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Abstract. Grey numbers facilitate the representation of uncertainty not only for elements of a set,
but also the set itself as a whole. This paper utilizes the notion of possibility degree from grey
system theory coupled with the idea of dominance relation and partial order set (poset) from rough
theory to represent uncertain information in a manner that maintains the degree of uncertainty of
information for each tuple of the original data. Concept lattices of grey information system are
constructed and a decision-making algorithm that combines with grey relational grade is described.
A case study is used to demonstrate the supplier selection problem applying the proposed method.
The research has concluded that the method is appropriate to use.
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1. Introduction and Problem Statement

Formal concept analysis, also known as concept lattice, was proposed by Wille (1982)
in early eighties. As an effective tool for knowledge discovery, concept lattice has been
widespread concern in artificial intelligence researchers. In the concept lattice structure,
rule extraction, application of concept lattices and so on, it has been made a series of re-
search results (Valtchev et al., 2002; Tonella, 2003; Liang and Wang, 2004; Qu and Zhai,
2006). The traditional concept lattice is based on the binary formal context to describe
the links between objects and attributes, describe the relationship of generalization and
specialization between the concepts, and then all attributes are treated equally. However,
in practical problems, many information systems are based on the grey relations. This in-
formation system generally implies an order of features such as large and small, high and
low, so more with less. Knowledge acquisition research of information systems based on
grey relations is of great significance.

Deng (1982) developed the grey system theory and presented grey decision-making
systems (Deng, 1989). Grey system theory is a mathematical tool of handling missing
data, uncertainty information. In recent years, many authors investigated grey system
theory and its application in decision-making. To explore a more effective method to
study the information content of grey numbers, an axiomatic approach was used (Liu and
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Lin, 2006). They introduced a new definition for information content of grey numbers
and proved relevant results. This work fills the vacancy on how to measure the informa-
tion value contained in a grey number. Multi-attribute models for grey relationships were
constructed (Olson and Wu, 2006). It demonstrated how simulation can be used to reflect
fuzzy inputs, which allows more complete probabilistic interpretation of model results.
A hybrid normalized multi-attribute decision-making model for evaluating and selecting
the vendor using Analytical Hierarchy Process and Fuzzy Analytical Hierarchy Process
and an integrated approach of GRA (Grey Relational Analysis) to a Supply Chain model
was developed (Noorul Haq and Kannan, 2007). Lin and Lee (2008) proposed a novel
forecasting model. Their work modifies the algorithm of the grey forecasting model to
enhance the tendency catching ability. Huang et al. (2008) examined the potentials of the
software effort estimation model by integrating a genetic algorithm (GA) to the GRA.
Experimental results showed that the proposed method presents more precise estimates
over the results using other methods. Lin et al. (2008) presented an illustrative exam-
ple of subcontractor selection by applying grey TOPSIS method. Lin et al. (2007) pro-
posed a grey-based rough set approach to deal with the supplier selection in supply chain
management. The proposed approach takes advantage of mathematical analysis power of
grey system theory while at the same time utilizing data mining and knowledge discovery
power of rough set theory. Wang et al. (2009a) expanded the decision model of grey tar-
get into some situation under which the decision information and target weights are the
interval numbers(grey number) at the same time. However, there is usually some uncer-
tainty involved in all multi-attribute model inputs. Zavadskas et al.’s (2009) research is to
demonstrate how simulation can be used to reflect fuzzy inputs, which allows more com-
plete interpretation of model results. In the grey rough sets, Wu and Liu (2009) studied
concept lattices with interval gray number, but its lattice structure and calculation method
are very complicated.

As the multi-criteria decision analysis, decision table attribute value set is often a to-
tally ordered set. For such a decision table, the traditional theory of formal concept anal-
ysis is difficult to find the concept of the structure under the inclusion relation, which is
very detrimental to knowledge discovery.

In this paper, grey formal context based on grey dominance relations was proposed.
We defined the attribute posets, the object posets, then discussed some of their proper-
ties. On this basis, grey concept lattice was defined. Its construction method was given.
These results are beneficial to the formal concept analysis and grey information system
for further research and application.

2. Grey Information System and Grey Dominance Relation

As the objective and subjective conditions and random disturbances in the data acquisi-
tion, people often get the data “approximation”. Many times the object has similar values.
These values are often difficult to determine choice. So sometimes the part of some at-
tribute value can not be determined, but you can know the range. If similar data can be the
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Fig. 1. Relationship of grey number (Mi et al., 2006).

same as the object of “property value” the object may take on a grey value attribute set. In
addition, due to its own characteristics, some objects’ attribute values have to take a grey
number. For example, consider the default value, in order to facilitate the discussion, but
also without loss of generality, it can usually be said for the entire range of a set. The
grey numbers facilitate the representation of uncertainty not only for elements of a set,
but also the set itself as a whole.

A grey number (Lin et al., 2004) is a number whose exact value is unknown, but
a range within which the value lies in is known. There are the several types of grey
numbers:

• Grey numbers with only lower limits: ⊗x ∈ [x, ∞) or ⊗(x), where a fixed real
value x represents the lower limit of the grey number ⊗x.

• Grey numbers with only upper limits: ⊗x ∈ (−∞, x] or ⊗(x), where x is a fixed
real number or an upper limit of the grey number ⊗x.

• Interval grey number is the number with both lower limit x and upper limit x:
⊗x ∈ [x, x].

• Continuous grey numbers and discrete grey numbers. The grey numbers contin-
uously taking values, which cover an interval, are continuous. The grey numbers
taking a finite number of values or a countable number of values in an interval are
called discrete.

• Black and white numbers. When ⊗x ∈ (−∞, +∞), i.e., when ⊗x has neither
upper nor lower limits, or the upper and the lower limits are all grey numbers, ⊗x

is called a black number. When ⊗x ∈ [x, x] and x = x, ⊗x is called a white
number.

In the future, if not do a special note, we call grey number of the form ⊗x ∈ [x, x],
that interval grey number. Relationship of grey number is presented in Fig. 1.

DEFINITION 1. A length of grey number ⊗x is defined as L(⊗x) = x − x.

DEFINITION 2. For two grey numbers ⊗x ∈ [x, x] and ⊗y ∈ [y, y], the possibility
degree of that ⊗x is less (greater) than or equal ⊗y can be expressed as follows (Shi
et al., 2005):

ρ =
Max(0, L − Max(0, x − y))

L
, (1)

where L = L(⊗x) + L(⊗y).



156 Q. Wu

The relationship between ⊗x and ⊗y is determined as follows:

(1) If x = y and x = y, we say that ⊗x is equal to ⊗y, denoted as ⊗x = ⊗y, when
ρ = 0.5.

(2) If there is the intersection, when ρ > 0.5, we say that ⊗y is greater than ⊗x,
denoted as ⊗x ≺ ⊗y. When ρ < 0.5, we say that ⊗y is less than ⊗x, denoted as
⊗x � ⊗y.

Grey number is the basic unit of grey system and the operations of grey numbers are
different from regular interval numbers. Interval number refers to a special one in grey
number conception terms (Xie and liu, 2011). It’s easy to prove the following results.

Theorem 1. Let ⊗x ∈ [x, x], ⊗y ∈ [y, y] and ⊗z ∈ [z, z] be grey numbers. If L(⊗x),
L(⊗y) is not 0 at the same time, then the possibility degree has the following properties:

(1) 0 � ρ(⊗x � ⊗y) � 1;
(2) ρ(⊗x � ⊗y) = 1 iif x � y;
(3) ρ(⊗x � ⊗y) = 0 iif x � y;
(4) (Complementation) ρ(⊗x � ⊗y) + ρ(⊗y � ⊗x) = 1, especially ρ(⊗x � ⊗x) =

1
2 ;

(5) (Transitive) ρ(⊗z � ⊗x) � 0.5 if ρ(⊗y � ⊗x) � 0.5, ρ(⊗z � ⊗y) � 0.5.

Proof. Easy to show that several other conclusions. Here, there are only (2) and (5).

(2) Since ρ(⊗x � ⊗y) = 1, there must exist
Max(0,L−Max(0,x−y))

L = 1. So, L −
Max(0, x − y) = L ⇒ x − y � 0 ⇒ x � y. If x � y, then x − y � 0, we get
L − Max(0, x − y) = L � 0, ρ = 1.

(5) In fact, ρ(⊗y � ⊗x) � 0.5, that is,
Max(0,L1−Max(0,x−y))

L1
� 0.5, L1 = x − x +

y − y. It must meet x − y � 0 or 0 � x − y � 1
2L1. Similarly, since ρ(⊗z � ⊗y) � 0.5,

we have y − z � 0 or 0 � y − z � 1
2L2, L2 = y − y + z − z.

When x − y � 0 and y − z � 0, we can get x � z. ρ(⊗z � ⊗x) = 1 � 0.5 by (2).
When x − y � 0 and y − z � 1

2L2, we have y − z � z − y. This shows that [z, z] at
[y, y] to the right. So, x − z � 0, that is, ρ(⊗z � ⊗x) = 1 � 0.5 by (2).

When 0 � x − y � 1
2L1 and y − z � 0, it is easy to obtain x − y � y − x. This shows

that [x, x] at [y, y] to the left. And y − z � 0, so ρ(⊗z � ⊗x) = 1 � 0.5 by (2).
When 0 � x−y � 1

2L1 and y −z � 1
2L2, there exist x−y � y −x and y −z � z −y.

This shows that [x, x] at [y, y] to the left. And [y, y] at [z, z] to the left, so ρ(⊗z � ⊗x) =
1 � 0.5 by (2). �

Theorem 2. A grey number set based on possibility degree is a totally ordered set.

Proof. A set is a totally ordered set in which every nonempty subset has a smallest el-
ement with the property that there is no element in the subset less than this smallest
element. Firstly, from (1) and (2) in Theorem 1, every element can be compared with oth-
ers in grey number set. Assume there are three grey numbers: ⊗x, ⊗y and ⊗z, ⊗x � ⊗y

and ⊗y � ⊗z. From (5) in Theorem 1, we get ⊗x � ⊗z. �
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DEFINITION 3. Let GS = (U, A, V, f⊗) denote an information system called a grey
information system (Li et al., 2008), where

• U : a set of objects called the universe,
• A: a set of attributes,
• V = ∪a∈AVa: Va is a describing universe of the attribute a,
• f⊗: U × A → V , the objects describing function, which gives each object in U ,

corresponding to an attribute in A, a grey description.

The uncertainty of the information system can be expressed as grey number set
by the describing function, that is, ∀a ∈ A, u ∈ U, f⊗(u, a) ∈ Va, where
f⊗(u, a) is a grey number for an object u at the attribute a, denoted by f⊗(u, a) ∈
[f⊗(u, a), f⊗(u, a)].

In a grey information system GS = (U, A, V, f⊗), a ∈ A, u ∈ U , if the attribute
value is completely unknown, it can be an interval grey set (−∞, Va] that means that
the attribute value is “∗” in the traditional incomplete information systems. Therefore,
f⊗(u, a) = ∅, and (−∞, Va] has the maximum grey that indicates it could range from
any subset of the domain Va.

DEFINITION 4. Let S =(U, A, V, f⊗) be a grey information system, U = {x1, x2, . . . , xn},
A = {a1, a2, . . . , am}. The values of object xi, xj ∈ U at the corresponding attribute
ak ∈ A are f⊗(xi, ak) and f⊗(xj , ak). If ρ{f⊗(xi, ak) � f⊗(xj , ak)} � (�)0.5, then
it is denoted as f⊗(xi, ak) � (�)f⊗(xj , ak).

DEFINITION 5. For GS = (U, A, V, f⊗), the values of objects x, y ∈ U at correspond-
ing attribute a ∈ B ⊆ A are f⊗(x, a) and f⊗(y, a), B ⊆ A identifies a binary relation R

in the U as follows:

R�
B =

{
(x, y) ∈ U2

∣∣f⊗(xi, ak) � f⊗(xj , ak), (a ∈ B)
}
, (2)

R�
B =

{
(x, y) ∈ U2

∣∣f⊗(xi, ak) � f⊗(xj , ak), (a ∈ B)
}
. (3)

R is called the grey dominance relation in grey information system GS = (U, A, V, f⊗).
(x, y) ∈ R�

B , the object y contains the object x in B; (x, y) ∈ R�
B said the object y on

the attribute set B is contained in the object x.

3. Poset and FCA

The term “poset” is short for “partially ordered set”, that is, a set whose elements are
ordered but not all pairs of elements are required to be comparable in the order.

DEFINITION 6. A poset is a pair (P, �), where P is a set, and � is a binary relation on
P (i.e., � is a subset of P × P ) which is
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(1) Reflexive (x � x for all x ∈ P ),
(2) Anti-symmetric (x � y and y � x ⇒ x = y for all x, y ∈ P ),
(3) Transitive (x � y and y � z ⇒ x = z for all x, y, z ∈ P ; Trotter, 1995).

In a grey information system GS = (U, A, V, f⊗), a grey dominance relation R on U

determined by B ⊆ A satisfies the following properties:

(1) R is reflexive and anti-symmetric, and transitive, so it is the partial order;
(2) R�

B1
⊆ R�

B2
⊆ R�

A, R�
B1

⊆ R�
B2

⊆ R�
A , if B1 ⊆ B2 ⊆ A. Let [x]�

B = {y|(x, y) ∈
R�

B }, [x]�
B = {y|(x, y) ∈ R�

B }, [x]�
B and [x]�

B are called a dominance class and an
inferior class of x in the B, respectively.

The following are quoted from reference (Ganter and Wille, 1999).

DEFINITION 7. Let (P, �) be a poset, B ⊆ P . s ∈ P is a infimum (a unique greatest
lower bound), if s � a for a ∈ B. We simply write ∧B. The definition of supremum
(a unique least upper bound) is similar. Its written as ∨B.

DEFINITION 8. A lattice is a poset denoted by (P, �) in which each pair of elements has
a unique supremum and a unique infimum. A lattice is complete if there exists a supre-
mum and infimum for every one of its subsets.

DEFINITION 9. A formal context is a triple (U, A, I) consisting of two sets U =
{x1, x2, . . . , xn} and A = {a1, a2, . . . , an} and a relation I between U and A (I ∈
U × A). The elements of U are called objects and the elements of A are called at-
tributes. I is called the incidence relation and describes whether an object in U has
a specific attribute in A. For X ⊆ V and Y ⊆ A, define X∗ = {a ∈ A| ∀x ∈
X, (x, a) ∈ I}, Y ∗ = {x ∈ U | ∀a ∈ Y, (x, a) ∈ I}. In particular, for x ∈ U and
a ∈ A, x∗ = {x}∗, a∗ = {a}∗.

DEFINITION 10. For X ⊆ V and Y ⊆ A, a concept of context K = (U, A, I) is a pair
(X, Y ) where X∗ = Y and Y ∗ = X . X is called the extent of the concept and Y is
called the intent. With L(K) to represent the set of all concepts of K.

DEFINITION 11. For concepts C1 = (X1, Y1) and C2 = (X2, Y2), we write (X1, Y1) �
(X2, Y2) iff X1 ⊆ X2 (and dually Y1 ⊆ Y2). The set of concepts ordered by the relation
� forms a complete lattice called a concept lattice.

Obviously, relations “�” is a partial order on L(K). It can be induced a lattice struc-
ture. It can be shown that it is a complete lattice. These meet and join operations of
concept lattices are defined as follows:

(X1, Y1) ∧ (X2, Y2) =
(
X1 ∩ X2, (Y1 ∪ Y2)∗ ∗)

, (4)

(X1, Y1) ∨ (X2, Y2) =
(
(X1 ∪ X2)∗ ∗, Y1 ∩ Y2

)
. (5)

Formal concept analysis (FCA) on the detailed description, see reference (Ganter and
Wille, 1999).
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4. Concept Lattice Based on Grey Dominance Relation

DEFINITION 12. A grey formal context is a triple GSK = (U, VA, I), where VA =
{Va}, a ∈ A. Va is a set of ai attribute values. I is a binary relation between U and Va,
if f⊗(x, a) � (�)f⊗(y, a) for ∀f⊗(x, a), f⊗(y, a) ∈ Va.

In grey formal context, the attribute set is divided into several blocks, each block on
behalf of grey describing domain of an attribute. Therefore, in the same grey describing
domain of the two attributes, f⊗(x, a) ∈ Va and f⊗(y, a) ∈ Va, is comparable, otherwise
there is no dominance relation between attributes. Attribute poset is denoted by (VA, �).

DEFINITION 13. Let GSK = (U, VA, I) be a grey formal context. VA = ∪a∈AVa,
x1, x2 ∈ U, f⊗(x1, a), f⊗(x2, a) ∈ VA. The partial order relation on objects set U

is defined as

x1 � x2 ⇔
{(

x∗
1 ∩ Va

)
�

(
x∗

1 ∩ Va

)∣∣∀Va ∈ VA

}
. (6)

In our study, (U, �) is used to represent objects poset.

DEFINITION 14. Let GSK = (U, VA, I) be a grey formal context. For any x, y ∈
U, f⊗(x, a), f⊗(y, a) ∈ VA, B ⊆ A

(1) If there exists (x∗ ∩ Va) � (y∗ ∩ Va) such that [x]�
B = {y ∈ U |(x∗ ∩ Va) �

(y∗ ∩ Va), ∀VA ∈ VB }, then [x]�
B is a dominance class of object x.

(2) If there exists f⊗(y, a) � f⊗(x, a), a ∈ B ⊆ A, x, y ∈ U such that
[f⊗(x, a)]�

B = {f⊗(y, a)|f⊗(y, a) � f⊗(x, a), a ∈ B, x, y ∈ U }, then
[f⊗(x, a)]�

B is a dominance class of attribute a.

Theorem 3. Let GSK =(U, VA, I) be a grey formal context. If C = {f⊗(x, a)|f⊗(x, a) �
f⊗(x1, a), f⊗(x, a) ∈ VA}, B = {f⊗(x, a)|f⊗(x, a) � f⊗(x2, a), f⊗(x, a) ∈ VA},
for x1, x2 ∈ U , then

(1) x1 � x2 ⇔ C ⊆ B.
(2) x2 ∈ [x1]

�
B ⇔ C ⊆ B.

Proof.

(1) Since x1 � x2 ⇔ {(x∗
1 ∩ Va) � (x∗

1 ∩ Va)| ∀Va ∈ VA}, we have x∗
1 = f⊗(x1, a) �

x∗
2 = f⊗(x2, a), for ∀Va ∈ VA. That is, f⊗(x2, a) ∈ VC ⇒ f⊗(x1, a) ∈ VB . Its

reverse is not true. So, C ⊆ B.
(2) x2 ∈ [x1]

�
B , that is, x1 � x2. The proof is same as (1). �
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DEFINITION 15. Let GSK = (U, VA, I) be the grey formal context, X ⊆ U, Y ⊆ A.
Then grey operating of X and Y are defined by its two mappings X ′ and Y ′.

X ′ =
⋂{

x∗ ∪
{
f⊗(y, a)|f⊗(y, a) � f⊗(x, a), f⊗(y, a) ∈ Va,

f⊗(x, a) ∈ x∗}
, x ∈ X

}
, (7)

Y ′ =
⋂{

f⊗(x, a)∗ ∪
{
(f⊗(y, a))∗ |f⊗(y, a) � f⊗(x, a),

f⊗(y, a) ∈ Va

}
, f⊗(x, a) ∈ Y

}
. (8)

x′ = {x}′, f⊗(x, a)′ = {f⊗(x, a)}′, for x ∈ U and f⊗(x, a) ∈ VA.

DEFINITION 16. A grey (formal) concept of GSK = (U, VA, I) is a pair (X, Y ) with
X ⊆ U, Y ⊆ VA, X ′ = Y and Y ′ = X . The sets X and Y are called the extent and the
intent of the grey concept (X, Y ), respectively. The subconcept-superconcept relation is
formalized by

(X1, Y1) � (X2, Y2) ⇔ X1 ⊆ X2(⇔ Y1 ⊇ Y2). (9)

The set of all grey concepts of GSK together with the dominance relation is always a
complete lattice, called the grey concept lattice of GSK and denoted by GL(U, VA, I).

Theorem 4. Let GSK =(U, VA, I) be the grey formal context, ∀(X, Y ) ∈ GL(U, VA, I),
then the total number of all attributes including in Y is |A|.

Proof. Since each object must have a attribute in the grey information system, x∗ involves
all attributes in grey formal context. |x∗ | = |A|. X ′ = ∩ {x∗ ∪ {f⊗(y, a)|f⊗(y, a) �
f⊗(x, a), f⊗(y, a) ∈ Va, f⊗(x, a) ∈ x∗ }, x ∈ X}, so, |x∗ | is the total number of all
attribute including in Y . The conclusion is true. �

Grey formal concept analysis allows us to identify meaningful groupings of elements
that have common dominance attributes. From the conceptual viewpoint, each grey con-
cept represents a category of elements described by a set of dominance attributes. We will
use it to decision-making.

5. Grey Concept Lattice and Decision-Making

DEFINITION 17. Let Sg be a grey relational factors set. Suppose that x0 ∈ Sg is
the reference series and x1, x2, . . . , xn ∈ Sg are the objective series. r(x0, xi) =
1
m

∑m
k=1 r(x0(k), xi(k)) is the grey relational grade between the reference series x0 and

the objective series xi (i = 1, 2, . . . , n) at point k ∈ {1, 2, . . . , m} if it satisfies:
Normality: 0 < r(x0, xi) � 1, ∀k, r(x0, xi) = 1 ⇔ x0 = xi, r(x0, xi) = 0 ⇔

xi ∈ ∅.
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Entirety: xi, xj ∈ Sg = {Sσ
g |, σ = 0, 1, . . . , n}, n � 2, r(xj , xi) =often r(xi, xj).

Symmetry: r(x, y) ≡ r(y, x), if Sg = {x, y}.
Proximity: r(x0(k), xi(k)) increases as |x0(k), xi(k)| decrease for ∀k ∈ {1, 2, . . . , m}.
r(x0(k), xi(k)) is the grey relational coefficient (Wu et al., 1996).

In the grey relational analysis, when the range of the sequence is large or the standard
value is enormous, the function of factors is neglected. However, if the factors goals and
directions are different, the grey relational analysis might also produce incorrect results.
Therefore, one has to preprocess the data which are related to a group of series, which is
called grey theory relational generation (Deng, 1990; Chang et al., 1996). It can reduce
the randomization and increase the regularity of data.

Suppose that U = {X1, X2, . . . , Xl} is a program set that is constructed by a group
grey formal concepts for decision-making. A = {a1, a2, . . . , am} is a set of attributes.
A pair (Xi, VA) is a grey formal concept. Option Xi’s attribute value at aj is a grey
number set f⊗(Xi, aj) = {f⊗(xi1, aj), f⊗(xi2, aj), . . . , f⊗(xis, aj)} (s = |Xi|; j =
1, 2, . . . , m). It’s attribute vector is denoted by (f⊗(Xi, a1), f⊗(Xi, a2), . . . , f⊗(Xi, am))
(i = 1, 2, . . . , n). In order to eliminate the dimensionless and increase the comparability,
f⊗(Xi, aj) (i = 1, 2, . . . , n; j = 1, 2, . . . , m) is standardized by range transform. They
are described as follows:

(1) If the expectancy of the response is larger-the-better (i.e., beneficial response), then
it can be expressed by

uij =
(mins f⊗(Xi, aj) − min1�i�n(f⊗(xi, aj))

(max1�i�n(f⊗(xi, aj)) − min1�i�n(f⊗(xi, aj))
, (10)

uij =
(mins f⊗(Xi, aj) − min1�i�n(f⊗(xi, aj))

(max1�i�n(f⊗(xi, aj)) − min1�i�n(f⊗(xi, aj))
. (11)

(2) If the expectancy of the response is smaller-the-better (i.e., non-beneficial re-
sponse), then it can be expressed by

uij =
(max1�i�n(f⊗(xi, aj)) − mins f⊗(Xi, aj))

(max1�i�n(f⊗(xi, aj)) − min1�i�n(f⊗(xi, aj))
, (12)

uij =
(max1�i�n(f⊗(xi, aj)) − mins f⊗(Xi, aj)

(max1�i�n(f⊗(xi, aj)) − min1�i�n(f⊗(xi, aj))
. (13)

DEFINITION 18. Let ⊗ui = {⊗ui1, ⊗ui2, . . . , ⊗uim} (i = 1, 2, . . . , n) be evalua-
tion vectors of the program that is standardized, where ⊗uij ∈ [uij , uij ]. ⊗u+ =
{ ⊗u+

1 , ⊗u+
2 , . . . , ⊗u+

m}, ⊗u− = {⊗u−
1 , ⊗u−

2 , . . . , ⊗u−
m} are called the ideal optimal

program effectiveness evaluation vector and the critical optimal program effectiveness
evaluation vector respectively, if

uj
+ = max

1�i�n
{uij }, uj

− = min
1�i�n

{uij }, (14)
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uj
+ = max

1�i�n
{uij }, uj

− = min
1�i�n

{uij }, (15)

where ⊗u+
j ∈ [u+

j , u+
j ], ⊗u−

j ∈ [u−
j , u−

j ], j = 1, 2, . . . , m.

DEFINITION 19. Let λ ∈ [0, 1] be a distinguishing coefficient, the grey relational grade
G(⊗u+, ⊗u+

i ) between an objective series ⊗ui and the reference series ⊗u+ is defined
as follow:

G
(

⊗u+, ⊗u+
i

)
=

m∑
j=1

ωjr
+
ij , i = 1, 2, . . . , n, (16)

where

r+
ij =

1
2
[(

Δ+
min + λΔ+

max

)
/
(
Δ+ + λΔ+

max

)

+
(
Δ

+

min + λΔ
+

max

)/
(Δ

+
+ λΔ

+

max

)]
. (17)

∑m
j=1 ωj = 1, ωj is the weight of response j and usually depends on decision makers’

judgment.
In (16), r+

ij is the gray relational coefficient and Δ+ = |u+
j − uij |, Δ

+
= |u+

j − uij |,

Δ+
min = min

{
Δ+, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
,

Δ+
max = max

{
Δ+, i = 1, 2, . . . , n; j = 1, 2, . . . , m},

Δ
+

min = min
{
Δ

+
, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
,

Δ
+

max = max
{
Δ

+
, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
.

DEFINITION 20. Let λ ∈ [0, 1] be a distinguishing coefficient,

G
(

⊗ u−, ⊗ui

)
=

m∑
j=1

ωjr
−
ij , i = 1, 2, . . . , n. (18)

G(⊗u−, ⊗ui) is the grey relational grade between ⊗ui and ⊗u−, where

r−
ij =

1
2
[(

Δ−
min + λΔ−

max

)
/
(
Δ− + λΔ−

max

)
+

(
Δ

−
min + λΔ

−
max)/(Δ

−
+ λΔ

−
max

)]
, (19)

∑m
j=1 ωj = 1, ωj is the weight.

In (18), r−
ij is the gray relational coefficient and Δ− = |uij − u−

j |, Δ
−

= |uij − u−
j |,

Δ−
min = min

{
Δ−, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
,

Δ−
max = max

{
Δ−, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
,
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Δ
−
min = min

{
Δ

−
, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
,

Δ
−
max = max

{
Δ

−
, i = 1, 2, . . . , n; j = 1, 2, . . . , m

}
.

The following linear planning models are used to compute the ideal optimal and the
critical optimal relational grade,respectively.

max G
(

⊗ u+, ⊗ui

)
=

m∑
j=1

ωjr
+
ij , (20)

max G
(

⊗ u−, ⊗ui

)
=

m∑
j=1

ωjr
−
ij . (21)

And then, we can obtain a synthetical grey linear relational grade

G(⊗ui) = β1

[
max G(⊗u+, ⊗ui)

]
+ β2

[
1 − max G(⊗u−, ⊗ui)

]
, (22)

where i = 1, 2, . . . , n. β1, β2 are weights of the two relational grades, that is, β1+β2 = 1.
Usually, there is β1 = β2 = 1

2 .
The algorithm of grey relational decision-making:

Step 1. Determine the grey formal context with original decision table (gray Informa-
tion System) and find all formal concepts in it. Construct decision matrix of compared
formal concepts.

Step 2. Normalization. The decision matrix � = (⊗xij)n×m is translated into the
normalized one �̃ = (⊗uij)n×m using (10) to (13).

Step 3. Data series construction. Calculate the ideal optimal and the critical optimal
series ⊗u+ and ⊗u− using (14) and (15) from �̃ = (⊗uij)n×m, respectively.

Step 4. Grey relational coefficient. Calculate the grey relational coefficient r+
ij , r−

ij

between ⊗uij and the two different factors by (17) and (19).
Step 5. Grey relational grade calculation. Compute the grey relation grade of option

⊗ui with respect to the two optimal series using the two linear planning models (20) and
(21), respectively.

Step 6. Feature subset selection. Compute the grey relational grade G(⊗ui) of ⊗ui

using (22) for decision-making prediction purpose. Sort the grey relational grades. The
features with higher score comprise the optimal feature subset.

6. Application Examples

We take the example (Wang et al., 2009b) as the sample to explain the validity of this
method. The investment bank wants to invest in four enterprises s1, s2, s3, s4 in one city.
Now we evaluate four indexes a1 (net output rate of investment), a2 (investment rate of
profit and tax), a3 (internal returns ratio), a4 (environmental pollution degree) to decide
which one to invest.
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Table 1

Original decision table

a1 a2 a3 a4

s1 [1.8, 2.2] [1.2, 1.8] [1.8, 2.2] [5.4, 5.6]

s2 [2.3, 2.7] [2.4, 3.0] [1.6, 2.0] [6.4, 6.6]

s3 [1.6, 2.0] [1.7, 2.3] [1.9, 2.3] [4.4, 4.6]

s4 [2.0, 2.4] [1.5, 2.1] [1.8, 2.2] [4.9, 5.1]

Table 2

The grey formal context of Table 1

a11 a12 a13 a14 a21 a22 a23 a24

s1 0 1 0 0 1 0 0 0

s2 0 0 0 1 0 0 0 1

s3 1 0 0 0 0 0 1 0

s4 0 0 1 0 0 1 0 0

Table 3

The grey formal context of Table 1 (continue)

a31 a32 a33 a41 a42 a43 a44

s1 0 1 0 0 0 1 0

s2 1 0 0 0 0 0 1

s3 0 0 1 1 0 0 0

s4 0 1 0 0 1 0 0

Through investigation and calculation of these four enterprises s1, s2, s3, s4, the in-
vestment bank gets the exact number as shown in Table 1. a1, a2, a3 are the benefit type
indexes and a4 is the cost type indexes.

Calculated using (1): [1.6, 2.0] � [1.8, 2.2] � [2.0, 2.4] � [2.3, 2.7], we have
f⊗(S, a1) = {a11, a12, a13, a14} = {[1.6, 2.0], [1.8, 2.2], [2.0, 2.4], [2.3, 2.7]}, where
S = {s1, s2, s3, s4}. Similarly, the followings hold: f⊗(S, a1) = {a21, a22, a23, a24} =
{[1.2, 1.8], [1.5, 2.1], [1.7, 2.3], [2.4, 3.0]}; f⊗(S, a3) = {a31, a32, a33} = {[1.6, 2.0],
[1.8, 2.2], [1.9, 2.3]}; f⊗(S, a4) = {a41, a42, a43, a44} = {[4.4, 4.6], [4.9, 5.1], [5.4, 5.6],
[6.4, 6.6]}.

Step 1. Determine the grey formal context with original decision table Table 1 and
find all formal concepts in it.

The standardized grey formal context is shown in Tables 2 and 3.
Obtain the formal concepts from Tables 2 and 3:(

{1}, {a11, a12, a21, a31, a32, a41, a42, a43}
)
,(

{2}, {a11, a12, a13, a14, a21, a22, a23, a24, a31, a41, a42, a43, a44}
)
,
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(
{3}, {a11a21, a22, a23, a31, a32, a33, a41}

)
,(

{4}, {a11, a12, a13, a21, a22, a31, a32, a41, a42}
)
,(

{1, 2}, {a11, a12, a21, a31, a41, a42, a43}
)
,(

{1, 3}, {a11, a21, a31, a32, a41}
)
,(

{1, 4}, {a11, a12, a21, a31, a32, a41, a42}
)
,(

{2, 3}, {a11, a21, a22, a23, a31, a41}
)
,(

{2, 4}, {a11, a12, a13, a21, a22, a31, a41, a42}
)
,(

{3, 4}, {a11, a21, a22, a31, a32, a41}
)
,(

{1, 2, 3}, {a11, a21, a31, a41}
)
,(

{1, 2, 4}, {a11, a12, a21, a31, a41, a42}
)
,(

{1, 3, 4}, {a11, a21, a31, a32, a41}
)
,(

{2, 3, 4}, {a11, a21, a22, a31, a41}
)
,(

{1, 2, 3, 4}, {a11, a21, a31, a41}
)
.

We select the following grey concepts to determine the best option.(
{1}, {a11, a12, a21, a31, a32, a41, a42, a43}

)
,(

{2}, {a11, a12, a13, a14, a21, a22, a23, a24, a31, a41, a42, a43, a44}
)
,(

{3}, {a11a21, a22, a23, a31, a32, a33, a41}
)
,(

{4}, {a11, a12, a13, a21, a22, a31, a32, a41, a42}
)
.

Step 2. Normalization. Use (10) to (13) to normalize the corresponding objective se-
ries , thus each feature has the same degree of influence and the method cannot be affected
by the choice of units and scales. Table 4 contains the normalized results.

Step 3. Data series construction. View each of the row vectors of the matrix as a data
series, and obtain a total of n series. These series are:

⊗u+ =
(
[0.6363, 1], [0.6667, 1], [0.4285, 1], [0.909, 1]

)
,

⊗u− =
(
[0, 0.3636], [0, 0.3333], [0, 0.5714], [0, 0.0909]

)
.

Step 4. Grey relational coefficient. In this case, adopt λ = 1, compute Δ before
getting the coefficient. The process is showed at Table 5. We obtain that Δ+

min = 0,

Δ+
max = 0.909. Using similar method, there are Δ

+

min = 0, Δ
+

max = 0.909, Δ−
min = 0,

Δ−
max = 0.909, Δ

−
min = 0, Δ

−
max = 0.909.

Calculate the grey relational coefficient r+
ij and r−

ij between ⊗uij and the two different
factors by (17) and (19) (see Tables 6 and 7).

Step 5. Grey relational grade calculation.

Table 4

Normalization decision matrix that is constructed by object set {s1}, {s2}, {s3}, {s4} of grey formal concepts

a1 a2 a3 a4

{s1} [0.1818, 0.5454] [0, 0.3333] [0.2857, 0.8571] [0.4545, 0.5454]

{s2} [0.6363, 1] [0.6667, 1] [0, 0.5714] [0, 0.0909]

{s3} [0, 0.3636] [0.2778, 0.6111] [0.4285, 1] [0.9090, 1]

{s4} [0.3636, 0.7272] [0.1667, 0.5] [0.2867, 0.8571] [0.6818, 0.7727]
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Table 5

Computing Δ+
min and Δ+

max

a1 a2 a3 a4 minj {Δ+} maxj {Δ+}

Δ+(1) 0.4545 0.6667 0.1248 0.4545 0.1248 0.6667

Δ+(2) 0 0 0.4285 0.909 0 0.909

Δ+(3) 0.6363 0.3889 0 0 0 0.6363

Δ+(4) 0.2727 0.5 0.1248 0.2272 0.1428 0.5

Δ+
min 0

Δ+
max 0.909

Table 6

Grey relational coefficient matrix r+
ij

r+
ij =

⎡
⎢⎢⎢⎢⎣

0.5 0.4053 0.7609 0.5

1 1 0.5147 0.3333

0.4167 0.5388 1 1

0.625 0.4761 0.7609 0.6667

⎤
⎥⎥⎥⎥⎦ .

Table 7

Grey relational coefficient matrix r−
ij

r+
ij =

⎡
⎢⎢⎢⎢⎣

0.7142 1 0.6140 0.5

0.4167 0.4053 1 1

1 0.6206 0.5147 0.3333

0.5556 0.7316 0.6140 0.3999

⎤
⎥⎥⎥⎥⎦ .

G
(

⊗ u+, ⊗u1

)
= 0.5042, G

(
⊗ u+, ⊗u2

)
= 0.7388,

G
(

⊗ u+, ⊗u3

)
= 0.6322, G

(
⊗ u+, ⊗u4

)
= 0.7120;

G
(

⊗ u−, ⊗u1

)
= 0.7071, G

(
⊗ u−, ⊗u2

)
= 0.6172,

G
(

⊗ u−, ⊗u3

)
= 0.5752, G

(
⊗ u−, ⊗u4

)
= 0.7055.

Step 6. Feature subset selection. G(⊗ u1) = 0.3986, G(⊗u2) = 0.5609, G(⊗u3) =
0.5285, G(⊗u4) = 0.5033. So get the same order of business with the literature (Wang
et al., 2009b): {s2} � {s3} � {s4} � {s1}.
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7. Conclusions and Discussions

In this paper, we have addressed the issues of lattice structure of data sets in a grey infor-
mation system. A dominance relation definition of grey number has been given. Under
this definition, it has been proved that different grey number of the same attributes is
comparable. Based on the grey dominance relation defined in this paper, two posets have
been discussed. Then, the definition and building method of concept lattice based on grey
dominance relations were proposed. Theoretical studies and numerical experiments have
been carried out to show that the method are effective and suitable to deal with uncertainty
and discovery rules in a decision table, and have a much simpler and more comprehensive
form than the existing ones. These may be helpful for knowledge discovery.

Acknowledgements. The authors wish to thank the anonymous reviewers for their con-
structive comments.
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Pilkosios gardeli ↪u sampratos sudarymas ir taikymas

Qiang WU

Pilkieji skaičiai padeda išreikšti ne tik atskir ↪u aibės element ↪u, bet ir aibės kaip visumos
neapibrėžtum ↪a. Šiame straipsnyje neapibrėžtai informacijai ir kiekvienos originalios sekos neapi-
brėžtumo laipsniui perteikti sujungiama tikimybės laipsnio samprata iš pilk ↪uj ↪u sistem ↪u teorijos ir
dominavimo santykiai bei iš dalies sutvarkytos aibės iš šiurkšči ↪uj ↪u aibi ↪u teorijos. Parengta pilk ↪uj ↪u
informacini ↪u sistem ↪u gardeli ↪u samprata ir aprašytas sprendim ↪u priėmimo algoritmas, taikant pil-
kuosius santykius.Pateikta atvejo analizė, kuomet pasiūlytas metodas taikomas tiekėjams parinkti.
Atlikti tyrimai parodė, jog šis metodas yra tinkamas naudoti.


