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Abstract. Frequent sequence mining is one of the main challenges in data mining and especially
in large databases, which consist of millions of records. There is a number of different applica-
tions where frequent sequence mining is very important: medicine, finance, internet behavioural
data, marketing data, etc. Exact frequent sequence mining methods make multiple passes over the
database and if the database is large, then it is a time consuming and expensive task. Approximate
methods for frequent sequence mining are faster than exact methods because instead of doing mul-
tiple passes over the original database, they analyze a much shorter sample of the original database
formed in a specific way. This paper presents Markov Property Based Method (MPBM) – an ap-
proximate method for mining frequent sequences based on kth order Markov models, which makes
only several passes over the original database. The method has been implemented and evaluated us-
ing real-world foreign exchange database and compared to exact and approximate frequent sequent
mining algorithms.
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1. Introduction and Motivation

The world contains a vast amount of digital information nowadays which is increasing
every day. This brings significant benefits and makes it possible to do many things that
previously could not be done: forecast financial trends, spot business trends, prevent and
identify possible diseases, suspect crime facts, etc. Moore’s law, which the computer
industry now takes for granted, says that the processing power and storage capacity of
computer chips double or their prices halve roughly every 18 months. Keeping in mind the
amount of raw data today’s algorithms and powerful computers can reveal new important
insights that could previously remained hidden.

Frequent sequence mining is one of the main challenges in data mining and espe-
cially in large databases, which consist of millions of records. Exact frequent sequence
mining methods deliver accurate results on frequent and rare sequences, however they
make multiple passes over the original database and if the database is large, then it is
a time consuming and expensive task. Frequent sequence mining with estimated error
probability is acceptable in many applications, e.g., marketing, internet user behavior,
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stock market, biological databases, etc., because such algorithms work under the time
constraints and the speed of algorithm is more important than high precision. For ex-
ample, if an investor can obtain all approximate frequent sequences from the stock data
quickly, then such approximate result might be sufficient to supplement the investor to
take an optimal and profitable decision on a specific investment. On the other hand, if a
stock investor attempted to extract all the accurate frequent sequences from the stock data,
it would be very time-consuming and by the time a decision needs to be made, the best
time for investment might have passed. Knowledge of frequently occurring sequences
and the ability to identify them as quickly as possible is the key to a trader’s success and
typically this is a challenging task. First, the amount of data is typically so huge that it be-
comes difficult to store it and process in time when the decision maker needs it. Second,
the previously acquired knowledge may age as the time goes buy and lose its importance.
Therefore, in financial markets the speed of finding frequent patterns in huge databases is
more important than accuracy and the approximate frequent sequence mining algorithms
are used with the acceptable error threshold, because quick decisions with higher prof-
itability could be taken on the trading strategy. Frequent sequences have to be identified
and presented to the trader as quickly as possible as every second is important to decide
whether to open/exit the trading position and the delay could delay the right moment of
opening the trading position.

Approximate frequent sequence mining methods are much faster than exact because
instead of doing multiple passes over the original database as exact methods do; they
analyze a much shorter sample of the original database or are using specific assumptions
on the structure of the original database.

In many cases finding an exact result in frequent sequence mining is not compatible
with limited availability of resources and real time constraints, but an approximation of
the exact result is enough for most purposes. Therefore approximate frequent sequence
mining methods are irreplaceable for many real world applications, such as biological
data analysis, stock market analysis, behavior analysis in the internet, etc., which re-
quire immediate answer which sequences are frequent or rare. In the past decade there
was a number of various approximate frequent sequence mining algorithms proposed
(ApproxMAP (Kum et al., 2003), ProMFS (Tumasonis and Dzemyda, 2004), RSM (Pra-
garauskaite and Dzemyda, 2011), etc.), that are very fast compared to exact frequent
sequence mining algorithms. The most popular methods used for frequent sequence min-
ing do not use theoretical approximation, only empirical; therefore they require extensive
experimentation and observation of algorithm results on different databases.

In this paper, we suggest a new approach for approximately mining frequent se-
quences in huge databases that uses Markov property based method (MPBM) and makes
only several passes over the original database. MPBM is compared to the random sam-
pling method – RSM (Pragarauskaite and Dzemyda, 2011). The models have been im-
plemented and evaluated in real-world foreign exchange database; however the method
we propose is not limited to stock exchange setting.
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2. Related Work

Ever since the introduction of market basket analysis problem in Agrawal et al. (1993)
the issue of frequently appearing pattern has attracted numerous research efforts. These
studies can broadly be divided into two categories. Mining of frequent itemsets focuses
on finding the frequency in which items are used together with the order of items not
being important (Agrawal and Srikant, 1994; Brin et al., 1997; Cheng et al., 2007; Han
et al., 2000; Park et al., 1995a, 1995b; Sarawagi et al., 2000; Savasere et al., 1995; Zaki,
2000). Frequent sequence mining, on the other hand, is concerned with the order in which
the items arrive (Agrawal and Srikant, 1995; Ayres et al., 2002; Han et al., 2001; Srikant
and Agrawal, 1996; Zaki, 2001). The patterns can be itemsets, sequences, subtrees, sub-
graphs, etc. Recently new approaches to the problem have looked for frequent sequences
of itemsets (Gouda et al., 2007).

2.1. Frequent Itemset Mining

There are three main basic frequent itemset mining methodologies: Apriori, FP-growth
(Frequent Pattern growth) and Eclat (Equivalence Class Transformation; Cheng et al.,
2007). Apriori scans the database multiple times and generates candidate itemsets of
length k from itemsets of length k − 1. Then it prunes the candidates which have infre-
quent sub-items. Apriori algorithm refers to downward closure property, called Apriori,
which states that a itemset is frequent only if all of its sub-items are frequent too. This is
the essence of the Apriori algorithm (Agrawal and Srikant, 1994). After the Apriori algo-
rithm was proposed, there was a number of improvements and extensions, e.g., hashing
technique, partitioning technique, dynamic itemset counting, etc. (Brin et al., 1997; Park
et al., 1995a, 1995b; Sarawagi et al., 2000; Savasere et al., 1995). Even though in many
cases the Apriori algorithm significantly reduces the size of candidate sets using the Apri-
ori principle, however it can suffer from 2 nontrivial costs: (1) generating a huge number
of candidate sets, and (2) repeatedly scanning the database and checking the candidates
by pattern matching. However, it requires multiple database scans, as many as the longest
frequent itemset and therefore Apriori algorithm could not be used for mining frequent
patterns in the data streams.

Han et al. (2000) proposed FP-growth algorithm (Frequent Pattern growth), which
mines the complete set of frequent itemsets without candidate generation. The FP-growth
algorithm uses frequent pattern tree (FP-tree) structure, which is an extended prefix-tree
structure for storing compressed, crucial quantitative information about frequent patterns.
Only frequent items which consist of 1 element have nodes in the tree, and the tree nodes
are arranged in such a way that more frequently occurring nodes will have better chances
of sharing nodes than less frequently occurring ones. The further candidate generation
is achieved via concatenation of the suffix pattern with the new ones generated from an
FP-tree. The search technique employed in mining is a partitioning-based, divide-and-
conquer method rather than Apriori-like bottom-up generation of frequent itemsets com-
binations. Moreover, it transforms the problem of finding long frequent patterns to look-
ing for shorter ones and then concatenating the suffix. The performance study showed that
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the FP-growth method is efficient and scalable for mining both long and short frequent
patterns, and is about an order of magnitude faster than the Apriori algorithm.

Eclat (Equivalence CLASS Transformation) algorithm was proposed by Zaki (2000)
and it uses vertical data format, whereas both Apriori and FP-growth algorithms use hor-
izontal data format. Horizontal data format consists of a list of transactions, where each
transaction has an identifier followed by a list of items in that transaction, whereas ver-
tical data format associates each itemset with a list of transactions in which it occurs.
First of all, the algorithm involves the computation of the frequent itemsets of size 1
and 2. Further frequent itemsets are generated by intersecting the tid-lists of all distinct
pairs of atoms and checking the cardinality of the resulting tid-list. A recursive procedure
call is made with those itemsets found to be frequent at the current level. This process
is repeated until all frequent itemsets have been enumerated. Eclat algorithm scans the
database only once to discover frequent itemsets.

2.2. Frequent Sequence Mining

Frequent sequential pattern mining focuses on finding frequent subsequences, where the
order of subsequences is important. While in frequent itemset mining only the combi-
nations of the items has to be generated, in case of sequence mining the variations of
the combinations of the items has to be generated. Sequential pattern mining was first
introduced by Agrawal and Srikant (1995). In 1996 the same authors proposed GSP
(Generalized Sequence Patterns) algorithm (Srikant and Agrawal, 1996), which was a
representative of Apriori-based algorithms and implements a candidate generation and
testing approach. GSP became a well known and widely used algorithm in the frequent
sequential pattern mining.

Zaki (2001) proposed a SPADE algorithm, which uses a vertical format to store the
sequence patterns, which reduced the number of database scans. However both algo-
rithms GSP and SPADE use Apriori pruning and both generate a large set of candidates
for longer sequences, therefore due to multiple passes over the database, these algorithms
could not be used for mining frequent sequences in the data streams.

A different approach – PrefixSpan algorithm was proposed by Pei et al. (2001) which
works in a divide-conquer way and each sequential pattern is treated as a prefix and the
complete set of sequential patterns can be partitioned into different subsets according to
the different prefix and the mining of sequential patterns is done recursively. According
to the algorithms performance comparison, PrefixSpan shows overall best performance,
then SPADE outperforms GSP, which is in the last place.

SPAM algorithm (Sequential PAttern Mining) for mining sequential patterns was pro-
posed by Ayres et al. (2002). The algorithm uses the first depth-first search strategy for
mining sequential patterns and a vertical bitmap representation of the database allow-
ing for efficient support counting. PrefixSpan outperforms SPAM slightly on very small
datasets, but on large datasets SPAM outperforms PrefixSpan and SPADE by over an
order of magnitude. However SPAM assumes that the entire database (and all data struc-
tures used for the algorithm) completely fit into main memory and therefore the algorithm
could not be applied to frequent sequence mining in data streams.
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Gouda et al. (2007, 2010) proposed PRISM algorithm (PRIme-Encoding Based Se-
quence Mining), which PRISM utilizes a vertical approach for enumeration and support
counting, based on the prime block encoding, which in turn is based on prime factor-
ization theory. According to the performance study on both synthetic and real datasets,
Gouda et al. (2010) shows that PRISM outperforms SPADE, PrefixSpan and SPAM al-
gorithms at least by an order of magnitude.

All mentioned algorithms for frequent sequence mining are exact algorithms and re-
quire reading the entire original database. If the database is huge, these algorithms are
very time-consuming and require more time to find frequent sequences and in financial
markets by the time a decision could be made by trader, the best time for investment
might have passed. To satisfy such time constraints, the efficient probabilistic (approxi-
mate) mining methods are being developed. Probabilistic methods are faster than exact
methods because instead of doing multiple passes over the original database they analyze
much shorter random sample and/or are using specific assumptions on the structure of
the original database. Recently, some efficient methods for mining approximate frequent
sequences were proposed: ApproxMAP (Kum et al., 2003). The idea of ApproxMAP al-
gorithm is that, instead of finding exact patterns, the algorithms identifies patterns approx-
imately shared by many sequences. Another approach is being proposed by approximate
ProMFS algorithm (Tumasonis and Dzemyda, 2004), which is based on the estimated
probabilistic-statistical characteristics of the appearance of elements of the sequence and
their order. The algorithm builds a new much shorter sequence and analyses it using exact
GSP algorithm (Srikant and Agrawal, 1996) and makes decisions on the main sequence
in accordance with the results of analysis of the shorter one.

Probabilistic random sampling algorithm proposed in Pragarauskaite and Dzemyda
(2011) analyzes a random sample of the original database. The algorithm makes decisions
about the original database according to the random sample analysis results and performs
much faster than the exact mining algorithms. The probability of errors made by the
probabilistic algorithm is estimated using statistical methods.

In this paper a novel probabilistic Markov property based algorithm (MPBM) is pro-
posed for mining frequent sequences in large databases. MPBM method makes only sev-
eral passes over the original database, whereas the exact methods make multiple passes
over the original database until there are no frequent sequences in the original database.
The MPBM method is compared with the random sampling method (RSM), which an-
alyzes the original database random sample and makes statistical inference about the
frequent sequences in the original database. The errors made by the RSM method are es-
timated using the central limit theorem. The method has been implemented and evaluated
in real-world foreign exchange database.

3. Markov Property Based Method (MPBM)

Markov property bases method (MPBM) makes several passes over the original database
and identifies higher level approximate frequent sequences using exactly identified fre-
quent sequences of the lower levels. For the 1st order Markov model, in order to find all
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approximate frequent sequences in the original databases, it is sufficient to make 2 passes
over the original database (for the 2nd order Markov model it is sufficient to make 3
passes, etc.). The detailed method description is given below.

Let the original database be a set S = {x1, x2, . . . , xN } whose elements xi can take
M different values in a set V = {α1, α2, . . . , αM }. A sequence (ai1 , . . . , aim) is called
frequent if (# is a number):

1
N − m + 1

#
{
j ∈ {1, . . . , N − m + 1}: xj = αi1 , xj+1 = αi2 , . . . ,

xj+m−1 = αim

}
� ε,

where ε ∈ (0, 1) is a given threshold also known as a minimum support.
Assume Xn, −∞ < n < ∞, is a stationary finite set V -valued stochastic process:

for each n, m, t1, . . . , tn and αi1 , . . . , αin ∈ V ,

P (Xt1 = αi1 , . . . , Xtn = αin) = P (Xt1+m = αi1 , . . . , Xtn+m = αin).

According to the Theorem 6.1 in Varadhan (2001) we determine the empirical fre-
quencies of sequences:

p(αi1 , . . . , αim) =
1

N − m + 1
#

{
j ∈ {1, . . . , N − m + 1}: Xj = αi1 ,

Xj+1 = αi2 , . . . , Xj+m−1 = αim

}
.

Has a limit a.s. and in L1(P ). If this limit is constant, then necessarily the limit is
p(αi1 , . . . , αim) = P {X0 = αi1 , X1 = αi2 , . . . , Xm−1 = αim }:

p(αi1 , . . . , αim) → p(αi1 , . . . , αim) as N → ∞. (1)

When in Theorem 6.1 the limit is constant for any f (probability function), we say
that Xnis ergodic. It is reasonable to say from the beginning that Xn is ergodic and in the
following two Remarks 1 and 2 we discuss some sufficient conditions for it.

DEFINITION 1. The whole space Ω and the empty set Φ are in D (class of sets). For any
two sets A and B in D, the sets A ∪ B and A ∩ B are again in D. If A ∈ B, then the
complement AC is again in D. The class of sets D that satisfies these properties is called
a field.

DEFINITION 2. The class D, in addition to being a field is assumed to be closed under
countable union (or equivalently, countable intersection); i.e., if An ∈ D for every n, then
A = ∪nAn ∈ D. Such a class D is called a σ-field. The ‘probability’ itself is presumed
to be defined on a σ-field D.
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REMARK 1. Xn is ergodic if infinitely remote past F− ∞ = ∩nσ(Xk, k � n) and
infinitely remote future are independent F∞ = ∩nσ(Xk, k � n): for any A ∈ F− ∞,
B ∈ F∞,

P (A ∩ B) = P (A)P (B).

The result of Remark 1 follows from the proof of Theorem 6.1 in Varadhan (2001).
Now, let us assume in addition that Xn is Markov (it is meant 1st order Markov). It is

characterized by transition probabilities:

p(α; β) = P (Xn+1 = β|Xn = α), α, β ∈ V,

and μ(α) = P (Xn = α). Note that p(α, β) = P (Xn = α, Xn+1 = β) = p(β; α)μ(α).
Note the difference: p(α, β) is joint probability and p(α; β) is transition (conditional)
probability. Also,

μ(β) =
∑
α

p(β; α)μ(α), β ∈ V. (2)

A probability measure τ on V is called invariant if (2) holds with μ replaced by τ .

REMARK 2. According to Chapter 6.3 in Varadhan (2001), Xn is ergodic if it has a
unique invariant measure μ. For example, by Theorem 1.10.2 in Norris (1997), invariant
measure is unique if Xn is irreducible and positive recurrent:

(i) Irreducible: for all α, β ∈ V , there exists m = m(α, β)such that Xn can reach β

from α in m steps with positive probability.
(ii) Positive recurrent: For any α ∈ V the expected return time to α is finite.

Let’s assume, that Xn, n = 1, 2, . . . is a stationary 1st order Markov process. We
denote:

p(αi1αi2 . . . αik
) = P

{
Xn = αi1, Xn+1 = αi2 , . . . , Xn+k−1 = αik

}
,

k = 1, 2, . . . .

Let’s assume we know p(αi), p(αiαj), i, j = 1, . . . , M .
We will be using Bayes theorem (3) that gives the relationship between the probabili-

ties of A and B, P (A) and P (B), and the conditional probabilities of A given B and B

given A, P (A|B) and P (B|A):

P (A|B) =
P (B|A)P (A)

P (B)
. (3)

Lemma 1. Let the conditions of Markov property and Bayes theorem (3) are satisfied.
Then approximating the original database by a stationary first order Markov process
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(m = 1) for each αi1 , . . . , αim ∈ V , we derive

p(αi1 , . . . , αim) =
p(αi1 , αi2)p(αi2 , αi3) . . . p(αim−1 , αim)

p(αi2) . . . p(αim−1)
, m � 3.

Proof. We will be using Markov property for proving this lemma. According to Markov
property for each n ∈ {1, . . . , N }, k is the order of Markov process and αi1, . . . ,

αin ∈ V

P
{
Xn = αin |Xn−1 = αin−1 , . . . , X1 = αi1

}
= P

{
Xn = αin |Xn−1 = αin−1 , . . . , Xn−k = αin−k

}.

According to Markov property and Bayes theorem (3):

p(αi1 , αi2 , αi3) = P
{
X1 = αi1 , X2 = αi2 , X3 = αi3

}
= P

{
X3 = αi3 |X2 = αi2 , X1 = αi1

}
P

{
X2 = αi2 , X1 = αi1

}
= P

{
X3 = αi3 |X2 = αi2

}
P

{
X2 = αi2 , X1 = αi1

}
=

P {X3 = αi3 , X2 = αi2 }
P {X2 = αi2 } P {X2 = αi2 , X1 = αi1 }

=
p(αi1 , αi2)p(αi2 , αi3)

p(αi2)
.

For simplicity the case of m = 3 is analyzed, and when m > 3 the proof is analogous.
So, approximating the database by a stationary 1st order process, we have to know only
p(αi1) and p(αi1 , αi2) for all αi1 , αi2 ∈ V . The lemma is proved. �

On the other hand, due to (2),

p(αi1 , . . . , αim) ≈ p(αi1,αi2)p(αi2 , αi3) . . . p(αim−1 , αim)
p(αi2)p(αi3) . . . p(αim−1)

(4)

for m � 3 and sufficiently large N . Therefore, computation of p(αi1) and p(αi1,αi2)
for all αi1 , αi2 ∈ V enables us to compute approximately all the frequencies
p(αi1 , . . . , αim), m � 3. For mining frequent sequences the formula (4) should be used
together with the following property of frequent sequences: if p(αi1 , . . . , αim) � ε and
(αj1, . . . , αjl) is a subset of (αi1 , . . . , αim), then p(αj1, . . . , αjl) � p(αi1, . . . , αim) �
ε; in particular, all the multipliers in the right hand side of (4) should be not less than ε.

Lemma 2. Let the conditions of Markov property and Bayes theorem (3) are satisfied.
Then approximating the original database by a stationary second order Markov process
(m= 2) we get:

p(αi1 , . . . , αim) =
p(αi1,αi2, αi3)p(αi2 , αi3 , αi4) . . . p(αim−2 , αim−1 , αim)

p(αi2,αi3)p(αi3 , αi4) . . . p(αim−2 , αim−1)
,

m � 4.
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Proof. As in Lemma 1 proof, we will use Markov property and Bayes theorem (3).

p(αi1 , αi2 , αi3 , αi4)

= P
{
Xn+3 = αi4 |Xn = αi1 , Xn+1 = αi2 , Xn+2 = αi3

}
× P

{
Xn = αi1 , Xn+1 = αi2 , Xn+2 = αi3

}
= P

{
Xn+1 = αi2 |Xn+2 = αi3 , Xn+3 = αi4

}p(αi1,αi2 , αi3)
p(αi2, αi3)

=
p(αi1,αi2 , αi3)p(αi2 , αi3 , αi4)

p(αi2 , αi3)
.

Therefore, computation of p(αi1), p(αi1,αi2) and p(αi1,αi2 , αi3) for all αi1 , αi2 ,

αi3 ∈ V enables us to compute approximately all the frequencies p(αi1 , . . . , αim),
m � 4. The lemma is proved. �

Again according to theorem (1),

p(αi1 , . . . , αim) ≈ p(αi1,αi2 , αi3)p(αi2 , αi3, αi4) . . . p(αim−2 , αim−1 , αim)
p(αi2,αi3)p(αi3, αi4) . . . p(αim−2 , αim−1)

,

for m � 4 and sufficiently large N . Similar procedure can be derived for the approxima-
tion of the database by stationary kth order Markov process.

4. Randon Sampling Method (RSM)

The random sampling method (RSM) analyzes the random sample of the original
database and makes statistical inferences about the original database with estimated er-
ror probability. Detailed description of RSM method is available in Pragarauskaite and
Dzemyda (2011). Brief description of the creation of the random sample of the original
database and the RSM method is explained in the following chapters.

4.1. Creating a Random Sample from the Original Database

The original database random sample Sn is chosen so that the central limit theorem could
be applied to evaluate error probabilities made by probabilistic algorithm. The original
database random sample Sn is formed as follows:

• A random sample η1, η2, . . . , ηn of a random variable η taking values 1, 2, . . . , N

each with probability 1
N , is generated.

• When searching for the first level (one-element) frequent sequences, the ran-
dom sample Sn for elements ai is xη1, xη2, . . . , xηn. The second level random
sample for element pairs aiaj is (xη1, xη1+1), (xη2, xη2+1), . . . , (xηn, xηn+1).
The kth level random sample for elements ai . . . ak is (xη1, . . . , xη1+k−1),
(xη2, . . . , xη2+k−1), . . . , (xηn, . . . , xηn+k−1), etc. If the sample is formed with
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replacement then some integers ηi can be the same. The random sample formed
without replacement consists of non-repeatable numbers ηi, by eliminating all re-
peatable numbers and additionally generating new numbers until we get a sequence
η1, η2, . . . , ηn without repeatable integers.

4.2. Analysing the Sample Using Random Sampling Method (RSM)

Using the exact GSP algorithm (Srikant and Agrawal, 1996; any other exact algorithm
could be used in RSM method too), we determine the empirical frequencies of sequences
ai1 , ai2 , . . . , aik

in the previously formed random sample Sn

pn(ai1 , . . . , aik
) =

#{j: Sηj = ai1 , Sηj+1 = ai2, . . . , Sηj+k−1 = aik
}

n
,

k = 1, 2, . . . .

Then we choose a number δ > 0 such that (0 < ε − δ < ε + δ < 1). Sequences
ai1 , ai2 , . . . , aik

are classified into the following 3 classes:
(1) if pn(ai1 , . . . , aik

) � ε + δ, then the sequence ai1 , . . . , aik
is assigned to the class

of frequent sequences;
(2) if pn(ai1 , . . . , aik

) � ε − δ, then the sequence ai1 , . . . , aik
is assigned to the class

of rare sequences;
(3) if pn(ai1 , . . . , aik

) ∈ (ε − δ, ε + δ), then the sequence ai1 , . . . , aik
is assigned to

the class of intermediate sequences.
The error probabilities can be evaluated as follows. Let’s take any sequence

ai1 , . . . , aik
. There are two types of errors:

(1) a sequence is assigned to the class of frequent sequences, but the sequence is rare;
(2) a sequence is assigned to the class of rare sequences, but the sequence is frequent.

Let p = p(ai1 , . . . , aik
) be the true but unknown frequency of the sequence

(ai1 , . . . , aik
) and the empirical frequency pn = pn(ai1 , . . . , aik

). It is obvious, that the
first type error probability estimate is less than

max
p<ε

P
(
pn − p > δ

)
, (5)

and the second type error pobability estimate is less than

max
p�ε

P
(
pn − p < −δ

)
. (6)

When estimating these probabilities it is convenient to use the following scheme. Let‘s
define random variables

Zi =
{

1, if xηi = ai1 , xηi+1 = ai2 , . . . , xηi+k−1 = aik

0, otherwise
, i = 1, . . . , n.

By the construction of the sequence η1, η2, . . . , ηn, the random variables Z1, Z2, . . . ,

Zn are independent and identically distributed with the mean EZi = p, and the variance
DZi = p(1 − p).
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Probabilities (5) and (6) can be estimated using standard statistical methods: using
the properties of binomial distribution for a sample with replacement and hypergeometric
distribution for a sample without replacement.

Let‘s define the random variable

Σn = Z1 + Z2 + · · · + Zn.

For the sample without replacement, the distribution function of the statistics Σn is
given by

F (l, M) =
l∑

i=0

Ci
MCn−i

N −M

Cn
N

, l = 0, 1, . . . , M,

where M = #{j: xj = ai1 , xj+1 = ai2 , . . . , xj+k−1 = aik
}. Let us fix α ∈ (0, 1) and

define the numbers M and M as follows:
• M is the minimum integer such that

F
(
Σn − 1, M

)
� 1 − α,

• M is the maximum integer such that

F
(
Σn − 1, M

)
� α.

The integers M and M are the parameter‘s M lower and upper (1 − α) confidence
bounds. Hence,

P
{
M � M

}
= P

{
p(ai1 , . . . , aik

) � M

N

}
� 1 − α,

P
{
M � M

}
= P

{
p(ai1 , . . . , aik

) � M

N

}
� 1 − α.

Lemma 3. If the sample size n is sufficiently large, then the asymptotic estimates of error
probabilities are effective. By the central limit theorem, for all a � b we get:

P

(
a

√
p(1 − p)√

n
� pn − p � b

√
p(1 − p)√

n

)
→ Φ(b) − Φ(a), n → ∞,

where Φ is the standard normal distribution function.

Proof. Central limit theorem claims that for all a � b:

P

(
a � Zn − EZn√

DZn

� b

)
→ Φ(b) − Φ(a), n → ∞.
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In our case Zn = npn therefore we get

Zn − EZn√
DZn

=
npn − np√
np(1 − p)

=
√

n

p(1 − p)
(
pn − p

)
.

We rewrite Central limit theorem as follows

P

(
a

√
p(1 − p)√

n
� pn − p � b

√
p(1 − p)√

n

)
→ Φ(b) − Φ(a), n → ∞.

Lemma is proved. �

If a = −∞, then for each b

P (pn − p � b

√
p(1 − p)√

n
) → Φ(b), n → ∞. (7)

If b = +∞, then for each a

P

(
a

√
p(1 − p)√

n
� pn − p

)
→ 1 − Φ(a), n → ∞. (8)

If n is sufficiently large, then using (7) and (8), we have

max
p<ε

P
(
pn − p > δ

)
≈ max

p<ε

(
1 − Φ

(
δ

√
n√

p(1 − p)

))

� 1 − Φ
(

δ

√
n√

ε0(1 − ε0)

)
, (9)

where ε0 = min(ε, 1
2 ), and

max
p�ε

P
(
pn − p < −δ

)
≈ max

p�ε

(
Φ

(
− δ

√
n√

p(1 − p)

))
(10)

� Φ
(

− δ

√
n√

ε1(1 − ε1)

)
, (11)

where ε1 = max( 1
2 , ε). If pn ∈ (ε − δ, ε + δ), then the classification is undefined, be-

cause the classification error probability can be large. The classification error probability
depends on how much the true frequency p differs from ε. Assume that p = ε. According
to the central limit theorem P (pn � ε) → 1

2 , n → ∞ and P (pn < ε) → 1
2 , n → ∞.

Hence it is possible to determine if the sequence ai1 , . . . , aik
is frequent or rare only

passing over the whole original database. On the other hand, p is close to the empirical
frequency pn when n is sufficiently large, because again according to the central limit
theorem for any μ > 0
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Table 1

Results of RSM method where the sample size n = 1000 and n = 2000; MPBM 1st, 2nd and 3rd order
Markov method and exact GSP method.

Metrics GSP Markov property based method Random sampling method

method (MPBM) (RSM)

1st order 2nd order 3rd order n = 1000 n = 2000

Frequent sequences
identified

265 268 266 266 193 (163
intermediate)

212 (86
intermediate)

1st type error (number
of rare sequences iden-
tified as frequent)

0 6 4 2 25 17

2nd type error (number
of frequent sequences
identified as rare)

0 3 3 1 15 5

P
(

|pn − p| > μ
)

→ 0, n → ∞.

The probability of the event pn ∈ (ε − δ, ε + δ) can be reduced when reducing δ, but
then the first and the second type classification error probabilities are increasing. They
can be reduced increasing n. So the compatibility between δ and n is mandatory, and
their relation can be expressed as δ

√
n = const.

5. Experimental Results and Comparison of MPBM and RSM Methods

Markov property based method (MPBM) and random sampling method (RSM) were im-
plemented and tested on the foreign exchange database. The foreign exchange database
consists of the currency pair EUR-USD hourly data from 03/01/2000 till 25/05/2012
(data is taken from Online Trading Platform MetaTrader 4 History Center). The finan-
cial database consists of N = 4,168,143 elements with possible values {A, B, C}, which
indicate if the currency exchange rate is growing, falling or being the same as previous
hour.

For the original database S analysis we used GSP, MPBM and RSM methods to iden-
tify frequent sequences in the original database. Assume that sequence is frequent, if it‘s
true frequency is not less than 0.05 (i.e., minimum support ε = 0.05).

First of all, we analyze the original database using exact GSP method and determine
frequent sequences without any errors. Then using the RSM method we determine the
frequent sequences in the random sample (for sizes n = 1000 and n = 2000; δ = 0.02)
and MPBM 1st, 2nd and 3rd order Markov method to identify frequent sequences in the
original database. The results of both methods are displayed in Table 1.

The results displayed in Table 1 show that MPBM method does fewer mistakes clas-
sifying the frequent and rare sequences, whereas for RSM method does more mistakes
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Fig. 1. Time comparison for both approximate methods: RSM and MPBM.

and requires additional analysis on intermediate sequences as their frequency is very near
ε = 0.05 and the probability to make a mistake classifying the sequence is high. RSM
method is much less time consuming compared to MPBM method as displayed in Fig. 1.

The experiment results show that the 3rd order MPBM method showed the best results
on the foreign exchange database; however, it requires reading the original database 4
times and requires more time than RSM method as displayed in Fig. 1. RSM method
is less time consuming as it is not reading the original database, but only the random
sample on the original database; however it has a quite large number of intermediate
sequences. In order to make the classification if such sequence is rare or frequent, it
would be beneficial to find their exact frequencies in the original database. It can be done
using any exact method, e.g., GSP. The classification error probabilities made by RSM
method are estimated below. According to the (9) formula the first type classification
error probability, when the frequent sequence is assigned to the class of rare sequences is
given by:

n = 1000 : 1 − Φ
(

δ

√
n√

ε(1 − ε)

)
= 1 − Φ(2.9019) ≈ 0.0019;

n = 2000 : 1 − Φ
(

δ

√
n√

ε(1 − ε)

)
= 1 − Φ(4.1039) ≈ 0.0003.

According to (10), the second type classification error probability (the rare sequence
is assigned to the class of frequent sequences) is given by:

n = 1000 : Φ
(

− δ

√
n√

ε1(1 − ε1)

)
= Φ(−2δ

√
n) = Φ(−1.2649) ≈ 0.103;

n = 2000 : Φ
(

− δ

√
n√

ε1(1 − ε1)

)
= Φ(−2δ

√
n) = Φ(−1.7889) ≈ 0.0368.
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6. Conclusions

In this paper the approximate Markov method (MPBM) for mining frequent sequences
is presented. The method is based on the Markov property and requires only several
passes over the original database, whereas the exact methods (e.g., GSP) make multi-
ple passes over the original database. The MPBM method is compared to the random
sampling method (RSM), which analyzes in a specific way generated random sample of
original database and makes statistical inference about frequent sequences in the original
database. Both methods were implemented and tested on the foreign exchange database.
Approximate methods are much faster than exact algorithms and suitable quick statistical
analysis in the areas where the precision is less important than the decision time.

Experiment results showed, that the proposed Markov method (MPBM) works effi-
ciently on the foreign exchange database, especially with the 3rd order Markov model.
The random sampling method (RSM) is even less time consuming than Markov method,
as it does not require reading the full database only the random sample of the original
database, but requires further analysis on intermediate sequences.
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Markovo modeli ↪u taikymas dažn ↪u sek ↪u paieškai finansiniuose
duomenyse

Julija PRAGARAUSKAITĖ, Gintautas DZEMYDA

Dažn ↪u sek ↪u paieška didelėse duomen ↪u bazėse yra svarbi biologini ↪u, klimato, finansini ↪u, inter-
netini ↪u ir daugelio kit ↪u duomen ↪u bazi ↪u analizei. Tikslieji metodai, skirti dažn ↪u sek ↪u paieškai, daug
kart ↪u perrenka vis ↪a duomen ↪u baz ↪e. Jeigu duomen ↪u bazė didelė, tai dažn ↪u sek ↪u paieška yra lėta arba
labai brangi užduotis. Apytiksliai dažn ↪u sek ↪u paieškos algoritmai yra žnymiai greitesni, nes užuot
perrink ↪e vis ↪a duomen ↪u baz ↪e, jie analizuoja tam tikru būdu sudaryt ↪a pradinės duomen ↪u bazės imt↪i.
Šiame straipsnyje pasiūlytas Markovo savybe pagr↪istas apytikslis metodas (MPBM), kuris tik kelis
kartus perrenka duomen ↪u baz ↪e. Šis metodas yra realizuotas ir ištestuotas naudojant realius valiut ↪u
kurs ↪u duomenis bei palygintas su kitais tiksliaisiais ir apytiksliais dažn ↪u sek ↪u paieškos metodais.


