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Abstract. The problem we address in this paper is the design of a quantizer that in comparison
to the classical fixed-rate scalar quantizers provides more sophisticated bit rate reduction while re-
stricting the class of quantizers to be scalar. We propose a switched variable-length code (VLC)
optimal companding quantizer composed of two optimal companding scalar quantizers, the inner
and the outer one, both designed for the memoryless Gaussian source of unit variance. Quantiz-
ers composing the proposed quantizer have a different codebook sizes and a different compressor
functions. Particularly, we assume a smaller size of the inner quantizer’s codebook in order to pro-
vide assignment of the shorter codewords to the high probability low amplitude speech samples
belonging to the support region of the inner quantizer. We study the influence of codebook size of
the inner and the outer quantizer on the Signal to Quantization Noise Ratio (SQNR). In such a
manner the conclusion of the proposed quantizer significance in speech compression is distinctly
shown in the paper. For the proposed quantizer model and its forward adaptive version the SQNR
robustness analysis in a wide variance range is also presented in the paper. It is shown that our
multi-resolution quantizer can satisfy G.712 Recommendation for high-quality quantization at the
bit rate of 6.3 bit/sample achieving the compression of 1.7 bit/sample over the G.711 quantizer.

Keywords: variable-length code, companding technique, Gaussian source.

1. Introduction

Quantization deals with the digital or, more specifically, binary representation of signals.
All the audio and video encoding algorithms typically include a quantization module.
Quantization can be: (i) with memory or memoryless, depending upon whether the en-
coding rules rely or not on past samples; (ii) uniform or nonuniform based on the step-size
or the quantization levels employed; (iii) scalar or vector depending upon each sample is
quantized individually, or a block of samples is quantized jointly. An algorithm for design
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of the optimal quantizer for a source with known distribution was developed by Lloyd
and Max (1960). However, this algorithm is very time consuming for the large num-
ber of quantization levels. One solution which overcomes this problem is defined by the
companding quantizer model (Jayant and Noll, 1984; Gersho and Gray, 1992; Kondoz,
2004; Sayood, 2006; Hanzo et al., 2007). Quantizers based on the companding model
have simple realization structure and performance close to the optimal ones. The de-
sign of such quantizers is also more efficient than the one of the Lloyd-Max’s quantizers
since it does not require the iterative method. This difference is very notable for some
commonly used sources including the Gaussian source, we consider in the paper. The
reason of considering the Gaussian source is that the first approximation to the short-
time-averaged probability density function (PDF) of speech amplitudes is provided by
Gaussian PDF (Jayant and Noll, 1984; Gersho and Gray, 1992; Kondoz, 2004; Sayood,
2006; Hanzo et al., 2007). In case of a high-quality narrowband speech coding, widely
used coders are 64 kbit/s nonuniform scalar quantizers based on segmental logarithmic
companding characteristic. This solution is standardized and is known as G.711 quantizer
(ITU-T, 1972). Its main disadvantage is that bit rate decrease brings the significant reduc-
tion in quality (6 dB per 1 bit). Nowadays, when new bandwidth limited communication
systems are deployment, this can be unfavorable. Because of that, more sophisticated
speech compression has become essential component in telecommunications. This has
prompted extensive research in the area of speech coding during the last decade (Hi-
wasaki et al., 2006, 2008a, 2008b; Perić and Nikolić, 2007; Nikolić and Perić, 2008;
Perić et al., 2009, 2010; Na, 2008, 2011). Namely, fixed-rate scalar quantizers for Gaus-
sian source have already been the topic of our earlier research (Perić et al., 2008; Perić et
al., 2010). In these two papers, the switched-adaptive quantization technique is utilized
for a high-quality quantization of speech signals. The challenge to meet not only G.712
Recommendation for a high-quality speech coding (ITU-T, 2001), but also to provide the
gain in the performance over the G.711 quantizer has driven much of the research in this
area and several speech coding algorithms have been developed and eventually adopted
in international standards (Hiwasaki et al., 2006, 2008a, 2008b).

However, although a great number of a quantizers have been developed to provide an
additional enhancement of the speech signal quality, especially for the VoIP applications,
where G.711 quantizers are used, there is still a need to continue the research in this
field. In this paper we propose switched VLC optimal companding quantizer, composed
of two optimal companding quantizers having a different number of representation levels
and a different compressor functions. The aim of presented research is to find a simple
manner to realize a quantizer system having high-quality performance but maintaining
robustness in a wide variance range of input signal. Additionally, our goal is to obtain a
flexible compression algorithm, where the flexibility is related to the more sophisticated
choice of bit rate while maintaining the necessary quality.

This paper is organized as follows: Section 2 provides a detailed description of the
novel switched VLC optimal companding quantizer. In Section 3, we discuss which code-
book sizes of two companding quantizers, composing the proposed quantizer, should be
chosen in order to satisfy G.712 Recommendation. Section 4 presents the adaptive vari-
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ant of our quantizer model which is tested on the speech coding. Section 5 concludes the
paper about the possibilities of the proposed algorithm application in speech processing.

2. Design of Switched Variable-Length Code Optimal Companding Quantizer

The set of real numbers t0, t1, . . . , tN , called decision thresholds satisfying

−∞ = t0 < t1 < · · · < tN −1 < tN = +∞, (1)

and the set y1, y2, . . . , yN , called representation levels satisfying

yj ∈ αj = (tj−1, tj ], j = 1, . . . , N, (2)

characterize the N -level fixed rate scalar quantizer (Jayant and Noll, 1984; Gersho and
Gray, 1992; Kondoz, 2004; Sayood, 2006; Hanzo et al., 2007). Every N -level fixed rate
scalar quantizer is associated with the partition of the set of real numbers R into N cells
αj . There are several models of scalar quantizers that are based on different quantization
techniques. The stucture of nonuniform quantizer, consisting of a compressor, a uniform
quantizer and an expandor in cascade, is called compandor (Jayant and Noll, 1984; Ger-
sho and Gray, 1992; Kondoz, 2004; Sayood, 2006; Hanzo et al., 2007). Nonuniform
quantization can be achieved by compandor in the following way: compressing the in-
put signal x using a nonuniform compressor function c(x), then by quantizing the com-
pressed signal c(x) employing a uniform quantizer Qu(c(x)), and finally by expanding
the quantized version of the compressed signal using a nonuniform inverse compressor
function c−1(Qu(c(x))). In the case of the optimal compressor function c: R → [−1, 1]
defined by Judell and Scharf (1986):

c(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 + 2

x∫
−t

p1/3(x) dx

0∫
−t

p1/3(x) dx+

t∫
0

p1/3(x) dx

, −t < x < 0,

−1 + 2

0∫
−t

p1/3(x) dx+

x∫
0

p1/3(x) dx

0∫
−t

p1/3(x) dx+

t∫
0

p1/3(x) dx

, 0 < x < t,

(3)

the decision thresholds ti and the representation levels yi of the companding quantizer
are determined by the solutions of the following equations:

c(ti) = tu,i, i = 0, 1, . . . , N, c(yi) = yu,i, i = 1, . . . , N, (4)

where tu,i are decision thresholds, and yu,i are representation levels of the correspond-
ing uniform quantizer, and t denotes the support region threshold between granular and
overload region of an optimal companding quantizer.
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In this paper we consider the Gaussian PDF of the input source, which is one of
the most commonly used distributions (Jayant and Noll, 1984; Gersho and Gray, 1992;
Kondoz, 2004; Hanzo et al., 2007). The probability density function for a random variable
with a Gaussian distribution, mean μ and variance σ2 is given by:

p(x) =
1√

2πσ2
e− (x−μ)2

2σ2 . (5)

In the rest of the paper, without loss of generality, we assume that information source is
Gaussian source with memoryless property and zero mean value. The PDF of this source
is given by:

p(x) =
1√

2πσ2
e− x2

2σ2 . (6)

Assuming further the unit variance, σ2 = 1, by direct evaluation we obtain:

t∫
0

p1/3(x) dx =
√

3
(

π

4

)1/3

erf
(

t√
6

)
, (7)

where erf (x) is the error function:

erf (x) =
2√
π

x∫
0

e−u2
du. (8)

In the rest of the paper we assume symmetry about zero in the quantizer characteristic.
This symmetry is an intuitionally expected result when the input has a PDF that is sym-
metrical about zero. The Gaussian PDF, we consider here, is indeed symmetrical about
zero.

Switched quantizer we propose in this paper is composed of two companding quan-
tizers, the inner and the outer one. These two quantizers are designed according to a
different optimal compressor functions. Particularly, the inner companding quantizer Q1,
having N1 representation levels, is defined on the inner interval I = [−t1, t1] while the
outer companding quantizer Q2, having N2 representation levels, is defined on the outer
interval O = (−∞, −t1) ∪ (t1, +∞). Value t1 is called threshold value. For the assumed
Gaussian PDF of unit variance the optimal compressor function c1: I → [−1, 1] of the
inner companding quantizer is:

c1(x) =
erf

(
x√
6

)
erf

(
t1√
6

) sgn(x), |x| < t1. (9)
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Further, for the inner companding quantizer the decision thresholds tI,i and the represen-
tation levels yI,i are defined by:

tI,i,− = −tI,i,+ = c−1
1

(
2i − N1

N1

)
, i = 0, 1, . . . , N1/2, (10)

yI,i,− = −yI,i,+ = c−1
1

(
2i − 1 − N1

N1

)
, i = 1, . . . , N1/2. (11)

Using (9), by direct computation we obtain the following expressions:

tI,i,− =
√

6 erf−1

(
2i − N1

N1
erf

(
t1√
6

))
, i = 0, 1, . . . , N1/2, (12)

yI,i,− =
√

6 erf−1

(
2i − 1 − N1

N1
erf

(
t1√
6

))
, i = 1, . . . , N1/2. (13)

The decision thresholds of the outer companding quantizer Q2 in each of the two sym-
metric intervals composing the outer region O are ordered such that we have −∞ =
tO,0,− < tO,1,− < . . . < tO,N2/2,− = −t1 and t1 = tO,N2/2,+ < tO,N2/2−1,+ <

. . . < tO,0,+ = +∞. Similarly, one can define the order of the corresponding positive
and negative representation levels yO,i,+ and yO,i,−, i = 1, . . . , N2/2. The optimal com-
pressor function c2(x): O −→ [−1, 1] defining the outer companding quantizer Q2 can
be calculated from (3), where 0 → t1 and t = +∞:

c2(x) =

⎧⎨
⎩

− erf(x/
√

6)−erf(t1/
√

6)

1−erf(t1/
√

6
, −∞ < x < −t1,

erf(x/
√

6)−erf(t1/
√

6)

1−erf(t1/
√

6)
, t1 < x < ∞.

(14)

The decision thresholds and the representation levels of the companding outer quantizer
Q2 are computed from the following relations:

tO,i,− = −tO,i,+ = c−1
2

(
2i − N2

N2

)
, i = 0, 1, . . . , N2/2, (15)

yO,i,− = −yO,i,+ = c−1
2

(
2i − 1 − N2

N2

)
, i = 1, . . . , N2/2. (16)

By an explicit computation using the relation (14) we obtain the following expressions:

tO,i,− =
√

6 erf−1

(
2i − N2

N2

(
1 − erf

t1√
6

)
− erf

t1√
6

)
,

i = 0, 1, . . . N2/2, (17)

yO,i,− =
√

6 erf−1

(
2i − 1 − N2

N2

(
1 − erf

t1√
6

)
− erf

t1√
6

)
,

i = 1, . . . N2/2. (18)
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Finally we can write decision thresholds and representation levels of the joint switched
optimal companding quantizer Q as follows:

t = (−∞, . . . tO,N2/2−1,−, −t1, tI,1, . . . , tI,N1/2−1, t1, tO,N2/2−1,+,

. . . + ∞), (19)

y = (yO,0,−, . . . yO,N2/2−1,−, yI,0, yI,1, . . . , yI,N1/2−1, yO,N2/2−1,+,

. . . yO,0,+). (20)

For the proposed quantizer, the first bit of the codeword corresponding to the source
sample x is equal 1 if the sample belongs to the inner region (x ∈ I = [−t1, t1]), oth-
erwise it is equal 0. Other log2 N1 (or log2 N2) bits of the codeword are formed by an
index of the quantization cell x belongs to. Since the length of the codeword is k1 + 1 or
k2 +1, (Ni = 2ki ), depending on whether x ∈ I or not, our quantizer is a variable-length
quantizer (VLC – variable-length coder). In general, with variable length quantizers com-
pression is achieved by assigning shorter codewords to the more frequent symbols and
longer codewords to the less frequent ones (Gersho and Gray, 1992; Hanzo et al., 2007).
The average bit rate of the considered quantizer can be computed by:

R(Q) = P1 (log2 N1 + 1) + P2 (log2 N2 + 1) , (21)

where Pi, i = 1, 2, are probabilities that one signal sample belongs to the inner and to the
outer region, respectively. The additional bits, in previous formula, carries necessary side
information for decoding, i.e., which region, and which number of quantization levels is
used in encoding process. Since:

P1 =

t1∫
−t1

p(x) dx, (22)

P2 = 1 − P1, (23)

for the average bit rate we obtain:

R(Q) = erf
(

t1√
2

)
(log2 N1 + 1) +

(
1 − erf

(
t1√
2

))
(log2 N2 + 1). (24)

Further, we can express threshold t1 as a function of R, N1 and N2, in the following way:

t1 =
√

2 erf−1

(
R − 1 − log2 N2

log2 N1 − log2 N2

)
. (25)

It is obvious that the choice of the threshold t1 has an effect on the probabilities P1 and
P2, and thus on R(Q) which is therefore much more sophisticated R and can be easily
changed in relation to the case where R is obtained as R = log2(N1 +N2). For instance,
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one can determine the threshold t1 that provides a high-quality quantization specified by
the G.712 Recommendation (ITU-T, 2001).

The quality of the N -level scalar quantizer Q, for a source that is characterized as
a continuous random variable with PDF p(x), is commonly measured by the distortion
defined by the expected mean square error between original and quantized signal (Jayant
and Noll, 1984; Gersho and Gray, 1992; Kondoz, 2004; Sayood, 2006; Hanzo et al.,
2007):

D(Q) = E
(
X − Q(X)

)2 =
N∑

i=1

∫ ti

ti−1

(x − yi)2p(x) dx. (26)

The N -level quantizer Q∗ is optimal for the source X , if there is no other N -level quan-
tizer Q, such that D(Q) < D(Q∗). Denote by D1 and D2 the distortions of the inner and
the outer quantizer. Also denote by N1 and N2 the number of representation levels of the
inner and the outer quantizer, respectively. In this model, distortions D1 and D2 can be
approximated using Bennett’s integral as follows (Bennett, 1948):

D1 = D(Q1) =
2

3N1
2

( t1∫
0

p1/3(x) dx

)3

, (27)

D2 = D(Q2) =
2

3N2
2

( ∞∫
t1

p1/3(x) dx

)3

. (28)

Finally, total distortion D = D1 + D2 for the assumed Gaussian source of unit variance
can be represented, using (6), (27) and (28), as the function of t1, N1 and N2 as follows:

D(Q) =
√

3π
2N1

2 erf
(
t1/

√
6
)3 +

√
3π

2N2
2

(
1 − erf

(
t1/

√
6
))3

. (29)

It is easy to prove that there exists one global minimum, which is the solution of the
equation D′(t1) = 0, and we apply the Newton iterative method to find the numerical
solution.

3. Numerical Results

Quality of a quantized signal is often specified in terms of Signal to Quantization Noise
Ratio (SQNR), which is directly obtained from the distortion D using the following
relation (Jayant and Noll, 1984; Gersho and Gray, 1992; Kondoz, 2004; Sayood, 2006;
Hanzo et al., 2007):

SQNR = 10 log
(
σ2/D

)
. (30)
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Table 1

Values of t1, R, and SQNR for the presented model and a different value of N1 and N2

N1 N2 t1 R [bit/sample] SQNR [dB]

32 128 0.438810 7.32160 39.7356

16 128 0.241985 7.42637 38.8204

32 64 0.746042 6.45564 35.2986

16 64 0.438810 6.32160 33.7150

Table 2

Values of t341 and R34 for the presented model such that SQNR = 34 dB

N1 N2 t341 R34 [bit/sample]

32 128 1.231717 6.43611

16 128 0.712567 6.42834

32 64 1.136107 6.25591

16 64 0.438810 6.32160

For R ∈ (min(log2 N1, log2 N2) + 1, max(log2 N1, log2 N2) + 1), using equations
(25), (29) and (30), we can get the SQNR value as a function of R for our model. Com-
puted values of the threshold t1 and SQNR for the presented model, designed for the
Gaussian source of unit variance and a different values of N1 and N2, are given in the
Table 1. As it can be noticed from the Table 1 a smaller size of the inner companding
quantizer codebook is assumed, i.e., N1 < N2. This assumption is introduced in order
to assign shorter codewords to the high probability low amplitude samples belonging to
the inner interval. In such a manner the basic principe of VLC quantization is fulfilled.
What also can be noted from the first and the second raw in the Table 1 is that the in-
crease of the bit rate do not result in SQNR increase. The explanation for this behavior
can be found in the expression for the bit rate (24), where in addition to the influence of
codebook sizes and side information we have a threshold t1 effect manifested through
the probability of coding with corresponding companding quantizer. Recall that the listed
values of threshold t1 are calculated by applying the Newton iterative method to solve the
equation D′(t1) = 0. Define t341 as a value of threshold such that SQNR of the proposed
quantizer, designed for the Gaussian source of unit variance, is 34 dB. Denote by R34

corresponding average bit rate. Table 2 presents values of t341 and R34 we have calculated
for a different values of N1 and N2. From the Table 2 one can perceive that our quantizer
designed for the Gaussian source of unit variance, can provide a high-quality quantization
with about 6.25 bit/sample. Moreover, it can be noticed that in comparison to the clas-
sical fixed-rate companding quantizer, our quantizer enables more sophisticated bit rate
reduction. Figure 1 shows SQNR of our quantizer as a function of the signal variance in
the case of a different choice of the threshold t341 . It is interesting to observe from Fig. 1
that for a different threshold t341 the maximum SQNR is achieved at a different variances
σ2

i . Particularly, as the threshold value is higher, the maximum of SQNR characteristic
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Fig. 1. SQNR as a function of the signal variance for a different values of N1, N2 and t341 .

is moved toward right, i.e., toward higher values of variances. SQNR characteristic is
distinctly asymmetrical and rapidly decreases from its maximum, such that SQNR varies
a lot in the observed variance range. Generally, any of non-adaptive (fixed) quantizers
designed for the particular variance is not suitable for quantization of non-stationary sig-
nals that, as well as speech signals, have changing variance characteristic (Jayant and
Noll, 1984; Gersho and Gray, 1992). In such situations, as it can be noticed from Fig.
1 and as it has been observed in Na (2008, 2011) the variance mismatch between the
input signal’s variance and the variance for which the quantizer is designed may occur.
However, in short intervals the properties of the speech signal remain roughly constant,
hence, it can be viewed as a local-stationary signal (Jayant and Noll, 1984; Gersho and
Gray, 1992; Hanzo et al., 2007). Accordingly, in order to process speech efficiently it is
necessary to use same kind of adaptation or system that works on frame by frame basis.
For that reason, in the next section, we consider forward adaptive version of the proposed
quantizer model and its application in speech coding.

4. Application in Speech Coding

We have tested our coding scheme on the speech coding. The sample signal is taken
from the base which is derived from the TIMIT corpus (Garofolo et al., 1993). The
TIMIT corpus of speech has been designed to provide speech data for the acquisition
of acoustic-phonetic knowledge and for the development and evaluation of automatic
speech recognition systems. For the purpose of testing, we consider the adaptive version
of our model. We divide the input signal into the frames and for each frame we estimate
the signal variance and normalize all samples before coding. Consider the n samples of
the input signal x1, x2, . . . , xn and assume that signal samples are divided in F frames
each consisted of M samples. Furthermore denote by xi,j the jth sample of the ith frame
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(i = 0, . . . , F − 1 and j = 0, . . . , M − 1), i.e., xi,j = xiM+j . In the ith frame signal
variance is estimated using σ2

i = 1
M

∑M −1
j=0 x2

i,j . The source samples are then normal-
ized and sent to the quantizer. When received, the signal has to be denormalized by the
same value of the squared root of the quantized variance that is used for normalization.
For that purpose, we also need to transmit the information about the signal variance σ2

i .
It is quantized using Ng level log-uniform scalar quantizer. We consider the log-uniform
scalar quantizer for variance quantization rather than the uniform scalar quantizer, since
we have demonstrated that it could provide higher value of SQNR (Nikolić and Perić,
2008). Signal samples are normalized to x̄i,j = xi,j/σ̃i, where σ̃i is squared root of the
quantized signal variance, and then sent to the quantizer.

The representation levels and the decision thresholds of log-uniform quantizer Qlu(σ)
are defined as:

log(ylu,i) = log(σmin) +
2i − 1
2Ng

log
(

σmax

σmin

)
, i = 1, 2, . . . , Ng, (31)

log(tlu,i) = log(σmin) +
i

Ng
log

(
σmax

σmin

)
, i = 0, 1, 2, . . . , Ng, (32)

where σ2
min and σ2

max are respectively maximum and minimum possible values of the
signal variance. In other words, log-uniform quantizer is the uniform quantizer in decibels
scale. We consider the dynamic range of the variance (20 log(σmax/σmin) [dB]) of 40 dB,
Ng = 16 and Ng = 32 levels of log-uniform quantizer. The bit rate R corresponding to
the proposed adaptive version is R = Rfix + log2 Ng/M , where Rfix refers to the
number of bits per sample required for the fixed quantizer (24), while log2 Ng/M define
the number of bits per frame having length M that is required for transmission of the side
information for adaptive version. Figure 2 shows theoretical dependencies of the SQNR

Fig. 2. Theoretical dependence of the SQNR as a function of signal variance σ2 (in decibels) for the presented
adaptive model (Ng = 16, 32).
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Table 3

SQNRavg and R of adaptive quantization for the presented model

N1 N2 Ng R [bit/sample] SQNRavg [dB]

32 128 32 7.3840 39.6952

32 128 16 7.3715 39.5526

16 128 32 7.4888 38.7815

16 128 16 7.4763 38.6418

32 64 32 6.5181 35.2669

32 64 16 6.5056 35.1393

16 64 32 6.3840 33.6873

16 64 16 6.3715 33.5656

Table 4

Values of t341 , and R34, for the adaptive version of the presented model such that SQNRmin > 34 dB, i.e.,
satisfying G.712 Recommendation

N1 N2 Ng t341 R34 [bit/sample]

32 128 32 1.22506 6.50361

32 128 16 1.25132 6.47164

16 128 32 0.72497 6.46791

16 128 16 0.73560 6.43592

32 64 32 1.14438 6.31497

32 64 16 1.13841 6.30495

values as a function of signal variance σ2 (in decibels) for presented adaptive quantizer
model (M = 80, Ng = 16, 32). From the Fig. 2 one can notice that our multi-resolution
quantizer provides a different level of signal quality, i.e., of the SQNR. Moreover, one
can perceive that by increasing the level number of log-uniform quantizer, the bit rate is
slightly increased, but the SQNR characteristic is significantly flattened. Particularly, one
can observe that in the considered variance range SQNR is almost constant for Ng = 32.
Accordingly, Ng = 32 is a good choice for the number of log-uniform variance quantizer
levels. Using the basic definition for the average SQNR:

SQNRavg =
1
K

K∑
i=1

10 log
(
σ2

i /D(σi)
)
, (33)

where K defines the number of the particular variances that are calculated in the assumed
variances range of 40 dB, we have calculated values presented in the Table 3 for adaptive
version of our quantizer. It has already been mentioned and explained how the codebook
sizes, amount of the side information and the threshold choice influence on SQNR and
R of the corresponding non-adaptive quantizer. The same conclusion can be derived for
the adaptive version of our quantizer model. In Table 4 are given values of t341 and R34
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Fig. 3. Adaptive version of the presented model with values of t341 and R34 such that SQNRmin > 34 dB,
i.e., satisfying G.712 Recommendation.

[bit/sample] for which the minimum value of SQNR for adaptive version of our model
does not fall below 34 dB. These numerical results obtained to maintain a high-quality
quantization (ITU-T, 2001) the best reflect gains in compression that ranges up to 1.7
bit/sample over the G.711 quantizer. Fig. 3 shows SQNR characteristic of the adaptive
version of presented model designed for t341 = 1.13841 and the bit rate of R34 = 6.30495
such that SQNRmin > 34 dB, i.e., such that satisfies G.712 Recommendation. This adap-
tive version of our quantizer model in the considered wide variance range provides a high-
quality quantization along with the compression of about 1.7 bit/sample over the G.711
quantizer (ITU-T, 1972). Moreover, our quantizer model achieves the compression of
6.7 − 6.3 = 0.4 bit/sample over the quantizer proposed in Perić et al. (2010). Particu-
larly, in Perić et al. (2010) additional gain in the compression is achieved applying the
lossless compression technique where the resulting gain over the G.711 quantizer amount
to 8 − 6.37 = 1.63 bit/sample. This compression gain is smaller than the one we achieved
in this paper without applying some of the lossless compression techniques. Fig. 4 shows
the experimental SQNR values as a function of σ2 for adaptive variant of our model, and
different values of N1, N2, and Ng . For the purpose of the experiment, we assumed the
frame size of M = 80 and total F = 800 frames. We determined the experimental values
SQNRex i for each frame i = 0, 1, . . . , F − 1. In Fig. 4 we show the input signal (the
first upper graph) and SQNRex i values (the second lower graph). Note that the x scale,
on the lower graphs, still represents the index of the sample (not the frame). The average
SQNR value of all frames is equal to SQNRex = 1

F

∑F −1
i=0 SQNRex i. Comparing the

theoretical and experimental values of the average SQNR for the several different values
of the average bit rate R, one can calculated that there is a good agreement between the
theory and experiment in all of the considered cases.
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Fig. 4. An input speech signal (the first graph), experimental values of SQNRex i (the second graph) and R34
i

(the third graph) for the adaptive version of the presented model.

5. Conclusions

In this paper we have presented and analyzed performances of the new model of switched
VLC optimal companding quantizer. The model is designed for a high-quality scalar
quantization of Gaussian source in a wide variance range of input signal. According the
analysis of the codebook size influence and the influence of the threshold t1 choice on
SQNR it has been concluded that adaptive version of our quantizer model satisfies G.712
Recommendation, providing the compression of about 1.7 bit/sample over the G.711
quantizer (ITU-T, 1972), so it can be applied for a high-quality coding of speech signals.
It has also been demonstrated that, in comparison to the fixed-rate scalar companding
quantizers, the proposed multi-resolution quantizer provides much more sophisticated
choice of the bit rate depending on the desired level of speech signal quality. Finally,
good agreement between the theoretical and experimental values of the average SQNR
has been ascertained. Our quantizer gives a very simple realization structure and high-
quality performances, hance it can be very useful in particular high-quality quantization
of signals having Gaussian PDF.
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Fiksuotas ir adaptyvus kintamo kodinio žodžio ilgio kvantatorius
Gauso šaltiniams be atminties

Zoran H. PERIĆ, Jelena R. NIKOLIĆ, Aleksandar V. MOSIĆ, Marko D. PETKOVIĆ

Straipsnyje nagrinėjamas kintamo kodo ilgio skaliarinio kvantavimo uždavinys. Autoriai siūlo
kintamo kodo ilgio kvantatori ↪u sudaryti iš dviej ↪u nuosekliai sujungt ↪u skaliarini ↪u kvantatori ↪u,
kiekvienas kuri ↪u yra optimizuotas darbui su Gauso šaltiniais be atminties. Šie kvantatoriai nau-
doja skirtingas kodines knygas bei skirtingas suspaudimo funkcijas. Straipsnyje autoriai ↪ivertino
naudojam ↪u kodini ↪u knyg ↪u dydžio ↪itak ↪a kvantavimo kokybei ir parodė pasiūlytojo kvantatoriaus
pranašum ↪a koduojant kalbos signalus prieš fiksuoto kodo ilgio kvantatorius.


