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Istvan-Gergely CZIBULA1

1Department of Computer Science, Babeş-Bolyai University
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Abstract. The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous re-
ordering of the rows and the columns of a square matrix such that the nonzero entries are collected
within a band of small width close to the main diagonal. The MBMP is a NP-complete problem,
with applications in many scientific domains, linear systems, artificial intelligence, and real-life sit-
uations in industry, logistics, information recovery. The complex problems are hard to solve, that is
why any attempt to improve their solutions is beneficent. Genetic algorithms and ant-based systems
are Soft Computing methods used in this paper in order to solve some MBMP instances. Our ap-
proach is based on a learning agent-based model involving a local search procedure. The algorithm
is compared with the classical Cuthill-McKee algorithm, and with a hybrid genetic algorithm, using
several instances from Matrix Market collection. Computational experiments confirm a good per-
formance of the proposed algorithms for the considered set of MBMP instances. On Soft Computing
basis, we also propose a new theoretical Reinforcement Learning model for solving the MBMP.

Keywords: combinatorial optimization, matrix bandwidth minimization problem, soft computing,
reinforcement learning.

1. Introduction

Combinatorial optimization is the seeking for one or more optimal solutions in a well
defined discrete problem space. In real life approaches, this means that people are in-
terested in finding efficient allocations of limited resources for achieving desired goals,
when all the variables have integer values. As workers, planes or boats are indivisible
(like many other resources), the Combinatorial Optimization Problems (COPs) receive
today an intense attention from the scientific community.

The current real-life COPs are difficult in many ways: the solution space is huge,
the parameters are linked, the decomposability is not obvious, the restrictions are hard
to test, the local optimal solutions are many and hard to locate, and the uncertainty and
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the dynamism of the environment must be taken into account. All these characteristics,
and other more, constantly make the algorithm design and implementations challenging
tasks. The quest for more and more efficient solving methods is permanently driven by
the growing complexity of our world.

The Matrix Bandwidth Minimization Problem (MBMP) is a fundamental mathemat-
ical problem, searching for a simultaneous permutation of the rows and the columns of
a square matrix that keeps its nonzero entries as much as possible close to the main di-
agonal. This problem is NP-complete in general (Papadimitriou, 1976), and it remains so
even in restricted solutions spaces (Garey et al., 1978), that is why any attempt to improve
its solutions is beneficent.

The main contribution of this paper is to emphasize the effectiveness of using soft
computing methods in order to solve the Matrix Bandwidth Minimization Problem. Ge-
netic algorithms and ant-based systems are natural computing methods used in this paper
in order to solve the MBMP instances. Computational experiments confirm that these
methods provide robust and low-cost solutions for the MBMP. We also introduce a new
theoretical reinforcement learning model for solving the MBMP. So far, such a learning
model has not been reported in the MBMP literature.

The rest of the paper is organized as follows. Section 2 briefly presents the matrix
bandwidth minimization problem, emphasizing its relevance and also presenting existing
approaches for solving it. The fundamentals of the soft computing approaches considered
in this paper, i.e., genetic algorithms, ant colony systems and reinforcement learning, are
given in Section 3. In Section 4 we propose two natural computing methods for solving
the MBMP instances, namely genetic algorithms and ant colony systems. A theoretical
reinforcement learning model for solving MBMP is introduced in Section 5. Section 6
provides an experimental evaluation of the proposed methods and Section 7 contains
some conclusions of the paper and future development of our work.

2. The Matrix Bandwidth Minimization Problem

This section introduces the concept and the literature review related to the Matrix Band-
width Minimization Problem.

2.1. Matrix Bandwidth Minimization Problem Description

Given a square positive symmetric matrix A = (aij)1�i,j�n, the bandwidth β is the
value β(A) = maxaij �=0 |i − j| . The Matrix Bandwidth Minimization Problem searches
for a row (and column) permutation π that minimizes the bandwidth for the new matrix.

An equivalent form of MBMP uses the graph-theory approach, based on the layout
notion. Given an undirected, connected graph G = (V, E), a layout σ is a bijection be-
tween V and {1, 2, . . . , |V | }. The bandwidth of G is β(G) = minσ (max(u,v)∈V (|σ(u)−
σ(v)|)). Intuitively, computing the bandwidth for a graph is to find a linear ordering of
its vertices that minimizes the maximum distance between two adjacent vertices.
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Starting from the given matrix A, an equivalent graph GA = (V, E) can be defined
and the MBMP can be viewed as the problem of minimizing the bandwidth of GA. In
this graph, the set of vertices is V = {1, 2, . . . , n} and two vertices i and j are connected
through an edge iff aij �= 0, i.e., E = {(i, j) iff aij �= 0}.

The current exact approaches devise algorithms that solve the general MBMP in
O(4.83n) running time (Cygan and Pilipczuk, 2009). Classic results for approximation
approaches establish an approximation factor of O(log3.5 n) for general MBMP (Feige,
1998) and O(log2.5 n) for trees (Gupta, 2000).

The MBMP arose in the solving systems of linear equation; the ordering of the system
matrix has great impact on the resources needed when actually solving the system, and
may lead to a substantial efficiency increase. Minimizing the bandwidth of a matrix helps
in improving the efficiency of certain linear algorithms, like Gaussian elimination.

The MBMP current applications in computer science include VLSI design, network
survivability, data storage. Other applications are in electromagnetic industry (Esposito
et al., 1998), large-scale power transmission systems, chemical kinetics and numerical
geophysics (Marti et al., 2001), information retrieval in hypertext (Berry et al., 1996).

Some generalizations of MBMP are currently investigated by the world researchers.
For example, the two-dimensional bandwidth problem is to embed a graph into a planar
grid such that the maximum distance between adjacent vertices is as small as possible
(Lin and Lin, 2010).

2.2. Literature Review

The importance of the bandwidth minimization problem is also reflected by the large
number of publications describing algorithms for solving it. Cuthill and McKee (1969)
propose the first stable heuristic method for MBMP: the CM algorithm with Breadth-First
Search.

Marti et al. (2001) have used Tabu Search for solving the MBMP problem. They used
a candidate list strategy to accelerate the selection of moves in the neighborhood of the
current solution.

A GRASP with Path Relinking method given by Pinana et al. (2004) has been shown
to achieve better results than the Tabu Search procedure but with longer running times.
Lim et al. (2006) propose a Genetic Algorithm integrated with Hill Climbing to solve the
bandwidth minimization problem.

A simulated annealing algorithm is shown in Rodriguez-Tello et al. (2008) for the ma-
trix bandwidth minimization problem. The algorithm proposed by Tello et al. (2008) is
based on three distinguished features including an original internal representation of so-
lutions, a highly discriminating evaluation function and an effective neighborhood. More
recently, the Ant Colony Optimization metaheuristic has been used in Lim et al. (2006),
Pintea et al. (2010) in order to solve the the MBMP.
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3. Background

In this section we will briefly review the fundamentals of the soft computing approaches
used in this paper for solving the MBMP, i.e., genetic algorithms, ant colony optimization
and reinforcement learning.

Soft Computing is the collection of computing branches that cope with the impre-
cision, uncertainty, partial truth, and approximation, manifested in nature and naturally
(and gracefully) operated by biologic entities (cells, organisms, or collections of individ-
uals). The goal of soft computing approaches is to achieve tractability, robustness and
low-cost solutions, facing the real-life, complex, highly-dimensioned problems.

Genetic algorithms (GAs), invented by John Holland in the 1960s, are the most widely
used approaches to computational evolution. Genetic algorithms provide an approach to
machine learning (Mitchell, 1998), method motivated by analogy to biological evolu-
tion. Hypotheses are often described by bit strings whose interpretation depends on the
application, though hypotheses may also be described by symbolic expressions or even
computer programs (Goldberg, 1989).

Ant Colony Optimization (ACO) studies artificial systems inspired by the behavior of
real ant colonies and which are used to solve COPs (Dorigo and Sttuzle, 2004). The ACO
methods use a set of cooperative artificial ants, each constructing a solution, based on the
expected quality of the available moves and on the good solutions found by the commu-
nity. ACO demonstrated a high flexibility and strength by solving with very good results
either academic instances of many COPs or real-life problems. To improve the efficiency,
the ant-based algorithms are designed using problem-specific information and involve
local search methods.

The goal of building systems that can adapt to their environments and learn from
their experiences has attracted researchers from many fields including computer science,
mathematics, cognitive sciences (Sutton and Barto, 1998). Reinforcement learning (RL)
is learning what to do – how to map situations to actions – so as to maximize a numerical
reward signal. The learner is not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the highest reward by trying them.
In RL, the computer is simply given a goal to achieve. The computer then learns how to
achieve that goal by trial-and-error interactions with its environment.

4. Natural Computing Models for the MBMP

In this section we propose two natural computing methods for solving the MBMP in-
stances: genetic algorithms and ant colony systems. The computational experiments from
Section 6 confirm that these methods provide robust and low-cost solutions for the
MBMP.

4.1. Genetic Algorithm

In the following, a hybrid genetic algorithm (HGA) is proposed for solving the MBMP.
The algorithm proposed in this section is a slight modification of the Genetic Algorithm
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integrated with Hill Climbing proposed by Lim et al. (2006).
Let us consider that A = (aij)1�i,j�n is the square symmetric matrix whose band-

width β has to be minimized.
In the HGA we use, a chromosome is a n dimensional sequence π1, π2, . . . , πn rep-

resenting a permutation π of {1, 2, . . . , n}. Thus, a matrix Aπ can be associated to
a chromosome π, i.e., the matrix obtained starting from the matrix A by permuting it
rows (and columns) in the order given by permutation π. The fitness function associ-
ated to a chromosome π is defined as the bandwidth of the corresponding matrix, i.e.,
fitness(π) = β(Aπ). The problem consists of minimizing the fitness function, i.e., find-
ing the individual with the minimum associated fitness value.

We have used the traditional structure for a genetic algorithm, adding a Hill Climbing
step in order to quickly tune solutions to reach local optimum (Lim et al., 2003). HGA
algorithm operates as follows:

(i) At the beginning, an initial group of n chromosomes is constructed, as it will be
further detailed.

(ii) Then, middle-point crossover and a k-swap mutation are performed on this group
of chromosomes to generate new chromosomes (Lim et al., 2003). Hill Climbing
is now applied to each newly-generated chromosome, as proposed in Lim et al.
(2003). As the number of individuals within a population remains n, fittest chro-
mosomes will remain in the next generation. After the new generation is formed,
a swap mutation is applied on all chromosomes within the new generation, except-
ing the best one. Then, Hill Climbing is applied again to each newly-generated
chromosome.

(iii) Step (ii) is repeated for a given number of generations; the algorithm stops and the
best result is reported as solution.

The initial population for the HGA is constructed as follows. Starting from matrix A,
we construct the corresponding graph GA. Then, the initial chromosomes are built by
performing BFS on the graph, starting from each node. This way, n initial individuals are
constructed. Applying Hill Climbing (Lim et al., 2003) on the obtained individuals, the
initial population for the HGA is obtained. The construction of the initial population for
the HGA is slightly different from the method from Lim et al. (2003).

As further work we will investigate the appropriateness of replacing the Hill Climbing
step from the HGA with other local search mechanisms, such as PSwap or MPSwap
procedures that will be described in Section 4.2.

4.2. Ant-Based System

A hybridized ACO approach using a local search procedure is proposed in this section
for solving the MBMP. This local search method is designed to reduce the bandwidth of
the current solution and is executed during the local search stage of the ACO framework.

In Pintea et al. (2010) Ant Colony System (ACS) (Dorigo and Sttuzle, 2004) is hy-
bridized with a local search mechanism. The ACS model is based on the level structure
used by the Cuthill–McKee algorithm (Cuthill and McKee, 1969). The local search pro-
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cedure aims at improving ACS solutions, by reducing the maximal bandwidth. The inte-
gration of a local search phase within the proposed ACS approach to MBMP facilitates
the refinement of ants’ solutions.

The main stages of the proposed hybrid ACS are as follows.

(i) First, the current matrix bandwidth is computed, the pheromone trails are initialized
and the parameters values are established.

(ii) The construction stage consists of executing the next steps within a given number
of iterations. At first all the ants are placed in the node from the first level, then the
local search mechanism is applied.
Each ant builds a feasible solution by repeatedly making pseudo-random choices
from the available neighbors. While constructing its solution, an ant also modifies
the amount of pheromone on the visited edges by applying the local updating rule
(Dorigo and Sttuzle, 2004).
After each partial solution is built, in order to improve each ant’s solution, the local
search mechanism is applied. Finally, once all ants have finished their tour, the
amount of pheromone on edges is modified again by applying the global updating
rule (Dorigo and Sttuzle, 2004).

(iii) The best current solution is listed.

As illustrated above, the local search procedure is used twice within the proposed
hybrid model: at the beginning of each iteration and after each partial solution is built, in
order to improve each ant’s solution.

In Pintea et al. (2010) two local search mechanisms are introduced: PSwap and
MPSwap. The local search mechanisms are denoted by hACS and respectively hMACS.

PSwap firstly founds the maximum and minimum degrees. Then, for all indexes x

with the maximum degree, it randomly selects an unvisited node y with a minimum de-
gree and then swaps the nodes x and y.

In order to avoid stagnation was introduced hMACS. First are found the maximum
and minimum degrees. For all indexes x with the maximum degree, it randomly selects
an unvisited node y with a minimum degree such as the matrix bandwidth decreases and
then swaps the nodes x and y.

The experimental results reported in Pintea et al. (2010) show that MPSwap procedure
performs better on small instances, while PSwap is better on larger ones.

5. A Theoretical Reinforcement Learning Model for Solving MBMP

In this section we investigate a reinforcement learning approach for solving the MBMP
problem and introduce our RL model.

Let us assume, in the following, that A is the symmetric matrix of order n whose
bandwidth has to be minimized.

5.1. Problem Definition

We define the RL problem associated to MBMP as in Czibula et al. (2010):
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• The environment E consists of the set of states {1, 2, . . . , n} extended with a state
s0 that is connected to all other states, i.e., E = {1, 2, . . . , n}

⋃
{s0}.

• The initial state si of the agent in the environment is s0.
• A state sf ∈ E reached by the agent at a given moment after it has visited states

si, s1, s2, . . . , sk is a terminal (final) state if the number of states visited by the
agent in the current sequence is n + 1, i.e., k = n.

• The transition function between the states is defined as h : E → P (E), where
h(i) = {1, 2, . . . , n}. This means that, at a given moment, from the state i the
agent can move to any state from E, excepting the initial state. We say that a state
j that is accessible from state i (j ∈ h(i)) is the neighbor (successor) state of i.

• The transitions between the states are equiprobable, the transition probability
P (i, j) between a state i and each neighbor state j of i is P (i, j) = 1

n .

The RL problem consists in training the MBMP agent to find a path si, π1, π2, . . . , πn

from the initial to a final state, i.e., a permutation π of {1, 2 . . . , n} that minimizes the
corresponding matrix bandwidth (Czibula et al., 2010).

Let us consider that, at a given moment, the agent has visited states si, π1, π2, . . . , πk,
where k � n, πi ∈ E, πi �= si, ∀1 � i � k and πi �= πj , ∀1 � i, j � k,
i �= j. Starting from the path π1, π2, . . . , πk, we construct a permutation of {1, 2, . . . , n},
denoted by σπ(1..k) = (σπ(1..k)

1 , σ
π(1..k)
2 , . . . , σ

π(1..k)
n ). An element σπ(1..k)

j (∀1 � j � n)
is computed as follows:

– If j � k, then σ
π(1..k)
j = πj .

– If k < j � n and j /∈ {π1, π2, . . . , πk }, then σ
π(1..k)
j = j.

– If k < j � n and j ∈ {π1, π2, . . . , πk }, then σ
π(1..k)
j = s, where 1 � s � n,

s /∈ {π1, π2, . . . , πk } and ∃m, 1 < m < k and i1, i2, . . . , im (1 � iq � n

∀1 � q � m) such that j = πi1 , i1 = πi2 , . . . , im−1 = πim , im = πs.

Based on the definition of σπ(1..k) given above, it can be proved that σπ(1..k) is a per-
mutation of {1, 2, . . . , n}. Now, a matrix Aσπ(1..k)

can be obtained from the initial matrix
A by permuting its rows (and columns) in the order given by permutation σπ(1..k).

Consequently, a path π1, π2, . . . , πk of the agent in the environment corresponds to
the matrix Aσπ(1..k)

obtained as we have described above.

5.2. Reinforcement Function

As we aim at obtaining a permutation π of {1, 2, . . . , n} that minimizes the matrix band-
width, we define the reinforcement function as indicated in Equation (1). We mention
that an alternative method to define the reinforcement function was considered in Czibula
et al. (2010).

• The reward received in state πk after states si, π1, π2, . . . , πk−1 were visited,
denoted by r(πk |si, π1, π2, . . . , πk−1) is computed as the bandwith of matrix
Aσπ(1..k−1)

minus the bandwidth of matrix Aσπ(1..k)
.

r
(
πk |si, π1, π2, . . . , πk−1

)
=

{
0, if k = 1,

β
(

Aσπ(1..k−1)) − β
(

Aσπ(1..k))
, otherwise.

(1)
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Considering the reward defined in (1), as the learning goal is to maximize the total
amount of rewards received on a path from the initial to a final state, it can be easily
proved that the agent is trained to find a permutation π of = {1, 2, . . . , n} that minimizes
the bandwidth of the corresponding matrix Aσπ(1..k)

.

5.3. The Learning Process

During the training step of the learning process, the agent will determine its optimal
policy in the environment, i.e., the policy that maximizes the sum of the received rewards.
During the training process, the states’ utilities estimations converge to their exact values,
thus, at the end of the training process, the estimations will be in the vicinity of the exact
values.

It is proved that the RL algorithm (such as SARSA (Sutton and Barto, 1998)) con-
verges with probability 1 to an utility function as long as all state-action pairs are visited
an infinite number of times and the policy converges in the limit to the Greedy policy.

Consequently, after the training step of the agent has been completed, the solution
learned by the agent will be constructed by starting from the initial state and following
the Greedy policy until a solution is reached. From given state i, using the Greedy policy,
the agent moves to an unvisited neighbor j of i having the maximum utility value.

The solution of the MBMP reported by the RL agent is a permutation π of
{1, 2, . . . , n} such that U(π1) � U(π2) � · · · � U(πn), U being the utility function
learned by the agent during its training. Considering the general goal of a RL agent, it
can be proved that the permutation π of {1, 2, . . . , n} learned by the MBMP agent con-
verges to the permutation that corresponds to the matrix with the minimum bandwidth.

6. Computational Experiments

In this section follows the comparative evaluation of the techniques proposed in Section 4
in order to solve the MBMP. The results are compared with those reported by CM algo-
rithm (Cuthill and McKee, 1969).

Nine benchmark instances from National Institute of Standards and Technology, Ma-
trix Market, Harwell–Boeing sparse matrix collection (Harwell-Boeing, 2010) were used
in the computational experiments. In Table 1 are illustrated, for each considered instance,
the following characteristics: number of lines, number of columns and number of nonzero
entries.

The hybrid genetic algorithm HGA (Section 4.1) and the hybrid ant systems hACS
and hMACS (Section 4.2) were implemented and applied for the instances described in
Table 1. Some details regarding the implementations of HGA, hACS and hMACS are
following.

The Hybrid GA is based on a Delphi implementation (Zavoianu, 2009) and is tested
with 10% mutation rate, k = [n/10] and 50, respectively 100 generations. GA1 is denoted
the hybrid genetic algorithm with 50 generations and GA2 the hybrid genetic algorithms
with 100 generations.
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The hybrid ant algorithms (Pintea et al., 2010) hACS and hMACS are implemented in
Java. For each instance, both algorithms are executed 20 times.

The parameter values for both implementations are: 10 ants, 10 iterations, q0 = 0.95,
β = 2, ρ = 0.001, τ0 = 0.1. The algorithms were compiled on an AMD 2600 computer
with 1024 MB memory and 1.9 GHz CPU clock.

In Table 2 are comparatively illustrated the best solution (the bandwidth of the matrix)
obtained by CM, hACS, hMACS, GA1 and GA2 algorithms for the instances given in
Table 1.

A graphical representation of the results is given in Fig. 1.
Based on Fig. 1 some conclusions follows.
Excepting two instances (6 and 7) the hybrid natural-based algorithms provide bet-

ter result than CM algorithm. hMACS algorithm performs better than hACS algorithm
on small instances, while hACS algorithm is better than hMACS on larger ones. For six

Table 1

The benchmark instances

No. Instance Euclidean

characteristics

1 can_24 24 24 92

2 can_61 61 61 309

3 can_62 62 62 140

4 can_73 73 73 225

5 can_96 96 96 432

6 can_187 187 187 839

7 can_229 229 229 1003

8 can_256 256 256 1586

9 can_268 268 268 1675

Table 2

Comparative results

Instance CM hACS hMACS GA1 GA2

No.

1 8 14 11 6 6

2 26 43 42 19 19

3 9 20 12 8 8

4 27 28 22 22 23

5 23 17 17 25 25

6 23 63 33 53 51

7 49 120 120 63 63

8 116 148 189 91 91

9 134 165 210 90 90
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Fig. 1. Comparative results.

instances the hybrid genetic algorithm performed better than ant-based algorithms. The
number of generations considered for GA1 and GA2 has no significant influence on the
results.

In order to assure a better convergence to the solution, the ant-based hybrid models
should offer an “ideal” set of parameters and also a good strategy of placing the agents in
the environment.

The Matrix Bandwidth Minimization Problem’s results could be improved using rein-
forcement learning in new hybrid natural based-computing techniques.

7. Conclusions and Further Work

The Matrix Bandwidth Minimization Problem (MBMP) is a classic mathematical prob-
lem, relevant to a wide range of complex real life applications. The problem is NP-
complete and a lot of research was conducted in order to find appropriate solutions.

Nowadays, bio-inspired heuristics are successfully used to solve difficult problems.
On this basis, the paper describes several soft computing approaches for solving the
MBMP. The proposed heuristics are hybrid algorithms: genetic algorithms and ant colony
algorithms. Some standard MBMP instances are tested using the hybrid bio-inspired al-
gorithms and compared with existing literature. The results are encouraging.

A new theoretical reinforcement learning model for solving the considered problem
is also introduced. Computational experiments confirmed a good performance of the pro-
posed algorithms, emphasizing the effectiveness of soft computing methods in order to
solve the MBMP.

Further work will be made in order to detail the proposed reinforcement learning
model. More exactly, we proposed to develop a RL algorithm for training the MBMP
agent and to experimentally validate the RL model. We will also investigate new local
search procedures in order to improve the performance of the ant system and of the ge-
netic algorithm proposed for solving the Matrix Bandwidth Minimization Problem.
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Euristiniai metodai juostos pločio uždaviniui

Gabriela CZIBULA, Gloria-Cerasela CRIŞAN, Camelia-M. PINTEA,
Istvan-Gergely CZIBULA

Matricinis juostos pločio uždavinys (MBMP) formuluojamas kaip kvadratinės matricos eiluči ↪u
ir stulpeli ↪u perstatymas siekiant nenulinius elementus surinkti arti diagonalės. Šis NP-pilnas už-
davinys kyla daugelyje sriči ↪u: tiesinėse sistemose, dirbtiniame intelekte, realioje gamyboje, logis-
tikoje, informacijos atgaminime. Sudėtingas problemas sunku spr ↪esti, todėl bet koks bandymas
yra naudingas. Genetiniai algoritmai ir skruzdži ↪u elgesio modeliavimo metodai šiame straipsnyje
pritaikyti MBMP uždaviniui. Mūs ↪u siūlymas pagr↪istas besimokanči ↪u agent ↪u modeliais ir lokalios
paieškos procedūromis. Pasiūlytas algoritmas palygintas su klasikiniu Cuthill-McKee algoritmu
ir su hibridiniu genetiniu algoritmui Matric ↪u Rinkos kolekcijos. Skaičiuojamieji eksperimentai
patvirtino ger ↪a pasiūlyto algoritmo efektyvum ↪a sprendžiant MBMP testinius uždavinius. Euris-
tini ↪u metod ↪u pagrindu mes taip pat siūlome teorin↪i mokymosi su pastiprinimu model↪i, kuris gali
būti pritaikytas MBMP uždaviniams.


