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Abstract. Due to numerous public information sources and services, many methods to combine
heterogeneous data were proposed recently. However, general end-to-end solutions are still rare,
especially systems taking into account different context dimensions. Therefore, the techniques often
prove insufficient or are limited to a certain domain. In this paper we briefly review and rigorously
evaluate a general framework for data matching and merging. The framework employs collective
entity resolution and redundancy elimination using three dimensions of context types. In order to
achieve domain independent results, data is enriched with semantics and trust. However, the main
contribution of the paper is evaluation on five public domain-incompatible datasets. Furthermore,
we introduce additional attribute, relationship, semantic and trust metrics, which allow complete
framework management. Besides overall results improvement within the framework, metrics could
be of independent interest.
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1. Introduction

Heterogeneous data matching and merging is due to increasing amount of linked and
open (on-line) data sources rapidly becoming a common need in various fields. Different
scenarios demand for analyzing heterogeneous datasets collectively, enriching data with
some on-line data source or reducing redundancy among datasets by merging them into
one. Literature provides several state-of-the-art approaches for matching and merging, al-
though there is a lack of general solutions combining different dimensions arising during
the matching and merging execution. We propose and evaluate a general and complete
solution that allows a joint control over these dimensions.

Data sources commonly include not only network data, but also data with semantics.
Thus a state-of-the-art solution should employ semantically elevated algorithms (i.e., al-
gorithms that can process data with semantics according to an ontology), to fully exploit
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the data at hand. However, due to a vast diversity of data sources, an adequate data archi-
tecture also employed. In particular, the architecture should support all types and formats
of data, and provide appropriate data for each algorithm. As algorithms favor different
representations and levels of semantics behind the data, architecture should be structured
appropriately.

Due to different origin of (heterogeneous) data sources, the trustworthiness (or ac-
curacy) of their data can often be questionable. Specially, when many such datasets are
merged, the results are likely to be inexact. A common approach for dealing with data
sources that provide untrustworthy or conflicting statements, is the use of trust man-
agement systems and techniques. Thus matching and merging should be advanced to
a trust-aware level, to jointly optimize trustworthiness of data and accuracy of matching
or merging. Such collective optimization can significantly improve over other approaches.

The paper proposes and demonstrates a general framework for matching and merging
execution. An adequate data architecture enables either pure related data, in the form of
networks, or data with semantics, in the form of ontologies. Different datasets are merged
using collective entity resolution and redundancy elimination algorithms, enhanced with
trust management techniques. Algorithms are managed through the use of different con-
texts that characterize each particular execution, and can be used to jointly control various
dimensions of variability of matching and merging execution. Proposed framework is also
fully implemented and evaluated against real-world datasets.

The rest of the paper is structured as follows. The following section gives a brief
overview of the related work, focusing mainly on trust-aware matching and merging.
Next, Section 3, presents employed data architecture and discusses semantic elevation of
the proposition. Section 4 formalizes the notion of trust and introduces the proposed trust
management techniques. General framework, and accompanying algorithms, for match-
ing and merging are presented in Section 5. Experimental demonstration of the proposed
framework is shown in Section 6, and further discussed in Section 7. Section 8 concludes
the paper.

2. Related Work

Recent literature proposes several state-of-the-art solutions for matching and merging
data sources. Analogous problems appear in many different areas. When observing the
area of matching and merging on a broader basis, we used ideas from different approaches
in the fields of data integration (Bhattacharya and Getoor, 2004; Cohen, 2000; Her-
nandez and Stolfo, 1995; Lenzerini, 2002), data deduplication (Ananthakrishna et al.,
2002; Kalashnikov and Mehrotra, 2006; Monge and Elkan, 1996), information retrieval,
schema and ontology matching (Castano et al., 2006; Castano et al., 2010; Euzenat and
Shvaiko, 2007; Rahm and Bernstein, 2001), and (related) entity resolution (Bhattacharya
and Getoor, 2004; Bhattacharya and Getoor, 2007; Dong et al., 2005).

The propositions mainly address only selected issues of more general matching and
merging problem. In particular, approaches only partially support the variability of the
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execution, commonly only homogeneous sources, with predefined level of semantics, are
employed, or the approaches discard the trustworthiness of data and sources of origin.
A Mapping-based Object Matching - MOMA System (Thor and Rahm, 2007) presents
the use of workflows and combination of several matching algorithms within a single data
source. Our approach uses attribute resolution technique to align arbitrary data sources
and prepares them for further matching and merging techniques. The general problem of
many approaches over large-scale datasets is response time to first possible results. Pay-
As-You-Go ER (Whang et al., 2010) system maximizes entity resolution progress with
a limited amount of work according to defined constraints. It orders merging pairs using
these constraints and outputs partial results as soon as po ssible. We run our algorithms
on network data and merge pairs according to similarity value using contexts, where the
user can observe the whole network during merging and matching execution. Networks
seemed the most appropriate to design our approach. They enable us to dynamically
change and read structure as it is done by techniques of label propagation (Subelj and
Bajec, 201 1a) or community detection (Subelj and Bajec, 2011b) where each community
presents matched data.

The proposed matching and merging approach employs the use of contexts using se-
mantics, trust and ontologies. The problem of matching references to an underlying entity
in natural language processing is known as coreference resolution (Ng, 2008). Tradition-
ally the problem was solved using a set of constraints of features, but improvements were
achieved by using multiple matching models and propagation of shared attributes across
references (Lee et al., 2011). The idea of using different attribute, related and seman-
tic metrics is used from similar categorization of features on simple pairwise approach
which outperformed complex coreference resolution models (Bengston and Roth, 2008).
Use of ontologies, axioms and their inference as also used in text mining (Stajner and
Mladenié&, 2009), additionally gives us schema, knowledge modelling and control mech-
anism (Lavbic€ et al., 2010) during matching and merging execution.

Literature also provides various trust-based, or trust-aware, approaches for matching
and merging (Nagy et al., 2008; Richardson et al., 2003). Although they formally exploit
trust in the data, they do not represent a general or complete solution. Mainly, they ex-
plore the idea of Web of Trust, to model trust or belief in different entities. Related work
on Web of Trust exists in the fields of identity verification (Blaze et al., 1996), informa-
tion retrieval (Chakrabarti et al., 1998; Joachims, 1997), social network analysis (Domin-
gos and Richardson, 2001; Kleinberg, 1999), data mining and pattern recognition (Kautz
et al., 1997; Resnick et al., 1994). Our work also relates to more general research of trust
management and techniques that provide formal means for computing with trust, e.g.,
(Trcek, 2009). Some research has also been done on using the strategy of disinforma-
tion (Whang and Garcia-Molina, 2011). The strategy focuses on matching and merging
the records with bogus information and is useful for robustness evaluation. The use of
trust management context in ou r approach is defined on levels from whole source to
attribute values.

This paper superseds our previously published theoretical concepts of the same sys-
tem (Subelj er al., 2011). We did some minor changes to definitions of ontology usage,
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renamed some notions (e.g., due to disambiguation we are referring to relations as related
data) and introduced an optimization by checking only neighbouring data (19th line of
Algoritm 1). The main contributions over the previous paper are experiments (Section 6)
of all proposed methods and metrics on real datasets. Implementations of general com-
ponents are in-depth presented and therefore it is shown the usage of semantics and trust
improves overall results.

3. Data Architecture

An adequate data architecture is of vital importance for efficient matching and merging.
Key issues arising are as follows: (1) architecture should allow for data from heteroge-
neous sources, commonly in various formats; (2) semantical component of data should
be addressed properly; and (3) architecture should also deal with (partially) missing and
uncertain data.

To achieve superior performance, we propose a three level architecture (Fig. 3). Stan-
dard network data representation on the bottom level (data level) is enriched with se-
mantics (semantic level) and thus elevated towards the topmost real world level (abstract
level). Datasets on data level are represented with networks, when the semantics are em-
ployed through the use of ontologies.

Every dataset is (preferably) represented on data and semantic level. Although both
describe the same set of entities on abstract level, the representation on each level is
independent from others. This separation resides from the fact that different algorithms
of matching and merging execution privilege different representations of data — either
pure related or semantically elevated representation. Separation thus results in more ac-
curate and efficient matching and merging, moreover, representations can complement
each other in order to boost the performance.

The following section gives a brief introduction to networks, used for data level rep-
resentation. Section 3.2 describes ontologies and semantic elevation of data level (i.e.,
semantic level). Proposed data architecture is formalized and further discussed in Sec-
tion 3.3.

3.1. Representation with Networks

Most natural representation of any related data are networks (Newman, 2010). They are
based upon mathematical objects called graphs. Informally speaking, graph consists of a
collection of points, called vertices, and links between these points, called edges (Fig. 1).
Let Vv, E be a set of vertices, edges for some graph NN respectively. We define graph
N as N = (Vy, En) where

VN = {v1,v2,..., 00}, 1
ENQ{{vi,vj}\vi7vj€VN/\i<j}. 2
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a) c)

b)

Fig. 1. (a) Directed graph; (b) labeled undirected multigraph (labels are represented graphically); (c) network
representing a group of related restaurants (circles correspond to restaurants, hexagons to their types, triangles
to different phone numbers, while squares represent respective cities).

Edges are sets of vertices, hence they are not directed (undirected graph). In the case of
directed graphs (2) rewrites to

En C {(vi,v))| vi,v; € VN Ai # j}, 3

where (v;,v;) is an edge from v; to v;. The definition can be further generalized by
allowing multiple edges between two vertices and loops (edges that connect vertices with
themselves). Such graphs are called multigraphs (Fig. 1(b)).

In practical applications we commonly strive to store some additional information
along with the vertices and edges. Formally, we define labels or weights for each node
and edge in the graph — they represent a set of properties that can also be described using
two attribute functions

AVNZVNHZYNXZ;/NX“-, @

Apy: Ex — SP8 xonby oo (5)

Ay = (Avy, AR, ), where ZZVG, Ef ¢ are sets of all possible vertex, edge attribute values
respectively.

Networks are most commonly seen as labeled, or weighted, multigraphs with both
directed and undirected edges (Fig. 1(c)). Vertices of a network represent some entities,
and edges represent related data between them. A (related) dataset, represented with a
network on the data level, is thus defined as (N, Ay ).

3.2. Semantic Elevation Using Ontologies

Ontologies are formal definitions of classes, related data, functions and other objects. An
ontology is an explicit specification of conceptualization (Gruber, 1993), which is is an
abstract view of the knowledge we wish to represent. It can be defined as a network of
entities, restricted and annotated with a set of axioms. Let Ep, Ao be the sets of entities,
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Fig. 2. A possible ontology over Restaurants dataset (description in Section 6.1). Classes are represented by cir-
cles, related data by half-white rectangles and attributes by full-colour rectangles. Key concepts of the ontology
are Restaurant, Address, Phone and Employee.

rdfs:domain

axioms for some ontology O respectively. We propose a dataset representation with an
ontology on semantic level (an example in Fig. 2) as O = (Eo, Ap) where

Eo CEUE'UERUEA, (6)
Ap C {a| E¢ C Eo A a axiom on Eg} @)

Entities Fo consist of classes E€ (concepts), individuals E' (instances), related data ET
(among classes and individuals) and attributes EA (properties of classes); and axioms Ao
are assertions (over entities) in a logical form that together comprise the overall theory
described by ontology O.

This paper focuses on ontologies based on descriptive logic that, besides assign-
ing meaning to axioms, enable also reasoning capabilities (Horrocks and Sattler, 2001).
The latter can be used to compute consequences of the previously made assumptions
(queries), or to discover non-intended consequences and inconsistencies within the on-
tology.

One of the most prominent applications of ontologies is in the domain of semantic in-
teroperability (among heterogeneous software systems). While pure semantics concerns
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the study of meanings, we define semantic elevation as a process to achieve semantic
interoperability which be considered as a subset of information integration.

Thus one of the key aspects of semantic elevation is to derive a common representa-
tion of classes, individuals, related data and attributes within some ontology. We employ
a concept of knowledge chunks (Castano et al., 2010), where each entity is represented
with its name, set of semantically related data, attributes and identifiers. All of the data
about a certain entity is thus transformed into attribute-value format, with an identifier of
the data source of origin appended to each value. Exact description of the transformation
between networked data and knowledge chunks is not given, although it is very simi-
lar to the definition of inferred axioms in (12), Section 3.3. Knowledge chunks, denoted
k € K, thus provide a (common) synthetic representation of an ontology that is used
during the matching and merging execution. For more details on knowledge chunks, and
their construction from a RDF(S) (Resou rce Description Framework Schema) repository
or an OWL (Web Ontology Language); see Castano et al. (2009, 2010).

3.3. Three Level Architecture

As previously stated, every dataset is (independently) represented on three levels — data,
semantic and abstract level (Fig. 3). Bottommost data level holds data in a pure related
format (i.e., networks), mainly to facilitate state-of-the-art related data algorithms for
matching. Next level, semantic level, enriches data with semantics (i.e., ontologies), to
further enhance matching and to promote semantic merging execution. Data on both lev-
els represent entities of topmost abstract level, which serves merely as an abstract (artifi-
cial) representation of all the entities, used during matching and merging execution.

The information captured by data level is a subset of that of semantic level. Simi-
larly, the information captured by semantic level is a subset of that of abstract level. This
information-based view of the architecture is seen in Fig. 3(a). However, representation
on each level is completely independent from the others, due to absolute separation of
data. This provides an alternative data-based view, seen in Fig. 3(b).

() (b)

// \\
— -

Abstract level

Abstract level

Semantic level

Data level

Semantic level

Data level

Fig. 3. (a) Information-based view of the data architecture; (b) data-based view of the data architecture.
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To manage data and semantic level independently (or jointly), a mapping between
the levels is required. In practice, data source could provide datasets on both, data and
semantic level. The mapping is in that case trivial (i.e., given). However, more commonly,
data source would only provide datasets on one of the levels, and the other has to be
inferred.

Let (N, An) be a dataset, represented as a network on data level. Without loss for
generality, we assume that N is an undirected network. Inferred ontology (EO, flé) on
semantic level is defined with

E¢ = {vertex, edge}, 3
Er =VyxUEy, 9)
Er = {isOf, isIn}, (10)
Ejs={Av,,Ag,}, 1)

and

flé = {v isOf vertex| v € Vy }
U {e isOf edge| e € En }
U{visIne|v€VN/\e€EN/\v€e}
U{v.Ay, =alve VyAAdy,(v)=a}
U{e.AEN =ale€ En A Ag,(e) za}. (12)

We denote Zy: (N, Ax) — (Eg, Ag). One can easily see that Zy," o Zy is an identity
(transformation preserves all the information).

On the other hand, given a dataset (Eo, Ao ), represented with an ontology on seman-
tic level, inferred (undirected) network (1\7 , A &) on data level is defined with

7 = BonEl, (13)
Eg={BSNE"ac Ao NES C Eo}, (14
and
Ay Vg — BC x B4, (15)
N
A By — E". (10

Instances of ontology are represented with the vertices of the network, and axioms with
its edges. Classes and related data are, together with the attributes, expressed through
vertex, edge attribute functions.

We denote Zp: (Fo, Ao) — (1\7 A & )- Transformation Zo discards purely semantic
information (e.g., related data between classes), as it cannot be represented on the data
level. Thus Zp cannot be inverted as Z . However, all the data, and data related informa-
tion, is preserved (e.g., individuals, classes and related data among individuals).
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Due to limitations of networks, only axioms, relating at most two individuals in Ep,
can be represented with the set of edges E & (14). When this is not sufficient, hyper-
networks (or hypergraphs') should be employed instead. Nevertheless, networks should
suffice in most cases.

One more issue has to be stressed. Although Zx and Zp give a “common” repre-
sentation of every dataset, the transformations are completely different. For instance,
presume (N, Ay) and (Ep, Ap) are (given) representations of the same dataset. Then
INn(N,AN) # (Eo,Ao) and Zp(Eo, Ao) # (N, Ay) in general — inferred ontology,
network does not equal given ontology, network respectively. The former non-equation
resides in the fact that network (N, Ax) contains no knowledge of the (pure) semantics
within ontology (Eo, Ao ); and the latter resides in the fact that Zp has no information of
the exact representation used for (N, Ay ). Still, transformations Z and Zo can be used
to manage data on a common basis.

Last, we discuss three key issues regarding an adequate data architecture, presented in
Section 3. Firstly, due to variety of different data formats, a mutual representation must
be employed. As the data on both data and semantic level is represented in the form of
knowledge chunks (Section 3.2), every piece of data is stored in exactly the same way.
This allows for common algorithms of matching and merging and makes the data easily
manageable.

Furthermore, introduction of knowledge chunks naturally deals also with missing
data. As each chunk is actually a set of attribute-value pairs, missing data only results
in smaller chunks. Alternatively, missing data could be randomly inputted from the rest
and treated as extremely uncertain or mistrustful (Section 4).

Secondly, semantical component of data should be addressed properly. Proposed ar-
chitecture allows simple (related) data and also semantically enriched data. Hence no
information is discarded. Moreover, appropriate transformations make all data accessible
on both data and semantic level, providing for specific needs of each algorithm.

Thirdly, architecture should deal with (partially) missing and uncertain or mistrustful
data, which is thoroughly discussed in the following section.

4. Trust and Trust Management

When merging data from different sources, these are often of different origin and thus
their trustworthiness (or accuracy) can be questionable. For instance, personal data of
participants in a traffic accident is usually more accurate in the police record of the ac-
cident, then inside participants’ social network profiles. Nevertheless, an attribute from
less trusted data source can still be more accurate than an attribute from more trusted
one — a related status (e.g., single or married) in the record may be outdated, while such
type of information is inside the social network profiles quite often up-to-date.

A complete solution for matching and merging execution should address such prob-
lems as well. A common approach for dealing with data sources that provide untrust-

"Hypergraphs are graphs, where edges can connect multiple vertices.
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worthy or conflicting statements, is the use of trust management (systems). These are,
alongside the concept of trust, both further discussed in Sections 4.1 and 4.2.

4.1. Definition of Trust

Trust is a complex psychological-sociological phenomenon. Despite of, people use term
trust in everyday life widely, and with very different meanings. Most common defini-
tion states that trust is an assured reliance on the character, ability, strength, or truth of
someone or something.

In the context of computer networks, trust is modeled as a related data between enti-
ties. Formally, we define a trust related data as

wg: Ex E —XF, (17)

where E is a set of entities and X% a set of all possible, numerical or descriptive, trust
values. wg thus represents one entity’s attitude towards another and is used to model
trust(worthiness) of all entities in F. To this end, different trust modeling methodolo-
gies and systems can be employed, from qualitative to quantitative, e.g., Nagy (2008),
Richardson (2003), Treck (2009).

We introduce trust on three different levels. First, we define trust on the level of data
source, in order to represent trustworthiness of the source in general. Let S be the set
of all data sources. Their trust is defined as Ts: S — [0, 1], where higher values of Ts
represent more trustworthy source.

Second, we define trust on the level of attributes (or semantically related data) within
the knowledge chunks. The trust in attributes is naturally dependent on the data source
of origin, and is defined as T4,: A; — [0, 1], where A; is the set of attributes for data
source s € S. As before, higher values of 74 represent more trustworthy attribute.

Last, we define trust on the level of knowledge chunks. Despite the trustworthiness of
data source and attributes within some knowledge chunk, its data can be (semantically)
corrupted, missing or otherwise unreliable. This information is captured using trustwor-
thiness of knowledge chunks, and again defined as Tx: K — [0,1], where K is a set
of all knowledge chunks. Although the trust related data (17), needed for the evaluation
of trustworthiness of data sources and attributes, are (mainly) defined by the user, com-
putation of trust in knowledge chunks can be fully automated using proper evaluation
function (Section 4.2).

Three levels of trust provide high flexibility during matching and merging. For in-
stance, attributes from more trusted data sources are generally favored over those from
less trusted ones. However, by properly assigning trust in attributes, certain attributes
from else less trusted data sources can prevail. Moreover, trust in knowledge chunks can
also assist in revealing corrupted, and thus questionable, chunks that should be excluded
from further execution.

Finally, we define trust in some particular value within a knowledge chunk, denoted
trust value T'. This is the value in fact used during merging and matching execution
and is computed from corresponding trusts on all three levels. In general, 7" can be an
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arbitrary function of T's, T4, and Tk . Assuming independence, we calculate trust value
by concatenating corresponding trusts,

TZTS OTASOTK. (]8)

Concatenation function o could be a simple multiplication or some fuzzy logic operation
(trusts should in this case be defined as fuzzy sets).

4.2. Trust Management

During merging and matching execution, trust values are computed using trust manage-
ment algorithm based on Richardson et al. (2003). We begin by assigning trust values
Ts,T's, for each data source, attribute respectively (we actually assign trust related data).
Commonly, only a subset of values must necessarily be assigned, as others can be inferred
or estimated from the first. Next, trust values for each knowledge chunk are not defined
by the user, but are calculated using the chunk evaluation function feya) (i.e., Tk = foval)-

An example of such function is a density of inconsistencies within some knowledge
chunk. For instance, when attributes Birth and Age of some particular knowledge chunk
mismatch, this can be seen as an inconsistency. However, one must also consider the trust
of the corresponding attributes (and data sources), as only inconsistencies among trust-
worthy attributes should be considered. Formally, density of inconsistencies is defined
as

Ninc(k) - Ninc(k)

eva. k)= ~ 5 19
fevar (k) N (8) (19)

where k is a knowledge chunk, k € K, Ni,.(k) the number of inconsistencies within %
and ch (k) the number of all possible inconsistencies.

Finally, after all individual trusts Ts, T4, and Tk have been assigned, trust values
T are computed using (18). When merging takes place and two or more data sources
(or knowledge chunks) provide conflicting attribute values, corresponding to the same
(resolved) entity, trust values 7" are used to determine actual attribute value in the resulting
data source (or knowledge chunk). For further discussion on trust management during
matching and merging see Section 5.

5. Matching and Merging Data Sources

Merging data from heterogeneous sources can be seen as a two-step process. The first
step resolves the real world entities of abstract level, described by the data on lower
levels, and constructs a mapping between the levels. This mapping is used in the second
step that actually merges the datasets at hand. We denote these subsequent steps as entity
resolution (i.e., matching) and redundancy elimination (i.e., merging).

Matching and merging is employed in various scenarios. As the specific needs of
each scenario vary, different dimensions of variability characterize every matching and
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merging execution. These dimensions are managed through the use of contexts (Castano
et al., 2010; Lapouchnian and Mylopoulos, 2009). Contexts allow a formal definition of
specific needs arising in diverse scenarios and a joint control over various dimensions of
matching and merging execution.

The following section discusses the notion of contexts more thoroughly and intro-
duces different types of contexts used. Next, Sections 5.2 and 5.3 describe employed
entity resolution and redundancy elimination algorithms respectively. The general frame-
work for matching and merging is presented and formalized in Section 5.4, and discussed
in Section 7.

5.1. Contexts

Every matching and merging execution is characterized by different dimensions of vari-
ability of the data, and mappings between. Contexts are a formal representation of all
possible operations in these dimensions, providing for specific needs of each scenario.
Every execution is thus characterized with the contexts it defines (Fig. 4), and can be
managed and controlled through their use.

The idea of contexts originates in the field of requirements engineering, where it has
been applied to model domain variability (Lapouchnian and Mylopoulos, 2009). It has
just recently been proposed to model also variability of the matching execution (Castano
et al., 2010). Our work goes one step further as it introduces contexts, not bounded only
to user or scenario specific dimensions, but also data related and trust contexts.

Formally, we define a context C' as

C: D — {true, false}, (20)

where D can be any simple or composite domain. A context simply limits all possi-
ble values, attributes, related data, knowledge chunks, datasets, sources or other, that are

Trust
contexts

User contexts contexts

Fig. 4. Characterization of merging and matching execution defining one context in user dimension, two con-
texts in data dimension and all contexts in trust dimension.
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considered in different parts of matching and merging execution. Despite its simple defi-
nition, a context can be a complex function. It is defined on any of the architecture levels,
preferably on all. Let C'4, C's and Cp represent the same context on abstract, semantic
and data level respectively. The joint context is defined as

C;=CaNCsN\Cp. 21)

In the case of missing data (or contexts), only appropriate contexts are considered. Alter-

natively, contexts could be defined as fuzzy sets, to address also the noisiness of data. In

that case, a fuzzy AND operation should be used to derive joint context C';.

We distinguish between three types of contexts due to different dimensions character-

ized (Fig. 4).

user User or scenario specific contexts are used mainly to limit the data and control the
execution. This type coincides with dimensions identified in Castano et al. (2010).
An example of user context is a simple selection or projection of the data.

data Data related contexts arise from dealing with related or semantic data, and various
formats of data. Missing or corrupted data can also be managed through the use of
these contexts.

trust Trust and data uncertainty contexts provide for an adequate trust management
and efficient security assurance between and during different phases of execution.
An example of trust context is a definition of required level of trustworthiness of
data or sources.

Detailed description of each context is out of scope of this paper. For more details on
(user) contexts see Castano et al. (2010).

5.2. Entity Resolution

First step of matching and merging execution is to resolve the real world entities on ab-
stract level, described by the data on lower levels. Thus a mapping between the levels
(entities) is constructed and used in consequent merging execution. Recent literature pro-
poses several state-of-the-art approaches for entity resolution (e.g., Ananthakrisha et al.,
2002; Bhattacharya and Getoor, 2004, 2007; Dong et al., 2005; Kalashnikov and Mehro-
tra, 2006). A naive approach is a simple pairwise comparison of attribute values among
different entities. Although, such an approach could already be sufficient for flat data, this
is not the case for network data, as the approach completely discards related data between
the entities. For instance, when two entities are related to similar entities, they are more
likely to represent the same entity. However, only the attributes of the related entities are
compared, thus the approach still discards the information if related entities resolve to
the same entities — entities are even more likely to represent the same entities when their
related entities resolve to, not only similar, but the same entities. An approach that uses
this information, and thus resolves entities altogether (in a collective fashion), is denoted
collective (related) entity resolution algorithm.

We employ a state-of-the-art (collective) related data clustering algorithm proposed
in Bhattacharya and Getoor (2007). To further enhance the performance, algorithm is
semantically elevated and adapted to allow for proper and efficient trust management.
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The algorithm is actually a greedy agglomerative clustering (Algoritm 1). Entities (on
lower levels) are represented as a group of clusters C, where each cluster represents a set
of entities that resolve to the same entity on abstract level. At the beginning, each (lower
level) entity resides in a separate cluster. Then, at each step, the algorithm merges two
clusters in C' that are most likely to represent the same entity (most similar clusters).
When the algorithm unfolds, C' holds a mapping between the entities on each level (i.e.,
maps entities on lower levels through the entities on abstract level).

During the algorithm, similarity of clusters is computed using a joint similarity mea-
sure (28), combining attribute, related data and semantic similarity. First is a basic pair-
wise comparison of attribute values, second introduces related information into the com-
putation of similarity (in a collective fashion), while third represents semantic elevation
of the algorithm.

Let ¢;,c; € C be two clusters of entities. Using knowledge chunk representation,
attribute cluster similarity is defined as

sima(c;, ¢5) = Z trust(k;.a, kj.a)sima (k;.a, kj.a), (22)

ki j€ci,jNa€k; ;

where k; ; € K are knowledge chunks, a € A, is an attribute and sima (k;.a, k;.a)
similarity between two attribute values. (Attribute) similarity between two clusters is thus
defined as a weighted sum of similarities between each pair of values in each knowledge
chunk. Weights are assigned due to trustworthiness of values — trust in values k;.a and
k;.a is computed using

trust(k;.a, kj.a) = min {T'(k;.a), T(k;.a) }. (23)

Hence, when even one of the values is uncertain or mistrustful, similarity is penalized
appropriately, to prevent matching based on (likely) incorrect information.

For computation of similarity between actual attribute values sim4 (k;.a, k;.a) (22),
different measures have been proposed. Levenshtein (1996) distance measures edit dis-
tance between two strings — number of insertions, deletions and replacements that tra-
verse one string into the other. Another class of similarity measures are TF-IDF”-based
measures, e.g., Cos TF-IDF and Soft TF-IDF (Cohen et al., 2003; Moreau et al., 2008).
They treat attribute values as a bag of words, thus the order of words in the attribute has
no impact on the similarity. Other attribute measures are also Jaro (Jaro, 1989) and Jaro—
Winkler (Winkler, 1990) that count number of matching characters between the attributes.

Different similarity measures prefer different types of attributes. TF-IDF-based mea-
sures work best with longer strings (e.g., descriptions), when other prefer shorter strings
(e.g., names). For numerical attributes, an alternative measure has to be employed (e.g.,
simple evaluation, followed by a numerical comparison). Therefore, when computing at-
tribute similarity for a pair of clusters, different attribute measures are used with different
attributes (22).

2Term Frequency-Inverse Document Frequency.
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Using data level representation, we define a neighborhood for vertex v € Vi as
nbr(v) = {Un\ vp € Vv Ao, v,} € EN}7 (24)
and cluster ¢ € C as
nbr(c) = {cy| ¢ € C Av € cAc, Nnbr(v) #0}. (25)

Neighborhood of a vertex is defined as a set of connected vertices. Similarly, neighbor-
hood of a cluster is defined as a set of clusters, connected through the vertices within.

For a (collective) related similarity measure, we adapt a Jaccard coefficient (Bhat-
tacharya and Getoor, 2007) measure for trust-aware (related) data. Jaccard coefficient is
based on Jaccard index and measures the number of common neighbors of two clusters,
considering also the size of the clusters’ neighborhoods — when the size of neighborhoods
is large, the probability of common neighbors increases. We define

ch €nbr(c;)Nnbr(c;) truSt(eg;l’ e,an)
|nbr(¢;) U nbr(c;)|

simg(c;, ¢;) = (26)

T T
where ¢;,,, €5,

in
spectively (for the computation of trust(e;,,, ¢,
ez;b, ean is used). (Related data) similarity between two clusters is defined as the size of a
common neighborhood (considering also the trustworthiness of connecting related data),
decreased due to the size of clusters’ neighborhoods. Entities related to a relatively large
set of entities that resolve to the same entities on abstract level, are thus considered to be

similar.

is the most trustworthy edge connecting vertices in ¢, and c;,c; re-
I €1 ), a knowledge chunk representation of

Alternatively, one could use some other similarity measure like Adar-Adamic (2001)
similarity, random walk measures, or measures considering also the ambiguity of at-
tributes or higher order neighborhoods (Bhattacharya and Getoor, 2007).

For the computation of the last, semantic, similarity, we propose a random walk like
approach. Using a semantic level representation of clusters c;,c; € C, we do a number
of random assumptions (queries) over underlying ontologies. Let [N, be the number of
times the consequences (results) of the assumptions made matched, Nass number of times
the consequences were undefined (for at least one ontology) and Nass the number of all
assumptions made. Furthermore, let NI be the trustworthiness of ontology elements
used for reasoning in assumptions that matched (computed as a sum of products of trusts
on the paths of reasoning, similar as in (23). Semantic similarity is then defined as

ass

simg(c;, ci) = = - . 27
( j) Nass(ci7cj) - Nass(ci7cj)

NT (Ci,Cj)

Similarity represents the trust in the number of times ontologies produced the same con-
sequences, not considering assumptions that were undefined for some ontology. As the
expressiveness of different ontologies vary, and some of them are even inferred from
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network data, many of the assumptions could be undefined for some ontology. Still, for
Nass(ci, ¢j) — Nass(ci, c;) large enough, (27) gives a good approximation of semantic
similarity.

Using attribute, related and semantic similarity (22), (26) and (27) we define a joint
similarity for two clusters as

1
~ 0A+0r+0s
X (5,4 sima (¢, ¢;) + drsimpg(c;, ¢;) + dg simg(c;, cj)), (28)

sim(c;, ¢;)

where d4, g and Jg are weights, set due to the scale of related and semantical infor-
mation within the data. For instance, setting z = g = 0 reduces the algorithm to
a naive pairwise comparison of attribute values, which should be used when no related or
semantic information is present.

Finally, we present the collective entity resolution Algoritm 1. First, the algorithm
initializes clusters C' and priority queue of similarities (), considering the current set of
clusters (lines 1-5). Each cluster represents at most one entity as it is composed out of
a single knowledge chunk. Algorithm then, at each iteration, retrieves currently the most

Algorithm 1. Collective entity resolution
1: Initialize clusters as C' = {{k}| k € K}

2: Initialize priority queue as Q = ()
3: for ¢;,c; € C and sim(c;, ¢;) > g do
4: Q.insert(sim (¢;, ¢), ¢i, ¢5)
5: end for
6: while Q # () do
7: (sim(e;, ¢j), ¢y ¢5) < Q.pop() {Most similar. }
8: if sim(c;, ¢;) < 05 then
9: return C
10: end if
11: C — C —{ci ¢} U{c; Ucj} {Matching. }
12: for (sim(cy, k), cx,cr) € Qand z € {i,5} do
13: Q.remove(sim(cy, ¢ ), €z, Cr)
14: end for 15: for ¢, € C and sim(c; U ¢, c;) > 05 do
16: Q.insert(sim(c; U ¢, k), ¢ U ¢j, k)
17: end for
18: for ¢, € nbr(c; Uc;) do
19: for ¢;, € C and sim(c,, c;) > 05 do
20: Q.insert(sim(cy, ¢k ), ¢n, cx) {Or update. }
21: end for
22: end for

23: end while
24: return C
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similar clusters and merges them (i.e., matching of resolved entities), when their similar-
ity is greater than threshold 65 (lines 7-11). As clusters are stored in the form of knowl-
edge chunks, matching in line 11 results in a simple concatenation of chunks. Next, lines
12—-17 update similarities in the priority queue (), and lines 18-22 insert (or update) also
neighbors’ similarities (required due to related similarity measure). When the algorithm
terminates, clusters C' represent chunks of data resolved to the same entity on abstract
level. This mapping between the entities (i.e., their knowledge chunk re presentations) is
used to merge the data in the next step.

Threshold 0 represents minimum similarity for two clusters that are considered to
represent the same entities. Optimal value should be estimated from the data.

Three more aspects of the algorithm ought to be discussed. Firstly, pairwise compar-
ison of all clusters during the execution of the algorithm is computationally expensive,
specially in early stages of the algorithm. Bhattacharya and Getoor (2007) propose an ap-
proach in which they initially find groups of chunks that could possibly resolve to the
same entity. In this way, the number of comparisons can be significantly decreased.

Secondly, due to the nature of (collective) related similarity measures, they are inef-
fective when none of the entities has already been resolved (e.g., in early stages of the
algorithm). As the measure in (26) counts the number of common neighbors, this always
evaluates to 0 in early stages (in general). Thus relative similarity measures should be
used after the algorithm has already resolved some of the entities, using only attribute
and semantic similarities.

Thirdly, in the algorithm we implicitly assumed that all attributes, (semantic) related
data and other, have the same names or identifiers in every dataset (or knowledge chunk).
Although, we can probably assume that all attributes within datasets, produced by the
same source, have same and unique names, this cannot be generalized.

We propose a simple, yet effective, solution. The problem at hand could be denoted
attribute resolution, as we merely wish to map attributes between the datasets. Thus we
can use the approach proposed for entity resolution. Entities are in this case attributes that
are compared due to their names, and also due to different values they hold; and related
data between entities (attributes) represent co-occurrence in the knowledge chunks. As
certain attributes commonly occur with some other attributes, this would further improve
the resolution.

Another possible improvement is to address also the attribute values in a similar man-
ner. As different values can represent the same underlying value, value resolution, done
prior to attribute resolution, can even further improve the performance.

5.3. Redundancy Elimination

After the entities, residing in the data, have been resolved (Section 5.2), the next step is
to eliminate the redundancy and merge the datasets at hand. This process is somewhat
straightforward as all data is represented in the form of knowledge chunks. Thus we
merely need to merge the knowledge chunks, resolved to the same entity on abstract level.
Redundancy elimination is done entirely on semantic level, to preserve all the knowledge
inside the data.
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Fig. 5. Entity resolution and redundancy elimination on three knowledge chunks (Section 3.2). (a) Input data in
a form of ontology (Fig. 2), network and attribute values. (b) Cluster network obtained with entity resolution
(i.e., matching). (c) Final ontology obtained after redundancy elimination and appropriate postprocessing.

When knowledge chunks hold disjoint data (i.e., attributes), they can simply be con-
catenated together. However, commonly various chunks would provide values for the
same attribute and, when these values are inconsistent, they need to be handled appro-
priately. A naive approach would count only the number of occurrences of some value,
when we consider also their trustworthiness, to determine the most probable value for
each attribute.

Let ¢ € C be a cluster representing some entity on abstract level (resolved in the
previous step), let k1, ke ...k, € c be its knowledge chunks and let k¢ be the merged
knowledge chunk, we wish to obtain. Furthermore, for some attribute ¢ € A., let X
be a random variable measuring the true value of a and let X be the random variables
for a in each knowledge chunk it occurs (i.e., k;.a). Value of attribute a for the merged
knowledge chunk k€ is then defined as

argmaxP( —v|/\X“— ; ) (29)

Each attribute is thus assigned the most probable value, given the evidence observed (i.e.,
values k;.a). By assuming pair-wise independence among X' (conditional on X“) and
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Algorithm 2. Redundancy elimination

1: Initialize knowledge chunks K¢

2:force Canda € A do

3: k.a = arg max, [ [;conp.amo T(K-0) [Trecnr.ano L — T'(k.a)
4: end for

5: return K¢

uniform distribution of X * (29) simplifies to

arg maXHP(Xf =k;.a|X® = v). (30)

Finally, conditional probabilities in (30) are approximated with trustworthiness of values,

aivay . | T(ki.a) for k;.a = v,
PXTIXT) ~ { 1 —-T(k;.a) fork;.a# v, S
hence
k°.a = arg max H T(k;.a) H 1—T(k;.a). (32)

ki.a=v ki.a#v

Only knowledge chunks (Section 3.2) containing attribute a are considered.

In the following we present the proposed redundancy elimination Algoritm 2.

The algorithm uses knowledge chunk representation of semantic level. First, it initial-
izes merged knowledge chunks k¢ € K € Then, for each attribute k°.a, it finds the most
probable value among all given knowledge chunks (line 3). When the algorithm unfolds,
knowledge chunks K¢ represent a merged dataset, with resolved entities and eliminated
redundancy. Each knowledge chunk k¢ corresponds to unique entity on abstract level,
and each attribute holds the most trustworthy value.

At the end, only the data that was actually provided by some data source, should
be preserved. Thus all inferred data (through Zx or Zp; Section 3.3) is discarded, as it is
merely an artificial representation needed for (common) entity resolution and redundancy
elimination. Still, all provided data and semantical information is preserved and properly
merged with the rest. Hence, although redundancy elimination is done on semantic level,
resulting dataset is given on both data and semantic level (that complement each other).

Last, we discuss the assumptions of independence among X and uniform distribu-
tion of X . Clearly, both assumptions are violated, still the former must be made in order
for the computation of most probable value to be feasible. However, the latter can be elim-
inated when distribution of X“ can be approximated from some large-enough dataset.

5.4. General Framework

Proposed entity resolution and redundancy elimination algorithms (Section 5.2, 5.3) are
integrated into a general framework for matching and merging (Fig. 6). Framework rep-
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Fig. 6. General framework for matching and merging data from heterogeneous sources.

resents a complete solution, allowing a joint control over various dimensions of matching
and merging execution. Each component of the framework is briefly presented in the
following, and further discussed in Section 7.

Initially, data from various sources is preprocessed appropriately. Every network or
ontology is transformed into a knowledge chunk representation and, when needed, also
inferred on an absent architecture level (Section 3.3). After preprocessing is done, all data
is represented in the same, easily manageable, form, allowing for common, semantically
elevated, subsequent analyses.

Prior to entity resolution, attribute resolution is done (Section 5.2). The process re-
solves and matches attributes in the heterogeneous datasets, using the same algorithm as
for entity resolution. As all data is represented in the form of knowledge chunks, this
actually unifies all the underlying networks and ontologies.

Next, proposed entity resolution and redundancy elimination algorithms are employed
(Section 5.2, 5.3). The process thus first resolves entities in the data, and then uses this
information to eliminate the redundancy and to merge the datasets at hand. Algorithms
explore not only the related data, but also the semantics behind it, to further improve the
performance.

Last, postprocessing is done, in order to discard all artificially inferred data and to
translate knowledge chunks back to the original network or ontology representation (Sec-
tion 3). Throughout the entire execution, components are jointly controlled through (de-
fined) user, data and trust contexts (Section 5.1). Furthermore, contexts also manage the
results of the algorithms, to account for specific needs of each scenario.

Every component of the framework is further enhanced, to allow for proper trust man-
agement, and thus also for efficient security assurance. In particular, all the similarity
measures for entity resolution are trust-aware, moreover, trust is even used as a primary
evidence in the redundancy elimination algorithm. The introduction of trust-aware and
security-aware algorithms represents the main novelty of the proposition.

6. Experiments

In the following sections we demonstrate the framework’s (Fig. 6) most important parts
on several real-world datasets, designed for entity resolution tasks and discuss the results.
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The part of attribute resolution and redundancy elimination evaluation is shown like a case
study because to our knowledge, no tagged data combining all results we need, exists.

The demonstration is done with respect to semantic elevation, semantic similarity and
trust management contexts (Section 5.1). We do not fit methods for the datasets to achieve
superior performance, but rather focus on the increase of accuracy when using each of the
contexts. In the following we present the datasets, explain used metrics, show the results
and discuss them. The used datasets and full source code is publicly available’.

6.1. Datasets

We consider five testbeds of four different domains to simulate real-life matching tasks.
Each data source introduces many data quality problems, in particular duplicate refer-
ences, heterogeneous representations, misspellings or extraction errors.

The CiteSeer dataset used is a cleaned version from Bhattachrya and Getoor (2007)%,
others were presented and evaluated against entity resolution algorithms by Kopcke et al.
(2010)°.

CiteSeer dataset contains 1504 machine learning documents with 2892 author refer-
ences to 1165 author entities. The only attribute information available is name for
authors and title for documents.

DBLP-ACM dataset consists of two well-structured bibliographic data sources from
DBLP and ACM with 2616 and 2294 references to 2224 document entities. Each
reference contains values for title, authors, venue and publication year of respective
scientific paper.

Restaurants dataset contains 864 references to 754 restaurant entities. Most of the ref-
erences contain values for name, address, city, phone number and type of certain
restaurant.

AbtBuy is an e-commerce dataset with extracted data from Abt . com and Buy . com.
They contain 1081 and 1092 references to 1097 different products. Each product
reference is mostly represented by product name, manufacturer and often missing
description and price values.

Affiliations dataset consists of 2260 references to 331 organizations. The only attribute
value per record is an organization name, which can be written in many possible
ways (i.e., full, part name or abbreviation).

6.2. Attribute Resolution

As a part of semantic elevation, the input datasets must be aligned by attribute-value pairs
to achieve a mutual representation.

As mentioned in Section 5.2, an entity resolution algorithm could be used to merge
appropriate attributes. To better solve the problem in general, we propose the following
similarity functions:

3http://zitnik.si/mediawiki/index.php?title=Software.

‘http://www.cs.umd.edu/projects/lings/projects/er/DATA/citeseer.dat.

Shttp://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity resolution.
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Table 1
Attribute names, used to test attribute resolution approaches on DBLP-ACM dataset

id  Attribute names

1 title venue year  authors
2 titl venue year  author
3 title venue  yr writers
4

attrl  attr2 attr3  attrd

ExactMatch. The simplest version. Attribute names must match exactly.

SimilarityMatch. Every two attributes with score above the selected threshold, are
matched (We use Jaro—Winkler (Winkler, 1990) metric with threshold of 0.95).
This is typical pairwise entity resolution approach.

SimilarityMatch+. In addition to previous function, it considers synonyms when com-
paring two attribute names (Synsets from semantic lexicon Wordnet (Miller, 1995)
are used.). Real-life datasets along with attribute names are created by people and
that is why attributes over different datasets are supposed to be synonyms.

DomainMatch. Same attribute values contain similar data format. Leveraging this in-
formation we extract selected features and match the most similar attributes across
datasets. (A simple example is calculating the average number of words per at-
tribute values.)

OntologyMatch. Using ontologies, additional semantic information is included. If all
input datasets are semantically described using ontologies, related data types
sameAs or seeAlso, possible hierarchy of subclasses, included rules and axioms
can be additionally used for matching. When none of this apply, previous proce-
dures must be employed.

As our datasets mostly consist of 2 different already aligned sources, we have chosen
some additional attribute names for DBLP-ACM dataset manually. Altered values are
shown in Table 1. Due to space limitations, we just presentively discuss the results. First
line are the original attribute names and next three lines are changed to show success of
proposed matchers. Pair (1, 2) is successfully solved by SimilarityMatch. The difference
between values is limited to misspellings and small writing errors. Pair (1, 3) is a bit more
difficult. Values authors and writers or year and yr cannot be matched by similarity. As
they are synonyms, SimilarityMatch+ can match them. Pair (1, 4) values are completely
different and it is completely useless to check name pairs. The DomainMatch technique
correctly matches the attributes by considering attribute values format.

6.3. Entity Resolution

In this section we first discuss the selected entity resolution algorithm and then show
the increase in correctly matched values using semantic similarity. We implemented the
algorithm, proposed in Bhattacharya and Getoor (2007), which is well described in Sec-
tion 5.2 and presented as Algoritm 1.
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In addition to the standard blocking techniques of partially string matching we added
similarity, n-gram blocking and also enabled the option of fuzzy blocking. Standard ap-
proach is used on AbtBuy, CiteSeer and DBLP-ACM datasets. Similarity blocking adds an
instance to a block if the similarity score with the representative reference of the block is
above the defined threshold. This type of blocking was used with the Restaurants dataset
using 0.3 threshold for name and 0.7 for phone attribute. At Affiliations dataset we use
n-gram blocking with at least 4—6-gram matches.

We use secondstring (Cohen et al., 2003) library for all basic similarity measures
implementations. At bootstrapping and clustering we use JaroWinkler with TFIDF and
manual weights as an attribute metric. Promising general results were achieved also using
n-gram and Level2JaroWinkler metric. As a related similarity we use k-Neighbours at
bootstrapping and modified JaccardCoefficient at clustering. The modification just aligns
the match result z using function f(z) = —(—z + 1)1 + 1, because similarity pairs
instead of typical sets are checked.

The most important parameters that need to be selected are similarity alpha o and
merge threshold 6. Both values were selected subjectively and not dataset — specific. We
set similarity alpha to o = 0.85, which results in weighting attribute metric to /4 = «
and related data metric to g = 1 — «. Matching accuracy using different similarity
alphas is shown on Fig. 7. As it can be seen from the figure, some datasets contain a lot
of disambiguate values, which results in very low F'-score at « set to 1.

Merge threshold in our solution is set to 0.95. Testing the threshold at different values
after bootstrapping is presented on Fig. 8 and after clustering on Fig. 9. It is possible to see
the effect of iterative matching and related data metric from the Fig. 9, which improves
the final results. During testing these parameters, no semantic measure was used yet.

Due to optimization, our implementation updates or possibly inserts only neighbour
pairs of matched clusters into priority queue during clustering. The accuracy when check-
ing only neighbours remains unchanged. Therefore the cluster ¢ € nbr(c; U ¢;) at the
19th line of Algoritm 1.

Similarity alpha test after bootstrapping
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Fig. 7. Comparison of entity resolution results after bootstrapping according to similarity alpha.
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Merge threshold test after bootstrapping
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Merge threshold test after clustering
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Fig. 9. Comparison of entity resolution results after clustering according to 5 merge threshold.

On Figs. 10 and 11 we present the increase of success in matching using semantic
similarity (27). We set semantic similarity weight Js to 4 based on some preliminary
experiments. Bhattacharya and Getoor (2007) adjusted Adar (Adamic and Adar, 2001)
similarity metric to better support values (e.g., author names) disambiguation. It learns
an ambiguity function after checking the whole set of values in the dataset, similar to
TF-IDF approach. This metric better models names, but does not use semantics, like
identifying first or last name, product codes or specific parts of given value. Semantic
similarity should model the human reasoning whether to match two values or not. For
better understanding the meaning of semantic similarity, we present few examples, used
in the experiment:

Name metric. This is our the most general similarity metric. It models typical value
matching by splitting it into tokens, identifying the value with less information and
comparing it to other value’s tokens by startWith or similarity metric. It also checks
and matches abbreviations. For example, every pair of names “William Cohen”,
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“W. Cohen”, “W.W. Cohen” or “Cohen” must have maximum semantic similar-
ity. Similar applies to “Arizona State Univ., Tempe, AZ”, “Arizona State Univer-
sity”” and “Arizona State University, Arizona” where using string similarity metric
yields low values. Name metric is used for organization name matching on Affi-
lation dataset, author name matching on CiteSeer and phone and restaurant name
matching on Restaurants dataset.

Number metric. Number metric identifies numeric values and matches them according

to difference in values. It is used on DBLP-ACM dataset at publication year match-
ing.

Product metric. Product metric is designed to match products, which sometimes contain

serial numbers or codes. These codes are commonly represented as a sequence of
numbers and/or letters. In addition to code matching, it integrates Name metric with
minimum & token match score. An example of matching two products is “Toshiba
40’ Black Flat Panel LCD HDTV — 40RV525U” and “Toshiba 40RV525U — 40’
Widescreen 1080p LCD HDTV w/Cinespeed — Piano Black” where it is very hard
to identity pair without code detection. Product metric is used on AbtBuy dataset
for product name matching.

Restaurant metric. This metric is specific to Restaurants dataset. It supposes attributes

name and phone or location are scored above the threshold to match.

Title metric. Titles are sometimes shrinked, have some words replaced with synonyms

Fig. 10.

Fig. 1

or refer to papers, written in more parts. This metric improves matching titles on
DBLP-ACM dataset.
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The results on Figs. 10 and 11 show the increase of matching accuracy by employing
semantic similarity measure. The results on AbtBuy dataset are increased by 11% after
clustering. Recall is significantly higher, but precision falls down. It is interesting that
using semantics, same result is achieved immediately after bootstrapping, which shows
good work at blocking. On Affiliations, the precision lowers, but employing semantics,
more organizations with different name representations are resolved. CiteSeer gains more
than 10% in recall and F-score and also keeps all measures above 90%. At DBLP-ACM
dataset, the differences are not very significant, but use of semantics still shows minor
improvements. After bootstrapping at CiteSeer dataset it is interesting semantic similarity
helps achieving 100% precision and a little improves the final result.

Experimenting using only semantic similarity metric gave worse results than includ-
ing also attribute one. This is because our semantic similarities focus on semantics and
not on misspelled or disambiguated data on lexical level. Restaurant dataset for example
contains examples unsolvable even for a man without background knowledge. In the case
of AbtBuy dataset even more knowledge would not work as name and product description
is too general to match on some examples. Number match metric could be applied also
on it, but one of the datasets barely contains a product’s price.

6.4. Redundancy Elimination

The last step before postprocessing is merging knowledge chunks matched in clusters at
entity resolution.

Merging is done entirely using trust management. In Section 4 we define trust on
levels of data source, knowledge chunk and value. As trust cannot be easily initialized,
we select the appropriate cluster representative using trust of value only. Therefore we
implemented the calculation of trust value for Algoritm 2 in the following ways:

Random. Random value is selected as the representative.

Naive. Value that occurs the most time is selected as the representative.

Naive+. The representative is selected as the maximum similar value to all others. Let
c be a cluster of matched values, k value in cluster and Sim appropriate similarity
function. Then the value is selected according to (33). As similarity function we
use Jaro—Winkler.

Representative(c) = arg max Z Sim(k, v). (33)
v k€cNk#v

Trust. Intuitively, a value is trustworthy if it yields many search results on the internet.
This is not exactly true as for example the number of search results for “A. N.”
is much higher comparing to “Andrew Ng”. By investigating some person name —
based test searches, we expect the number of search hits decreases a lot if the word
is misspelled. We denote Nyis(v) as the number of hits for value v. Let Nppigs(v)
be number of hits for a value of v with some noise added. We set m to 5 and change
4 letters or numbers randomly. The trust is calculated as in (34) and as the result,
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the maximum trust value is selected.

Trust (v

)=1-

Z1gigm Nanits (v)
m - Nhis (V)
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(34)

During experiments, random clusters, having more than 10 values of specific attribute
were selected for redundancy elimination. Using clusters with multiple values, the results
are more representative because it is harder to select the right value. In each cluster, we
add noise to a portion of values. So, one of the non-noise values is expected to be returned
as aresult of redundancy elimination because they certainly better represent the entity and
this is taken as a measure of classification accuracy.

Author name attribute redundancy elimination results are presented on Fig. 12 and
in Table 2. The trust measure achieves better results comparing to others. It is expected
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Fig. 12. Redundancy elimination on CiteSeer dataset for 34 random clusters (as a result of ER), containing

author names.

Redundancy elimination classification accuracy on 34 random author name clusters from CiteSeer dataset.

Table 2

The trust algorithm was repeated 10 times and others 100 times.

Noise Random Naive Naive+ Trust

Mean Std. d. Mean Std. d. Mean Std. d. Mean Std. d.
90%  0.37 0.078 0.41 0.083 0.17 0.063 0.74 0.084
80% 0.47 0.074 0.43 0.067 0.31 0.074 0.78 0.067
70%  0.47 0.069 0.43 0.075 0.39 0.070 0.82 0.046
60%  0.54 0.064 0.42 0.082 0.45 0.076 0.82 0.036
50%  0.58 0.062 0.40 0.084 0.56 0.081 0.87 0.033
40%  0.62 0.067 0.42 0.071 0.67 0.071 0.88 0.038
30% 0.70 0.062 0.41 0.083 0.71 0.075 0.94 0.032
20%  0.82 0.038 041 0.078 0.81 0.061 0.94 0.038
10%  0.88 0.038 0.42 0.063 0.89 0.050 0.95 0.044
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for accuracy to be inversely proportional to level of noise, but the classification accuracy
of the trust is above 70% even with 90% of noise in data. As we see, the trust measure
outperforms other approaches throughout the test. The naive measure gives almost con-
stant accuracy at all times. Naive+ approach performs vey bad by increasing the number
of noise values. The reason it works better than naive at low noise levels is that there
are many similar or equal values in cluster, but at higher levels, the majority of values
are quite different. It’s results are similar to the random measure. Random approach re-
sults are expected, maybe even too good with clusters of a lot of noise. When having
no knowledge of cluster values, performance of redundancy elimination would equal to
random approach.

The experiment shows it may be easy to get useful redundancy eliminator for specific
types of values, but the solution remains to initialize trust levels across the domain and
update them continuously during system’s lifetime.

6.5. Experiments Summary

We presented some experiments on the attribute, entity resolution and redundancy elimi-
nation components of the proposed general framework for matching and merging (Fig. 6).

As first, attribute resolution matches the datasets to the same semantic representation
(Section 6.2). When datasets are not appropriately matched, missing attribute pairs cannot
even be compared or wrong values are considered. Therefore, further matching strongly
depends on attribute resolution result.

Second, we showed entity resolution improves if additional semantic similarity mea-
sure is used (Section 6.3). Semantic similarity is attribute type-specific and cannot be
defined in general. Thus, a number of metrics could be predefined and then selected for
each attribute type.

Third, input to redundancy elimination are clusters as a result from entity resolution
(Section 6.4). For author names, we showed the search engine results as a value of trust,
can help us determine the most appropriate value. Also, this component’s results strongly
depend on matched clusters results as only one value within specific cluster can be se-
lected.

To summarize, best evaluation measuring interdependence between components
could be achieved only when having a dataset annotated with all needed contexts we
defined. The proposed framework can be employed for general tasks, but would be out-
performed by domain-specific applications.

7. Discussion

Proposed framework for matching and merging represents a general and complete solu-
tion, applicable in all diverse areas of use. Introduction of contexts allows a joint control
over various dimensions of matching and merging variability, providing for specific needs
of each scenario. Furthermore, data architecture combines simple (network) data with se-
mantically enriched data, which makes the proposition applicable for any data source.
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Framework can thus be used as a general solution for merging data from heterogeneous
sources, and also merely for matching.

The fundamental difference between matching, including only attribute and entity
resolution, and merging, including also redundancy elimination, is, besides the obvious,
in the fact that merged data is read-only. Since datasets, obtained after merging, do not
necessarily resemble the original datasets, the data cannot be altered thus the changes
would apply also in the original datasets. Alternative approach is to merely match the
given datasets and to merge them only on demand. When altering matched data, user
can change the original datasets (that are in this phase still represented independently) or
change the merged dataset (that was previously demanded for), in which case he must
also provide an appropriate strategy, how the changes should be applied in the original
datasets.

Proposed algorithms employ network data, semantically enriched with ontologies.
With the advent of Semantic Web, ontologies are gaining importance mainly due to avail-
ability of formal ontology languages. These standardization efforts promote several no-
table uses of ontologies like assisting in communication between people, achieving inter-
operability (communication) among heterogeneous software systems and improving the
design and quality of software systems. One of the most prominent applications is in the
domain of semantic interoperability. While pure semantics concerns the study of mean-
ings, semantic elevation means to achieve semantic interoperability and can be considered
as a subset of information integration (including data access, aggregation, correlation and
transformation). Semantic elevation of proposed matching and merging framework rep-
resents one major step towards this end.

Use of trust-aware techniques and algorithms introduces several key properties.
Firstly, an adequate trust management provides means to deal with uncertain or ques-
tionable data sources, by modeling trustworthiness of each provided value appropriately.
Secondly, algorithms jointly optimize not only entity resolution or redundancy elimina-
tion of provided datasets, but also the trustworthiness of the resulting datasets. The latter
can substantially increase the accuracy. Thirdly, trustworthiness of data can be used also
for security reasons, by seeing trustworthy values as more secure. Optimizing the trust-
worthiness of matching and merging thus also results in an efficient security assurance.

Although, contexts are merely a way to guide the execution of some algorithm, their
definition is relatively different from that of any simple parameter. The execution is con-
trolled with mere definition of the contexts, when in the case of parameters, it is con-
trolled by assigning different values. For instance, when default behavior is desired, the
parameters still need to be assigned, when in the case of contexts, the algorithm is used
as it is. For any general solution, working with heterogeneous clients, such behavior can
significantly reduce the complexity.

As different contexts are used jointly throughout matching and merging execution,
they allow a collective control over various dimensions of variability. Furthermore, each
execution is controlled and also characterized with the context it defines, which can be
used to compare and analyze different executions or matching and merging algorithms.

Last, we briefly discuss a possible disadvantage of the proposed framework. As the
framework represents a general solution, applicable in all diverse domains, the perfor-
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mance of some domain-specific approach or algorithm can still be superior. However,
such approaches commonly cannot be generalized and are thus inappropriate for practi-
cal (general) use.

8. Conclusion

This paper advances previously published paper (Subelj et al., 2011) which contains only
theoretical view of the proposed framework for data matching and merging. In this work
we again overview the whole framework with minor changes, but most importantly we
introduce different metrics implementation details and full framework demonstration.

The proposed framework follows a three level architecture using network-based data
representation from data to semantic and lastly to abstract level. Data on each level is
always a superset of lower ones due to inclusion of various context types, trust values
or additional metadata. We also identify three main context types — user, data and trust
context type — which are a formal representation of all possible operations. One of the
novelties is also trust management that is available across all steps during the execution.

To support our framework proposal, we conduct experiments of three main compo-
nents — attribute resolution, entity resolution and redundancy elimination — using trust and
semantics. Like we theoretically anticipated, results on five datasets show that semantic
elevation and proper trust management significantly improve overall results.

In further work we will additionally incorporate network analysis techniques such as
community detection (Subelj and Bajec, 2011b) or recent research on self-similar net-
works (Blagus et al., 2012), which finds network hierarchies with a number of com-
mon properties that may also improve the results of proposed approach. Furthermore,
ontology-based information extraction techniques will be employed into entity resolution
algorithm to gain more knowledge about non-atomic values.
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Bendras kontekstui jautrus duomenu susiejimo bei suliejimo karkasas

Slavko ZITNIK, Lovro SUBELJ , Dejan LAVBIC, Olegas VASILECAS, Marko BAJEC

Atsizvelgiant i tai, kad egzistuoja skaitlingas kiekis vieSai prieinamy informacijos Saltiniu ir
paslaugu, pasitlyta nemaZai metody skirty tokiu paprastai heterogeniniy duomeny sujungimui.
Taciau bendro pobiidZio Saltinis — gavéjas sprendimai vis dar gana retai pateikiami, ypatingai tais
atvejais, kai démesin reikia priimti skirtingu konteksty aspektus. Be to, tokie sprendimai daznai
nepakankamai iSbandyti arba pritaikyti tik specifinéms dalykinéms sritims. Straipsnyje trumpai
apZvelgtas ir i§samiai ivertintas pasitlytas bendro pobiidZio susiejimo ir suliejimo karkasas. Jis
naudoja bendraja esybiu rezoliucija ir pertekliSkumo Salinima naudojant tris kontekstu tipu as-
pektus. Siekiant gauti nuo dalykinés srities nepriklausomus rezultatus, analizuojami duomenys
praturtinami semantikos ir pasitikéjimo atributais. TaCiau pagrindinis straipsnio indelis susijgs su
penkiuy vieSai prieinamy tarpusavyje nesuderinty domeny duomenu rinkiniy ivertinimu. Be to, mes
ivedéme papildoma atributa, rysi bei semantikos ir pasitikéjimo metrika, kas igalina uztikrinti
pilna pasitlyto karkaso valdyma. Papildomai prie to, kad naudojant karkasa pageréjo rezultatai,
pasiiilytos metrikos gali biti atskirai teikiamos kaip svarbus tyrimuy rezultatas.



