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Abstract. This paper proposes a new multi-attribute ranking procedure based on distance from
decision-maker preferences. This method has two phases. In the first phase, the decision maker
is asked to define the preferred performance for each attribute. In the second phase, Weighted
Sum method and new distance-based normalization procedure are used to determine the overall
performance rating of alternatives.
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1. Introduction

Multi-attribute decision making (MADM) refers to screening, prioritizing, ranking, or
selecting a set of alternatives usually under independent, incommensurate or conflicting
attributes (Saremi et al., 2009; Hwang and Yoon, 1981). A MADM problem can be con-
cisely expressed in the matrix format as shown below:

D =

C1 C2 · · · Cn

A1

A2

...
Am

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x12 x22 · · · x2n

...
...

...
...

x1n x2n · · · xmn

⎤
⎥⎥⎥⎦ ,

W = [w1, w2, . . . , wn],

where A1, A2, . . . , Am are feasible alternatives, C1, C2, . . . , Cn are attributes (criteria),
xij is the performance rating of ith alternative with respect to jth attribute, and wj is a
weight (significance) of jth attribute.

In a typical MADM evaluation, attributes can be classified into two main categories:
cost attributes and benefit attributes. In the case of benefit attributes, the higher score is
assigned to the alternative which performance rating is higher, i.e., preferable is a max-
imum of jth attribute. In contrast to the previous, in the case of cost attributes, higher
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score is assigned to the alternative which performance rating is lower, i.e., the minimum
of jth attribute is preferable.

In addition to cases in which decision-makers prefer the higher or lower performance
ratings, there are also cases where decision-makers express their preferences using the
preferred performance ratings. For example, in the case of the computer selection IT spe-
cialists can provide some recommendations in relation to the characteristics of computers,
i.e., to define some necessary or desirable characteristics of the computers. In these cases,
an alternative, i.e., computer, whose performances are equal to desirable performances,
compared to all attributes, is potentially the best alternative. However, in the real-world
cases of evaluation, the performance ratings of real alternatives usually are different from
the necessary or desirable performance ratings, at least in relation to one attribute.

The attributes that are used for evaluation of alternatives sometimes can be mutu-
ally dependent, to some extent. As a result, alternatives whose performance ratings in
some way deviate from the preferred performance ratings may be more acceptable. For
example, an alternative could be much more acceptable if any of its performance rat-
ings, according to a benefit attribute, exceeded the preferred performance rating without
a significant increase of performance ratings of some cost attributes or a slightly worse
performance rating of a benefit attribute which significantly affect the decrease of perfor-
mance ratings of cost attributes.

The best solution, i.e., the most acceptable alternative, is an alternative whose per-
formance provides the best compromise between performance ratings of benefit and cost
attributes.

The rest of the paper is organized as follows. In Section 2 the Weighted Sum method
is presented; in Section 3, two characteristic normalization procedures are described in
details; in Section 4 the normalization procedure, based on preferred performance rat-
ings and our approach, is proposed. An illustrative example is provided and discussed in
Section 5. Finally, Section 6 contains the conclusions of the paper.

2. The Weighted Sum Method

The Weighted Sum (WS) method, more often known as the Simple Additive Weighted
(SAW) method (MacCrimmon, 1968), is probably the best known and most widely used
MADM method (Hwang and Yoon, 1981; Chen and Hwang, 1992; Chou et al., 2008).

The basic logic of the WS method is to obtain a weighted sum of performance ratings
of each alternative over all attributes (MacCrimmon, 1968; Hwang and Yoon, 1981; Chen
and Hwang, 1992; Yoon and Hwang, 1995). Therefore, the overall performance rating of
each alternative is obtained by using the following formula:

Si =
n∑

j=1

wj · rij , (1)

where Si is the overall performance rating of the ith alternative; wj is the weight of jth
attribute; and rij is a normalized performance rating of ith alternative with respect to jth
attribute.
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As it can be seen from the formula (1), we should have normalized performance rat-
ings in order to eliminate computation problems that can be caused by using different
units of measures in a decision-making matrix.

A number of normalization methods, by different complexity, have been proposed.
Some MADM methods require the use of a certain normalization methods. For exam-
ple, the COPRAS method (Zavadskas et al., 1994) is based on the use of linear trans-
formations – the Sum method, while the authors of the MOORA method (Brauers and
Zavadskas, 2006) argue that the square root of the sum of squares of each alternative per
attribute, also known as Vector normalization method, is the only appropriate normaliza-
tion method for this method.

Contrary to the above group of MADM methods, some other MADM methods have
their recommended normalization methods, but they can also be used with other normal-
ization methods. For example, the TOPSIS method (Hwang and Yoon, 1981) is based
on the use of a vector normalization method, but it can also be used with some other
normalization methods (Wang and Chang, 2007; Mahdavi et al., 2008; Wu et al., 2009),
especially when the evaluation is performed in a fuzzy environment.

The WS method can be used with various normalization methods. However, the ag-
gregative function, used in the WS method, does not make a difference between benefit
and cost type attributes, that is why the normalization procedure used with WS method
must at the same time transform performance ratings of cost type attributes into the ade-
quate benefit performance ratings.

3. Normalization Procedures

In MADM methods, normalization procedures are used to eliminate different units of
measure in which performance ratings of attributes are expressed. Many authors sug-
gest the use of various normalization procedures. Two characteristic normalization pro-
cedures:

• Linear Scale Transformation, Max Method; and
• Linear Scale Transformation, MaxMin Method,

are presented below.

3.1. Linear Scale Transformation, Max Method

This method provides the simplest normalization procedure. In Linear Scale Transforma-
tion – Max (LST-Max) method, the performance rating of each alternative is divided by
a maximum performance rating for that attribute.

For benefit attributes the normalized performance ratings are calculated (Zavadskas
and Turskis, 2008; Van Delft and Nijkamp, 1977) using the following formula:

rij =
xij

x+
j

, (2)
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Fig. 1. The performance-based normalization, the LST-Max method.

where xij is a performance rating of ith alternative with respect to jth attribute; and x+
j

is the largest performance rating of jth attribute.
This way of normalization, where the performance rating of alternative is used as the

nominator of ratio Δn/Δdn, can be classified as the performance-based normalization
procedure (see Fig. 1).

In order to transform cost to benefit type performances, the normalized performance
ratings are calculated using the following formula:

rij = x−
j /xij , (3)

where x−
j is the smallest performance rating of the considered attribute.

In addition to the procedure discussed above, the performance-based normalization
procedures also include the well-known:

• Linear Scale Transformation – Sum method (LST-Sum); and
• Vector normalization (VN),

where performance ratings are also used as nominators.
Unlike the procedure discussed above, in Linear Scale Transformation – Sum method

(4) the sum of all performance ratings, with respect to the considered attribute, is used
as the denominator, while the Vector normalization (5) uses the square root of sum of
squares of performance ratings as the nominator (Van Delft and Nijkamp, 1977).

rij = xij

/ n∑
i=1

xij , (4)

rij = xij

/( n∑
i=1

x2
ij

)1/2

. (5)

Nominators, used in (4) and (5), have an effect on values of normalized performance
ratings, but do not change anything fundamentally in relation to the formula (2).

Using these normalization procedures, that belong to the performance-based normal-
ization procedures, performance ratings are transformed into dimensionless values that
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are in the interval [0,1], or more precisely in the interval [x−
j /Δdnj , x

+
j /Δdnj ], while

the alternative with the best performance rating has the highest value of normalized per-
formance rating.

As can be seen from (2), (4) and (5), the performance-based normalization procedures
do not permit inclusion of the decision-makers preferences in the process of normaliza-
tion.

3.2. Linear Scale Transformation, MaxMin Method

This normalization method considers both the maximum and minimum performance rat-
ings of attributes during the calculation (Zavadskas and Turskis, 2008; Weitendorf, 1976).
The normalized value rij is obtained by using the formula:

rij =
xij − x−

j

x+
j − x−

j

, (6)

for benefit attributes and by using the following formula:

rij =
x+

j − xij

x+
j − x−

j

, (7)

for cost attributes.
In Linear Scale Transformation – MaxMin (LST-MaxMin) method, instead of using

performance ratings as nominators, the distance between performance ratings of alterna-
tives and appropriate reference points is used; therefore, this type of normalization can
be classified as the distance-based normalization procedure (see Fig. 2).

When the LST-MaxMin method is used a for benefit attribute, the distance is cal-
culated as the difference between the performance rating of the considered alternative
and the worst performance rating of all alternatives according to the considered attribute
(Δn = xij − x−

j ); or for cost attributes, as the difference between the best perfor-
mance rating of all alternatives and performance rating of the considered alternative

Fig. 2. The distance-based normalization, the LST-MaxMin method.
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(Δn = x+
j − xij). Using the described procedure, the obtained distances are greater

than or equal to zero Δn � 0.
The denominator used in (6) and (7), Δdnj = x+

j − x−
j , transform the obtained

distances to dimensionless values that belong to the interval [0,1], whereby the normal-
ized performance of the alternative with the best performance ratings to the considered
attribute has the value 1, and worst has the value 0.

In addition to the discussed normalization procedure, the LST-MaxMin method, in
the distance-based normalization procedures may also be included, less frequently used,
Juttler (1966) and Juttler–Korth (Korth, 1969) normalization procedures.

For normalization Juttler (Zavadskas and Turskis, 2008; Brauers et al., 2008; Juttler,
1966) proposed the following formula:

rij =
x+

j − xij

x+
j

, (8)

for benefit attributs. A similar formula was proposed by Korth (1969):

rij = 1 −
∣∣∣∣x

+
j − xij

x+
j

∣∣∣∣. (9)

Some disadvantages of Juttler and Juttler–Korth normalization procedures are being
discussed in Zavadskas and Turskis (2008) and Brauers et al. (2008).

4. The Proposed Model for Ranking Alternatives Based on Preferred Performance
Ratings

To highlight the advantage that can be achieved by using the preferred performance rat-
ings of attributes during the evaluation of alternatives, we propose the use of the Weighted
Sum method, which includes the following steps:

• define the preferred performance rating for each attribute;
• normalize performance ratings;
• apply the aggregation procedure to determine the overall ranking index for each

alternative; and
• select the most acceptable alternative or rank alternatives.

Step 1. Define the preferred performance ratings for each attribute
After creating the initial decision-making matrix, the first step in our methodology

is formation of a virtual alternative A∗ = {x∗
1, x

∗
2, . . . , x

∗
n}, whose elements x∗

j are the
preferred performance ratings of attributes.

Preferred performance ratings are assigned by the decision-maker according to his/her
preferences. If the preferred performance rating of any attribute is not assigned, it can be
determined by using the following formula (Zavadskas and Turskis, 2010):

x∗
j =

{(
max

i
xij

∣∣j ∈ Jmax
)
,
(

min
i

xij

∣∣j ∈ Jmin
)}

, (10)



A Multi-Attribute Decision Making Model 109

Fig. 3. The distance-based normalization, with respect to preferred performance ratings.

where x∗
j is the preferred performance rating of jth attribute; Jmax is associated with

benefit attributes; and Jmin is associated with cost attributes.

Step 2. Normalize performance ratings
The second step in our methodology is the normalization of the decision-making

matrix elements, and also the normalization of the preferred performance ratings of at-
tributes.

Taking into account the preferred performance ratings of attributes, in order to calcu-
late the normalized performance ratings, we combine the Weitendorf (1976) and Juttler
(1966) approaches. Substituting the nominator in formula (6) by the nominator which rep-
resents the distance between the performance rating of ith alternative and the preferred
performance rating of jth attribute (see Fig. 3), we have the following formula:

rij =
xij − x∗

j

x+
j − x−

j

, (11)

that can be used in case of benefit attributes. In the previous formula x∗
j represents the

preferred performance rating of jth attribute.
In a similar way, by replacing the nominator in formula (7), we can get the formula

for the normalization of cost attributes, in the following form:

rij =
x∗

j − xij

x+
j − x−

j

. (12)

In addition to the normalization, formulae (11) and (12) also perform the following
transformations:

• In the case of benefit attributes, i.e., the optimization direction is maximization,
normalized performance ratings are:

• positive, rij > 0, if the performance rating xij of ith alternative is higher
than the preferred performance rating of jth attribute;
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• negative, rij < 0, if the performance rating of ith alternative is lower than the
preferred.

• In the case of cost attributes, i.e., the optimization direction is minimization, nor-
malized performance ratings rij are:

• positive, rij > 0, if the performance rating xij of ith alternative is lower than
the preferred performance rating of jth attribute;

• negative, rij < 0, if performance rating of ith alternative is higher than the
preferred.

• And finally, regardless of the attribute type, normalized performance ratings have
the value zero, rij = 0, when the performance rating is equal to preferred per-
formance rating, because the distance between the performance and the preferred
performance is equal to zero.

After normalization, the next step in our methodology is determination of the overall
performance ratings for considered alternatives.

Step 3. Aggregation phase
The overall performance ratings for considered alternatives are calculated using the

formula (1), which is shown again below in order to make this presentation clearer:

Si =
n∑

j=1

wj · rij . (13)

Using the formula (13) we get values that belong to the interval Si ∈ [−1, 1]. The overall
performance ratings of aternatives which have a performance ratings equal to the pre-
ferred performance ratings are equal to zero, Si = 0.

In a typical real-world MADM problems some performance ratings of alternatives
usually deviate from the preferred performances. The proposed normalization procedure
allows a compensation between better and worse performance ratings of alternatives.

Alternatives, whose some significantly better performance ratings successfully com-
pensate the impact of worse performance ratings achieved with respect to the remaining
attributes,

∑
rij>0 wjrij −

∑
rij<0 wjrij > 0, have the overall performance rating greater

than zero, Si > 0.
Contrary to the above mentioned case, the alternatives, whose better performance

achieved on the basis of some attributes cannot compensate the impact of worse per-
formance ratings achieved with respect to the remaining attributes,

∑
rij>0 wjrij −∑

rij<0 wjrij < 0, have the overall performance rating less than zero, Si < 0.
And finally, the alternatives whose better performances ratings are completely can-

celed by worse performance ratings,
∑

rij>0 wjrij −
∑

rij<0 wjrij = 0, have the overall
performance rating equal to zero, Si = 0.

By using the Weighted Sum method and the proposed distance-based normalization
procedure, i.e., by applying (13), (11) and (12), we get the procedure for calculating over-
all performance ratings of alternatives which is similar to the procedure used in the newly
proposed MOORA method (Brauers and Zavadskas, 2006), where in order to calculate
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overall performance ratings of alternatives (Brauers and Zavadskas, 2009) the following
formula is used:

ÿ∗
j =

i=g∑
i=1

six
∗
ij −

i=n∑
j=g+1

six
∗
ij , (14)

where ÿj is the overall performance rating of jth alternative; si is the significance coeffi-
cient of ith attribute, x∗

ij is the normalized performance of jth alternative with respect to
ith attribute; i = 1, 2, . . . , g represent the benefit and i = g + 1, g + 2, . . . , n represent
the cost attributes.

The proposed procedure is also similar to the procedure used by Kalibatas and Turskis
(2008).

Step 4. Selection of the most acceptable alternative or ranking alternatives
In accordance with the previous consideration, in the case of ranking alternatives

based on the preferred performance ratings of attributes, the most acceptable alternative
is the alternative with the highest value of Si, and the best alternative, A∗, is determined
as

A∗ = max
i

Si = max
i

n∑
j=1

wj · rij . (15)

5. A Numerical Example

In this section, we consider a numerical example in order to explain accurately the pro-
posed methodology. After that, as a comparative analysis, we compare the results from
the proposed methodology and results obtained by using well-known MADM methods:
SAW and TOPSIS.

5.1. An Illustrative Example

Suppose that the management of a company plans to replace the computers of employees
in a department. Suppose also that, based on the characteristics of business activities that
are performed in the department, IT specialist recommends the purchase of a model HP
Compaq 6730b Notebook PC with the following preferred characteristics:

• CPU (speed) approximately 2.4 GHz;
• RAM (capacity) approximately 4 GB;
• HDD (capacity) approximately 250 GB.

In addition to the above-mentioned characteristics, i.e., attributes, the prices and war-
ranty periods are also considered, so that the complete list of attributes on which the
selection will be made contains the following attributes: Price, CPU (speed), RAM (ca-
pacity), HDD (capacity) and Warranty.



112 D. Stanujkic et al.

Table 1

Importance and weights of attributes

Attribute Price CPU RAM HDD Warranty

Importance (1–10) 7 7 5 3 1

Weight 0.304 0.304 0.217 0.130 0.043

Table 2

Initial decision-making matrix – Characteristics of HP Compaq 6730b Notebook PC models

Attributes C1 C2 C3 C4 C5

Price CPU RAM HDD Warranty

Speed Capacity Capacity Time

Unit of measures $ GHz GB GB Year(s)

Available 1; 2; 4 120–500 1; 3

Optimization type min max max max max

Preferred ratings 1200.00 2.40 4 250 3

Weights (wj ) 0.304 0.304 0.217 0.130 0.043

No. Model

A1 FH008AW 1,549.00 2.53 2 160 3

A2 NQ281AW 1,499.00 2.53 2 250 3

A3 FH005AW 1,379.00 2.40 2 160 3

A4 KS183UT 1,259.00 2.40 4 500 3

A5 KS181UT 1,129.00 2.40 2 320 3

A6 KS179UT 1,049.00 2.40 4 320 1

A7 KS180UT 989.00 2.40 2 250 3

Suppose also that IT specialists, using the values on a scale of 1–10, assign the impor-
tance to these attributes. The assigned values and appropriate attribute weights are shown
in Table 1.

Some of the most important characteristics of certain HP Compaq 6730b Notebook
PC models (attributes), attributes weights, the optimization type and the preferred perfor-
mance ratings of attributes are shown in Table 2.1

After creating the initial decision-making matrix, its normalization was carried out.
Effects of normalization achieved by applying (11) and (12), are shown in Table 3.

In the next step, the weighted normalized decision-making matrix is formed by multi-
plying elements in columns of normalized decision-making matrix by the corresponding
weights. The weighted normalized decision-making matrix is shown in Table 4.

1Source: http://h10010.www1.hp.com/wwpc/us/en/en/WF25a/321957-321957-
64295-321838-3955547-3687777.html (02.12.2009).
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Table 3

The effects of normalization

No. Models Attributes

C1 C2 C3 C4 C5

A1 FH008AW −0.623 1.000 −1.000 −0.265 0.000

A2 NQ281AW −0.534 1.000 −1.000 0.000 0.000

A3 FH005AW −0.304 0.000 −1.000 −0.265 0.000

A4 KS183UT −0.105 0.000 0.000 0.735 0.000

A5 KS181UT 0.127 0.000 −1.000 0.206 0.000

A6 KS179UT 0.270 0.000 0.000 0.206 −1.000

A7 KS180UT 0.377 0.000 −1.000 0.000 0.000

Table 4

Weighted normalized decision-making matrix

No. Models Attributes

C1 C2 C3 C4 C5

min max max max max

A1 FH008AW −0.190 0.304 −0.217 −0.035 0.000

A2 NQ281AW −0.163 0.304 −0.217 0.000 0.000

A3 FH005AW −0.092 0.000 −0.217 −0.035 0.000

A4 KS183UT −0.032 0.000 0.000 0.096 0.000

A5 KS181UT 0.039 0.000 −0.217 0.027 0.000

A6 KS179UT 0.082 0.000 0.000 0.027 −0.043

A7 KS180UT 0.115 0.000 −0.217 0.000 0.000

After that, the overall performance rating for any of the considered alternative can be
finally determined.

Ranking results, as well as the sums of weighted normalized performance ratings of
alternatives obtained on the base of attributes with significantly better or worse perfor-
mance ratings compared to the preferred performance ratings, are shown in Table 5.

Based on the results shown in Table 5, it can be easily seen that the best ranked is
the alternative A6 (Model: KS179UT), with the overall performance rating of 0.065. The
runner alternative is the alternative A4 (Model: KS183UT), with a slightly lower overall
performance rating, which is 0.064.

5.2. A Comparative Study

In order to verify the proposed methodology, below is shown a comparison of results
obtained by its application and as well as the results obtained by applying two significant
MADM methods, and also known normalization procedures.
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Table 5

Results of ranking alternatives

No. Models Attributes

Σwjrij S Rank

rij > 0 rij < 0

A1 FH008AW 0.304 −0.442 −0.137 5

A2 NQ281AW 0.304 −0.380 −0.076 3

A3 FH005AW 0.000 −0.344 −0.344 7

A4 KS183UT 0.096 −0.032 0.064 2

A5 KS181UT 0.065 −0.217 −0.152 6

A6 KS179UT 0.109 −0.043 0.065 1

A7 KS180UT 0.115 −0.217 −0.103 4

Table 6

The overall performance and ranking order of the alternatives

Models Method

SAW(LST-Max) SAW (LST-MaxMin) TOPSIS TOPSIS(M) WS

I II III IV V

S Rank S Rank S Rank S Rank S Rank

FH008AW 0.693 7 0.348 5 0.121 7 0.063 7 −0.137 5

NQ281AW 0.723 5 0.410 3 0.191 5 0.094 6 −0.076 3

FH005AW 0.702 6 0.141 7 0.182 6 0.099 5 −0.344 7

KS183UT 0.919 1 0.549 2 0.777 1 0.286 2 0.064 2

KS181UT 0.791 4 0.333 6 0.409 4 0.216 4 −0.152 6

KS179UT 0.891 2 0.551 1 0.708 2 0.287 1 0.065 1

KS180UT 0.810 3 0.382 4 0.423 3 0.249 3 −0.103 4

Results, obtained by using the SAW method with the LST-Max method, are shown in
column I of Table 6, and the results obtained by using the same method with the LST-
Max-Min method in column II. The column III of Table 6 contains the results obtained
by applying the TOPSIS method.

The ranking order of alternatives, obtained by using different MADM methods, are
summarized in Table 7.

As it can be seen from Tables 6 and 7, using the SAW method with the LST-Max
normalization procedure as well as the TOPSIS method, the alternative A4 was selected
as the best alternative, while the alternative A6 takes the second position. However, using
the SAW method with the LST-MaxMin normalization procedure we have a reverse order
of the two best placed alternatives.

In the TOPSIS method, the positive-ideal solution is formed ot the base of the most
desirable weighted normalized performance ratings in the case of benefit attributes, and
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Table 7

Ranking order comparison

Method Ranking order

SAW(LST-Max) A4 � A6 � A7 � A5 � A2 � A3 � A1

SAW (LST-MaxMin) A6 � A4 � A2 � A7 � A1 � A5 � A3

TOPSIS A4 � A6 � A7 � A5 � A2 � A3 � A1

TOPSIS (M) A6 � A4 � A7 � A5 � A3 � A2 � A1

WS A6 � A4 � A2 � A7 � A1 � A5 � A3

the most undesirable in the case of cost attributes, as it is shown by the following formula:

A+ =
{
v+
1 , v+

2 , . . . , v+
n

}
=

{(
max

i
vij |j ∈ Jmax

)
,
(

min
i

vij

∣∣j ∈ Jmin
)}

, (16)

where vij is the weighted normalized performance rating of ith alternative according to
jth attribute; Jmax is associated with the benefit attributes; and Jmin is associated the
with cost attributes.

In order to perform a more realistic comparison, we also carried out the ranking of
alternatives using the TOPSIS methods, whereby the positive-ideal solution is formed out
of preferred performance ratings, as shown by the following formula:

A+ =
{
v+
1 , v+

2 , . . . , v+
n

}
=

{
v∗

j

∣∣j ∈ 1, . . . , n
}
, (17)

where v∗
j is the weighted normalized preferred performance ratings of jth attribute.

The results obtained by applying the TOPSIS method, where the positive-ideal solu-
tion is formed by using the formula (17), are shown in column IV of Table 6. The same
ranking order of the first two best-ranked alternatives as in the case of using our ranking
procedure is achieved. This confirms the correctness of our methodology and also indi-
cates that the ranking of alternatives based on preferred performance ratings with a higher
degree satisfying decision-makers preferences.

Table 8 shows performances of two best-ranked models of computers, as well as the
preferred performance rating of attributes used for its evaluation.

The alternative A4 has performance ratings equal to the preferred performance rat-
ings for attributes C2, C3 and C5, and its performance ratings exceed the preferred for
attributes C1 and C4. However, the attribute C1 a is cost attribute whose performance is
greater than the preferred and it has a negative effect on the overall performance.

The alternative A6 has performance ratings equal the preferred for attributes C2 and
C3. Its performance rating exceeds the desired performance for attribute C4, and does not
reach the preferred performance for attributes C1 and C5.

By using the proposed methodology the alternative A6 its slightly worse performance
rating obtained in relation to the attribute C5 successfully compensates by a more prefer-
able performance rating obtained in relation to the attribute C1. Therefore, the alternative
A6 more closely meets the decision-makers preferences and it is selected as the most
acceptable, i.e., the most appropriate from the set of offered alternatives.



116 D. Stanujkic et al.

Table 8

Comparative characteristic of the two best-ranked alternatives

Attributes C1 C2 C3 C4 C5

Price CPU RAM HDD Warranty

Opt. direction min max max max max

Weights 0.304 0.304 0.217 0.130 0.043

Preference 1200.00 2.40 4 250 3

No. Model

A4 KS183UT 1,259.00 2.40 4 500 3

A6 KS179UT 1,049.00 2.40 4 320 1

6. Conclusion

Ranking a set of alternatives based on their distance from an ideal point is a very actual
multi-attribute decision making approach, and it is implemented in the frequently used
TOPSIS method.

In the TOPSIS method, the ideal point concept has also been extended by dis-
tance from the negative-ideal point, so this method uses two ideal points, the positive-
ideal point, which contains the most desirable performance ratings of attributes, and the
negative-ideal point, which contains the most undesirable performance ratings.

This paper presents the methodology which allows ranking of alternatives on the basis
of their distance from the ideal point, where the ideal point is formed according to the
decision-makers preferences. The proposed methodology is much simpler compared to
the methodology used by TOPSIS, and it also provides acceptable results.
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R. Jovanović was born in Zajecar, Serbia, in 1946. He received his BSc degree in mineral
technologies at the Faculty of Mining and Metallurgy of Bor, Serbia, in 1973, and MSc
degree in economics at Megatrend University – Belgrade, in 2005. He received his PhD
degree also at Megatrend University, in 2007. He is currently working as a docent at the
Department of Production Management at the Faculty of Management in Zajecar, Mega-
trend University Belgrade, Serbia. His current research interests include the production
management in complex manufacturing systems, with a special interest in the production
of copper ore concentrate.

Daugiatikslis sprendim ↪u priėmimo modelis, pagr ↪istas artumo
sprendim ↪u priėmėjo pageidaujamiems rezultatams nustatymu

Dragisa STANUJKIC, Nedeljko MAGDALINOVIC, Rodoljub JOVANOVIC

Šiame straipsnyje siūloma nauja daugiatikslė rangavimo procedūra, pagr↪ista artumo sprendim ↪u
priėmėjo pageidaujamiems rezultatams nustatymu. Š↪i metod ↪a sudaro du etapai. Pirmajame etape
sprendim ↪u priėmėjas yra prašomas apibrėžti pageidaujam ↪a kiekvieno kriterijaus rezultat ↪a. Antra-
jame etape pasvertos sumos metodas ir nauja atstumo nustatymu pagr↪ista normalizavimo procedūra
naudojami alternatyv ↪u bendrajam efektyvumo reitingui nustatyti.


