessed again and the process is repeated until
success. This process has almost the same complexity than a classic brute-force attack.

4.7. Distinguishing Attacks

Any output sequence of a stream cipher (or PRNG) designed for cryptographic appli-
cations, should not be statistically distinguished from a truly random sequence. In fact,
distinguishing attacks described in reference (Coppersmith et al., 2002), try to find traces
of the distinguishing property by exploiting the weaknesses of the algorithm related to
the linear and non-linear combinations. Here, the generated sequences pass successfully
the standard statistical tests for randomness. In the algorithm, the permutations, which
are done by using the function of (1), are crossed with a xor operator, which kills any in-
formation on linear dependance. Moreover, the only linear masking occurs when V bin

in [j]
is replaced by Z1, but as the index goes to the end of the vector then all positions are
concerned by the internal xor operation. By knowing that the process is repeated T times
on a long enough initial vector (which is secret), the attack becomes ineffective even
inapplicable.
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4.8. Differential Attack

This method of cryptanalysis was introduced by Biham and Shamir (Biham and Shamir,
1993). Similarily to the chosen-plaintext attack, its principle is to analyze and to exploit
the effect of a small difference in input pairs on the difference of their corresponding out-
put pairs. This technique allows to target the most probable key that was used to produce
the output. Given two inputs x and x′ (e.g., Vin and V ′

in) and their corresponding outputs
y and y′ (e.g., Vout and V ′

out), the most commonly used differences are:

1. The subtraction modulus which is the differences related to both inputs and outputs:
Δx1 = |x − x′ | and Δy1 = |y − y′ |;

2. The xor difference which is defined by: Δx2 = x ⊕ x′ and Δy2 = y ⊕ y′.

The diffusion aspect or the sensitive dependence on the initial condition is then mea-
sured by a differential probability. However, the proposed PRNG is designed to avoid
this kind of cryptanalysis. Indeed, during the computation of the number of rounds T ,
this problem is solved by including the hypothesis T3 (see Section 2.3). Therefore, the
process of generation of pseudo-random sequences assures the high sensitivity to the ini-
tial vector. This is also illustrated by the example given in Section 4.2.2, highlighting the
sensitivity related to three closed initial input vectors.

5. Conclusions

In this paper, a new PRNG using two chaotic maps to generate multiple key sequences
was presented. Such a generator has shown its ability to produce a very large number
of pseudo-random sequences which can be usefull in several cryptographic applications.
The coupling of chaotic function with the xor operation, drastically disrupts the inter-
nal structure of the initial vector and induces progressively an unpredictable randomness
effect. The advantages of the generator are the adaptive size of the key space, the sensitiv-
ity to the initial inputs (keys), the quality of pseudo-random sequences, the security level
against several attacks, the simplicity of implementation and the portability architecture
(only integers are used).
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Naujas pseudo atsitiktini ↪uskaiči ↪u generatorius besiremiantis dviem
chaotiniais atvaizdavimais

Michael FRANCOIS, Thomas GROSGES, Dominique BARCHIESI, Robert ERRA

Apibrėžtas ir naudojamas pseudo atsitiktini ↪u skaiči ↪u generatorius (pseudo-random number ge-
nerator, PRNG). Metodas grindžiamas chaotini ↪u atvaizdavim ↪u maišymu. Algoritme naudojami
statistinės analizės metodai. Tokia kriptosistema leidžia pasiekti ger ↪a saugumo lyg↪i.


