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Abstract. In this paper, we present a cryptanalysis of a public key cryptosystem based on the matrix
combinatorial problem proposed by Wang and Hu (2010). Using lattice-based methods finding
small integer solutions of modular linear equations, we recover the secret key of this cryptosystem
for a certain range of parameters. In experiments, for the suggested parameters by Wang and Hu,
the secret key can be recovered in seconds.
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1. Introduction

Quite recently, Wang and Hu (2010) proposed a combinatorial public key cryptosystem
which we refer to as the WH scheme. The scheme uses matrices of a small dimension as
a secret key satisfying certain constraints and disguised using RSA modulus. Its security
is based on a certain problem involving matrices named the matrix combinatorial problem
whose computational complexity is unknown. The scheme has its advantage in the speed.
The encryption and decryption can be done in a quadratic bit complexity.

To be secure, selecting parameters is very important. The WH scheme has a main
parameter (n, |N |) with an additional parameter lA where n is a size of matrices, |N | is
a binary length of the RSA modulus N , and lA is a binary length of entries of a certain
secret matrix A.

In this paper, we cryptanalyze the WH scheme and clarify conditions secure param-
eters should satisfy. We first show that the WH scheme can be completely broken if the
factorization of the RSA modulus is given. This answers the question raised in Wang
and Hu (2010) whether the factorization of N can be publicized to remove some require-
ments. Our result shows that the factorization of N should be kept secret. Moreover, we
show that the RSA modulus can be factored, thus the scheme can be broken, if lA is
small. We also give a bound of lA our attack can be applied. This clarifies the condition
of parameter lA which is not considered in Wang and Hu (2010).

Our cryptanalysis uses lattice-based methods finding small solutions of modular linear
equations constructed from the public key exploiting the structure of the secret key. Since
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the suggested parameters use a small lA, they are insecure and the secret key can be
recovered within seconds in experiments.

The rest of the paper is organized as follows. In the next section, we review known
facts about matrices and lattices. In Section 3, we describe the WH scheme. Our crypt-
analysis is presented in Section 4 with experimental results. Concrete parameters secure
against our attack is given in Section 5, and we conclude in Section 6.

2. Preliminaries

2.1. Notations

Throughout this paper, we use R, Z, and ZN = {0, . . . , N − 1} to denote the set of real
numbers, the set of integers, and the integers modulo N . For any integers a, b ∈ Z, we use
a ≡ b (mod N) to denote that a and b are congruent modulo N . The least nonnegative
remainder of a modulo N is denoted as a mod N . We use gcd(a, b) to denote the greatest
common divisor of a and b, and the symbol |a| represents the binary length of a.

2.2. Matrices

We use uppercase bold letters to represent matrices, while lowercase bold letters are used
to represent row vectors. We use MT to denote the transpose of a matrix M. A column
vector is denoted as the transpose of a row vector. We use In and 0n to denote the identity
matrix and the zero matrix of dimension n, respectively.

We define Pn and Jn as a cyclic permutation matrix and an exchange matrix of di-
mension n such that

Pn =

⎛
⎜⎜⎜⎜⎜⎝

1
1

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎠

and Jn =

⎛
⎜⎜⎜⎝

1
1

. .
.

1

⎞
⎟⎟⎟⎠ . (1)

These two matrices are permutation matrices that are used to permute columns or rows
of a matrix. Premultiplying a matrix by Pn results in the elements of a matrix being
circularly shifted down-warded by one position, while postmultiplication by Pn results
in a left circular shift. On the other hand, premultiplication and postmultiplication by
Jn reverses the rows and columns of a matrix, respectively. It is easy to see that Pn

n =
J2

n = In.

2.3. Lattices

An n-dimensional lattice is a set of integer combinations {
∑n

i=1 xibi | xi ∈ Z} of
n linearly independent vectors b1, . . . ,bn ∈ R

m. The set of vectors b1, . . . ,bn is called
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a basis for the lattice and is represented by a matrix B whose rows are basis vectors. We
use L(B) to denote a lattice generated by B.

Lattices can be used to solve modular linear equations whose solutions are small inte-
gers. For an equation a1x1 + · · · + anxn ≡ 0 (mod N) where ais and N are known,
lattice-based methods are used to find small integer solutions (x1, . . . , xn) whenever∏n

i=1 Xi � N , where the absolute value of xi is bounded by Xi. Namely, certain lattice
basis is constructed from ais, Xis and N , then lattice basis reduction algorithms are used
to find short vectors in the lattice. This folklore result is justified in Herrmann (2008;
Appendix A). LLL (Lenstra et al., 1982) and BKZ (Schnorr and Euchner, 1994) algo-
rithms are mostly used lattice basis reduction algorithms in practice. LLL algorithm is
implemented in several computer algebra systems including PARI/GP (PARI/GP, 2008)
and magma (Bosma et al., 1997). And BKZ algorithm is implemented in NTL (Shoup).

These algorithms can find quite short vectors in the lattice when the dimension n is
small, say less than 50. In fact, it is considered to be easy to find shortest vectors in lattices
of dimension less than 50 using enumeration techniques (Pohst, 1981; Gama et al., 2010)
or sieving methods (Ajtai et al., 2001; Micciancio et al., 2010). It is reported that the
shortest vector can be found even in lattices of dimension ≈ 110 (Gama et al., 2010).

It is also interesting that the equation a1x1 + · · · + anxn ≡ 0 (mod p) can be solved
with smaller Xi, where p is an unknown divisor of a known composite integer N (Her-
rmann and May, 2008).

3. The WH Scheme

In this section, we describe the WH scheme, a combinatorial public key cryptosystem
due to Wang and Hu (2010).

3.1. Key Generation

The protocol involves matrices of an even dimension n and the RSA modulus N = pq.
Depending on the security level, (n, |N |) = (2, 1024), (4, 1024), and (4, 2048) are sug-
gested for parameters (Wang and Hu, 2010). In the following, we describe the key gener-
ation procedure as in Wang and Hu (2010) which involves a 1024-bit RSA modulus.

For the key generation, randomly select a 1024-bit RSA modulus N = pq with primes
p and q such that |p| = |q| = 512. Randomly choose an n-dimensional invertible ma-
trix A = (aij)n×n with |aij | = 59. Randomly choose four matrices C = (cij)n×n,
D = (dij)n×n, E = (eij)n×n, and F = (fij)n×n with cij , dij , eij , fij ∈ ZN satisfying
the following conditions,

cij + ei(n+1−j) ≡ 0
din + fi1 ≡ 0
dij + fi(j+1) ≡ 0, j = 1, . . . , n − 1

⎫⎬
⎭ (mod p) , when i is odd, (2)

cij + ei(n+1−j) ≡ 0
din + fi1 ≡ 0
dij + fi(j+1) ≡ 0, j = 1, . . . , n − 1

⎫⎬
⎭ (mod q) , when i is even, (3)
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for i, j = 1, . . . , n. Now generate another matrix A′ = (a′
ij)n×n, where a′

ij ∈ ZN and

a′
ij ≡ aij (mod p) , when i is odd,

a′
ij ≡ aij (mod q) , when i is even.

(4)

An additional requirement is that the matrices A′,C,D,E, and F should be invertible
modulo N . Finally compute B,G, and H as follows,

B = (bij)n×n = D−1A′ mod N,

G = (gij)n×n = D−1C mod N,

H = (hij)n×n = F−1E mod N.

(5)

The matrices B,G, and H and the modulus N are the public key; whereas the secret
key consists of D,F,A−1, p, and q.

Note that |aij | = 59, which is relatively small compared to |N |. Since this has an
important role in our cryptanalysis, we use lA to denote that. Thus lA = |aij | = 59 for
the 1024-bit RSA modulus (Wang and Hu, 2010).

3.2. Encryption

For the encryption, a plaintext M with |M | = 450n is first divided into n blocks
m1, . . . , mn with |mi| = 450. After selecting random integers r1, . . . , rn, s1, . . . , sn

in ZN , the sender computes and sends the ciphertext (u,v) such that

uT =

⎛
⎜⎝

u1

...

un

⎞
⎟⎠ ≡ B

⎛
⎜⎝

m1

...

mn

⎞
⎟⎠ + G

⎛
⎜⎝

r1

...

rn

⎞
⎟⎠ +

⎛
⎜⎝

s1

...

sn

⎞
⎟⎠ (mod N) ,

and

vT =

⎛
⎜⎝

v1

...

vn

⎞
⎟⎠ ≡ H

⎛
⎜⎜⎜⎜⎜⎝

rn

rn−1

...

r2

r1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

sn

s1

...

sn−2

sn−1

⎞
⎟⎟⎟⎟⎟⎠

(mod N) .

3.3. Decryption

Given a ciphertext (u,v), the receiver first computes tT = (t1, . . . , tn)T = DuT +
FvT mod N , sets wi = ti mod p when i is odd, and wi = ti mod q when i is even.
Then she/he recovers the plaintext M as

(m1, . . . , mn)T = A−1(w1, . . . , wn)T .
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The decryption works as is shown in Wang and Hu (2010). Note that lA = |aij | = 59,
|mi| = 450, and |p| = |q| = 512, which makes the following holds,

0 <

n∑
j=1

aijmj < p, 0 <

n∑
j=1

aijmj < q,

when n is 2 or 4. This enables the decryption since the computed value (w1, . . . , wn)T is
equal to A(m1, . . . , mn)T . Note also A = (aij)n×n should have the positive integers as
entries.

In the next section, we cryptanalyze the WH scheme.

4. Cryptanalysis of the WH Scheme

In Wang and Hu (2010; Section 4.2), the authors question whether the factorization of
N compromises the security of the system or not. In this section, we first show that the
factorization of N = pq indeed compromises the security. And then, we present a method
how to factor N using public information when lA is small. The experimental results are
presented in Section 4.3.

4.1. Key Recovery When Factors of the Modulus Are Given

Using the knowledge of p and q, we first construct modular linear equations which involve
A, and then lattice-based methods are used to find small solutions. Once A is obtained,
remaining secrets can be computed easily.

For the ease of a presentation, we use M[1] and M[2] to denote sub-matrices of M
formed by odd rows and even rows, respectively. This is useful since odd and even rows
are related to p and q, respectively. With this notation, the equations (4,5) are rewritten as
in the following,

D[1]B ≡ A′
[1] ≡ A[1], D[1]G ≡ C[1], F[1]H ≡ E[1] (mod p) , (6)

D[2]B ≡ A′
[2] ≡ A[2], D[2]G ≡ C[2], F[2]H ≡ E[2] (mod q) . (7)

Since modulo p equations have the same form as modulo q equations, we only focus
on the modulo p equations. Using B is invertible, the following equation holds:

D[1] ≡ A[1]B−1 (mod p) . (8)

With permutation matrices Pn and Jn from (1), the equation (2) can be rewritten as

C[1] + E[1]Jn ≡ 0, D[1] + F[1]Pn ≡ 0 (mod p) . (9)

Multiplying by P−1
n , we obtain the following equation,

D[1]P−1
n + F[1] ≡ 0 (mod p) . (10)
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Now let Z = B−1(G − P−1
n HJn) mod N . Then,

A[1]Z ≡ A[1]B−1(G − P−1
n HJn)

(8)
≡ D[1](G − P−1

n HJn)

= D[1]G − D[1]P−1
n HJn

(10)
≡ D[1]G + F[1]HJn

(6)
≡ C[1] + E[1]Jn

(9)
≡ 0 (mod p) .

Thus, the row vectors of A[1] are solutions of the modular equation

xZ ≡ 0 (mod p) , where Z = B−1(G − P−1
n HJn). (11)

Clearly, A[2]Z ≡ 0 (mod q) also holds.
From the public key, Z(= B−1(G − P−1

n HJn) mod N) is computed. Then, Z′ is
obtained using the Gaussian elimination with elementary column operations such that

Z′ =
(

0n′ Z′ ′

0n′ In′

)
, where n′ = n/2. (12)

In the above, Z′ contains n′ zero columns since A[1] has n′ independent rows which are
solutions of (11), therefore solutions of xZ′ ≡ 0 (mod p). To find small integer solutions
of this equation, a lattice L(L) is constructed where a basis matrix L is

L =
(

−In′ Z′ ′

pIn′

)
.

Using lattice basis reduction algorithms, short vectors in this lattice can be found. Those
vectors are solutions of (11), therefore can be used as row vectors of A[1].

Once A[1] is obtained, D[1] and F[1] are obtained using (8) and (10), respectively.
Using q instead of p in the above, the rest of the secret A[2],D[2], and F[2] are obtained
similarly. Combining obtained sub-matrices, the secret key A,A−1,D, and F are com-
puted.

The observation here is that we do not need to recover the exact A. As long as it
has entries of binary length less than lA, it can be used as a secret key. Due to the small
dimension n, we can always find short vectors, thus proper secret key.

Notice that the decryption procedure needs to be changed slightly since the obtained
secret A has the negative values also. To simplify the discussion, we provide a simplified
version which works in most of the time. Slight modification on the range of wi which
depends on A makes the decryption work always which is verified in experiments.

Decryption′. Given a ciphertext (u,v), the receiver first computes tT = (t1, . . . , tn)T =
DuT + FvT mod N , sets wi ≡ ti (mod p) with wi ∈ [−p/2, p/2] when i is odd,
and wi ≡ ti (mod q) with wi ∈ [−q/2, q/2] when i is even. Then she/he recovers the
plaintext M as (m1, . . . , mn)T = A−1(w1, . . . , wn)T .
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Our attack succeeds if we can find short vectors of the lattice L(L) of dimension n.
Since n should be quite small due to the efficiency reason, using LLL (Lenstra et al.,
1982) and BKZ (Schnorr and Euchner, 1994) algorithms, such short vectors can be found
easily. Thus, we claim the following.

Attack 1. When n is small, say n is less than 50, the (equivalent) secret key of the WH
scheme with parameter (n, |N |) can be recovered in time polynomial in |N | if the factor-
ization of N(= pq) is known.

This solves a question raised in Wang and Hu (2010). To be secure, the factorization of
N should be kept secret. However, it can be revealed in a certain condition as is described
in the following.

4.2. Factoring the Modulus

In this section, we explain the method to factor N for certain parameters including the
suggested in Wang and Hu (2010). Once the factorization of N is known, the secret key
can be recovered as is claimed in Attack 1. Note that any solution y of the equation
xZ′ ≡ 0 (mod p) such that yZ′ �≡ 0 (mod q) can be used to factor N .

The main observation is that lA is set to be relatively small compared to |N | in
Wang and Hu (2010). This value should not be too small to avoid exhaustive search
attacks, and should not be too large to avoid large ciphertext expansion ratio which is

2|N |
|N |/2−lA−log2 n−1 ≈ 4.55 when lA = 59, |N | = 1024, and n = 4. Using the same
notation as in the previous section including n′ = n/2, we proceed as in the following.

First, recall that Z′ can be computed from the public key and satisfies

A[1]Z′ ≡ 0 (mod p) , A[2]Z′ ≡ 0 (mod q) , where Z′ =
(

0n′ Z′ ′

0n′ In′

)
.

Now let A = (aij)n×n and Z′ ′ = (αij)n′ ×n′ . Note that αij are known values. Then the
above equation implies the following:

n′∑
j=1

a1jαj1 + a1(n′+1) ≡ 0 (mod p) ,

n′∑
j=1

a2jαj1 + a2(n′+1) ≡ 0 (mod q) .

For the easy presentation, we use an additional variable α(n′+1)1, which will be set to 1
in the final equation. Moreover, let xj = a1j and yj = a2j for j = 1, 2, . . . , n′ +1. Using
these notations, the above two equations become

n′+1∑
j=1

xjαj1 ≡ 0 (mod p) ,

n′+1∑
j=1

yjαj1 ≡ 0 (mod q) . (13)
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Since we do not know p and q, we multiply above two equations to obtain a modular
linear equation with a known modulus N = pq:

n′+1∑
j=1

xjyjαj1
2 +

∑
1�i<j�n′+1

(xiyj + xjyi)αi1αj1 ≡ 0 (mod N) .

Rearranging the above equation gives

xn′+1yn′+1α(n′+1)1
2 ≡ −

n′∑
j=1

xjyjαj1
2

−
∑

1�i<j�n′+1

(xiyj + xjyi)αi1αj1 (mod N) . (14)

Now to find xj and yj in (14), a lattice basis L is constructed:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 α11
2

. . .
...

−1 αn′1
2

−1 α11α21

−1 α11α31

. . .
...

−1 αn′1α(n′+1)1

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

From (14), we know that the secret vector

x = (x1y1, . . . , xn′ yn′ , x1y2 + x2y1, x1y3 + x3y1, . . . ,

xn′ yn′+1 + xn′+1yn′ , xn′+1yn′+1) (16)

is in the lattice L(L) whose dimension d is (n+2)(n+4)
8 (= n′ + (n′+1)n′

2 +1). Thus, if this
vector is short, it can be found using lattice-based methods, namely lattice basis reduction
(Lenstra et al., 1982; Schnorr and Euchner, 1994) and enumeration (Pohst, 1981; Gama
et al., 2010) or sieving (Ajtai et al., 2001; Micciancio et al., 2010). In fact, this vector
can be found by an enumeration of all lattice vectors of norm less than

√
d · (22lA+1)2 ≈

22lA . The Gaussian heuristic suggests that the number of lattice vectors of length less
than r is approximately vol(Bd(r))

det(L) ≈ rd

N . Thus, the estimated number of lattice vectors to
be enumerated is about

(22lA)d

N
=

22dlA

N
≈ 22dlA− |N |. (17)

If lA < |N |
2d = 4|N |

(n+2)(n+4) , this value is quite small and the vector x can be found easily
at least for the small dimension d less than 50, which corresponds to n less than 16.
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For the suggested parameter (n, |N |, lA) = (4, 1024, 59), 2dlA − |N | = 2 × 6 × 59 −
1024 = −316. Thus enumeration does not take much time and the secret vector x can be
found easily as experiments in the next section shows.

Obtaining a short vector satisfying given constraints, factorization of N is easy since
gcd(

∑n′

j=1 xjαj1 + xn′+1, N) = p from (13). Our method to factor N is summarized:

• Method to factor N

1. Compute Z(= B−1(G − P−1
n HJn) mod N) from the public key.

2. Use the Gaussian elimination with elementary column operations to compute
Z′ in (12), thus obtain Z′ ′.

3. From Z′ ′ = (αij), construct a lattice basis L in (15).
4. Reduce L using LLL, then BKZ algorithms.
5. Using reduced basis, find a secret vector x in (16) doing enumeration1 of all

lattice vectors of norm less than
√

d · (22lA+1)2 where d = (n+2)(n+4)
8 .

6. Factor N computing gcd(
∑n/2

j=1 xjαj1 + xn/2+1, N).
Combining with Attack 1, we claim the following.

Attack 2. When n is small, say n is less than 16, the (equivalent) secret key of the WH
scheme with a parameter (n, |N |, lA) can be recovered in time polynomial in |N | if lA �

4|N |
(n+2)(n+4) .

Since the suggested parameters use n = 2 or n = 4 with small lA, all the suggested
parameters are subject to our attack. This is verified in experiments which is shown in the
next section.

4.3. Experimental Results

We validate our proposed attack to the suggested parameters of the WH scheme with
experiments. For each suggested parameters in Wang and Hu (2010), we generated 1,000
instances and tried to recover the secret key. We used the same parameter lA = 59 for
|N | = 1024 as in Wang and Hu (2010). Since there is no indication for lA when |N | =
2048, we used lA = 2 · 59 = 118, which seems reasonable. The obtained secret key
is tested to decrypt 100 ciphertexts generated from random messages, and accepted as a
success if all ciphertexts are decrypted correctly.

In experiments, the lattice basis L in (15) is first reduced using LLL algorithm
(Lenstra et al., 1982). Then, instead of enumeration, small linear combinations of the
first four vectors of a reduced basis are used to find the secret vector x in (16) where
coefficients are chosen in { −5, . . . , 5} for simplicity. In the result, we could always find
a secret vector x. Moreover, the first vector in the reduced basis satisfied the constraints
many times, as is shown in the column named “S.P. (1st vector)” in the Table 1, where
the total success probability is shown in the column “S.P. (Total)”.

1Enumeration of short vectors is implemented in magma (Bosma et al., 1997).
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Table 1

Success probability of the proposed attack to the suggested parameters in Wang and Hu (2010)

Security level Parameter (n, |N |, lA) S.P. (1st vector) S.P. (Total)

Moderate (2, 1024, 59) 100% 100%

Higher (4, 1024, 59) 73.2% 100%

Highest (4, 2048, 118) 55% 100%

For the implementation, PARI/GP ver. 2.3.5 (PARI/GP, 2008) is used on a CPU Q9550
2.83 GHz with “qflll” for the lattice reduction. And secret keys are obtained within sec-
onds in all cases. Experimental results are summarized in the Table 1 and this shows that
the suggested parameters in Wang and Hu (2010) are completely insecure.

5. Discussion

In this section, we suggest concrete parameters for |N | = 1024 and |N | = 2048 assuming
the Gaussian heuristic.

In our attack, all the steps terminate in polynomial time except the enumeration step
when there are large number of short lattice vectors. The number of lattice vectors to be
enumerated increases exponentially with lA as is estimated in (17) assuming the Gaussian
heuristic. Since our attack needs to enumerate all such vectors, it has time complexity at
least O(22dlA− |N |). For the security parameter λ, we need 2dlA − |N | > λ, thus:

lA >
|N | + λ

2d
=

4(|N | + λ)
(n + 2)(n + 4)

.

To maintain the main advantage of this cryptosystem which is speed, n should be small.
Thus we suggest to use n = 4 or n = 6. According to NIST recommendations2, RSA-
1024 corresponds to λ = 80. And we need lA > (λ + |N |)/(2d) = (80 + 1024)/12 =
92 when n = 4. Considering possible future attacks, we suggest to use (n, |N |, lA) =
(4, 1024, 115). For the RSA-2048 which corresponds to λ = 112, lA should be larger
than 180 when n = 4. Thus we suggest to use (n, |N |, lA) = (4, 2048, 225) for the
higher security. If n = 4 is not comfortable, one can use n = 6 although this makes
encryption and decryption slower. Our suggested parameters are listed in the Table 2.

6. Conclusions

In this paper, we cryptanalyzed the combinatorial public key cryptosystem proposed by
Wang and Hu (2010). Exploiting the special structure and property of the secret key, we
could recover secret keys within seconds for all the suggested parameters in Wang and Hu

2http://www.keylength.com.
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Table 2

Suggested parameters of the WH scheme

Security Parameter Ciphertext

parameter λ n |N | lA expansion ratio

80 4 1024 115 5.2

112 4 2048 225 5.1

112 6 2048 135 4.6

(2010) using lattice-based methods. Since our attack is based on methods finding “small”
integer solutions of modular linear equations, increasing certain parameter makes our
attack fail, although it also increases ciphertext expansion ratio slightly.

This cryptosystem has its advantage in the speed of encryption and decryption which
is quadratic. However, its relatively large ciphertext expansion ratio (> 4) and newly pro-
posed difficulty assumption makes the scheme less attractive. Further research is needed
to prove the assumption, the hardness of the matrix combinatorial problem.
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Viešojo rakto šifravimo sistemos analizė gr ↪ista matric ↪u
kombinatoriniu uždaviniu

Moon Sung LEE

Straipsnyje pasiūlyta viešojo rakto šifravimo sistema, gr↪ista matric ↪u kombinatoriniu uždaviniu,
kuri ↪a nagrinėjo Wang ir kt. Naudojant gardelinius metodus, apskaičiuojami modulini ↪u tiesini ↪u
lygči ↪u mažiausieji sveikieji sprendiniai ir surandamas šios šifravimo sistemos slaptasis raktas.
Wang‘o ir kt. pasiūlytiems parametrams slaptasis raktas apskaičiuojamas per kelias sekundes.


