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Abstract. The aim of the given paper is development of an approach based on reordering of obser-
vations to be processed for the extraction of an unmeasurable internal intermediate signal, that acts
between linear dynamical and static nonlinear blocks of the Wiener system with hard-nonlinearity
of the known structure. The technique based on the ordinary least squares (LS) and on data partition
is used for the internal signal extraction. The results of numerical simulation and identification of a
discrete-time Wiener system with five types of hard-nonlinearities, such as saturation, dead-zone,
preload, backlash, and, discontinuous nonlinearity are given by computer.
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1. Introduction

In designing control systems, one ought to determine the type of uncertainties appearing
in the dynamical system to be controlled. There are many types of uncertainties in control
system description models. One of the main ones of them is the uncertainty arising due
to nonlinearities of measurement devices and/or control actuators that significantly limit
the performance of control systems (Åström and Wittenmark, 1996; Ljung, 1999). It is
known (Selmic et al., 2003), that inaccuracy of mechanical components and nature of
physical laws make actuators nonlinear devices. Usually, such nonlinearities can occur
on the output of the system to be controlled inducing negative effects that might some-
times lead to unstable control (Schoukens et al., 2005). In such a case, Wiener models
consisting of a linear dynamical system followed by a static nonlinear block are consid-
ered to be suitable for a broad spectrum of nonlinear processes (Wigren, 1993; Hagen-
blad, 1998; Ljung, 1999; Vörös, 2001; Pupeikis et al., 2003; Pupeikis, 2005a, 2005b,
2011). Nonlinearities, such as, friction, deadzone, saturation, preload, backlash and hys-
teresis are called hard-nonlinearities, and are common in most control systems, espe-
cially in electro-mechanical ones (Selmic et al., 2003). As noted in Hagenblad (1998),
Vörös (2001, 2002, 2010a, 2010b) in practice there exist the nonlinear dynamic systems
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with discontinuous asymmetric piecewise-linear characteristics having preloads and dead
zones, too. It is known (Selmic et al., 2003) that most of these nonlinearities cannot be
canceled or compensated using feedback linearization techniques because they appear in
the feedforward path. On the other hand, it is known also, that most of them cannot be ap-
proximated by a low-order polynomial, and they are not readily invertible, too. Therefore,
hard-nonlinearities have been a challenge for control system engineers for years (Åström
and Wittenmark, 1996; Ljung, 1999; Selmic et al., 2003). Recently, static and dynamic
compensators have been made up, and intelligent control techniques have been proposed
for compensation of those nonlinearities: friction models and respective compensation
techniques are given in Armstrong-Hélouvry et al. (1994), Canudas de Wit et al. (1995);
a deadzone compensation approach in motion control systems has been established in
Selmic and Lewis (2000); the backlash compensation technique has been found using
dynamic inversion in Desoer and Shahruz (1986), Selmic and Lewis (2001), Selmic et al.
(2003), Vörös (2011); the general actuator saturation compensator scheme has been de-
veloped in Åström and Wittenmark (1996), Selmic et al. (2003), Widanage et al. (2004),
etc.

In general, various compensators have been tried to adjust the performance of electro-
mechanical control systems by reducing parasitic effects of hard-nonlinearities. On the
other hand, we describe here the common approach (Pupeikis et al., 2003) based on ex-
traction of the unmeasurable internal intermediate signal, acting between linear and non-
linear blocks of the Wiener system (Hagenblad, 1998; Ljung, 1999; Vörös, 2010b) with-
out designing special and complex enough compensators. To this end, we propose here to
extract an unmeasurable internal signal that will be without parasitic effects. Afterwards,
instead of measurable noisy output of the Wiener system affected by the respective hard-
nonlinearity, the extracted signal could be used for ordinary control of a linear dynamical
system, free of the abovementioned unacceptable effects (Pupeikis et al., 2003).

In Section 2, a statement of the problem is presented. In Section 3, the common
method is given for determining an auxiliary signal that corresponds to the extracted
version of the internal one, that acts between both blocks of the Wiener system with
respective hard-nonlinearity of known structure. In Section 4, an iterative procedure for
extraction of an internal signal in a noisy environment is described. Section 5 presents the
simulation and parametric identification results for different types of hard-nonlinearities.
Section 6 contains conclusions.

2. Statement of the Problem

A control system to be considered consists of a linear block G(q−1,Θ) followed by a
static nonlinearity f(·, η) (Fig. 1). The linear block is dynamic, time invariant, causal,
and stable. It can be represented by a linear time-invariant dynamic system (LTI) with the
function G(q−1,Θ) of known order as a rational function of the form

G
(
q−1,Θ

)
=

b1q
−1 + · · · + bmq−m

1 + a1q−1 + · · · + amq−m
=

B(q−1,b)
1 + A(q−1,a)

(1)
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Fig. 1. The Wiener system with the process noise v(k) and measurement noise e(k). Signals: u(k) is input,
y(k) is output, x(k) ∀k = 1, N is an unmeasurable internal intermediate signal to be extracted.

with the finite number of parameters

ΘT = (b1, . . . , bm, a1, . . . , am), bT = (b1, . . . , bm),

aT = (a1, . . . , am), (2)

that are determined from the set Ω of permissible parameter values Θ. Here q−1 is the
backward shift operator.

The set Ω is restricted by conditions on the stability of the respective difference equa-
tion with the finite number of parameters ΘT = (b1, . . . , bm, a1, . . . , am) that are de-
termined from the area of permissible parameter values.The unmeasurable intermediate
signal

x(k) =
B(q−1,b)

1 + A(q−1,a)
u(k) + v(k), (3)

∀k = 1, N generated by (1) as a response to the input u(k) ∀k = 1, N, and corrupted by
an additive noise v(k) ∀k = 1, N, is acting on a static nonlinear block f(·, η) with the
vector of parameters η, i.e.,

y(k) = f(x(k), η) + e(k), (4)

∀k = 1, N . A nonlinear block represents a hard-nonlinearity of the known structure with
unknown η, i.e., the saturation or dead-zone (Figs. 2a, 2b), preload or backlash (Figs. 2c,
2d) or any other nonlinearity even a discontinuous one (Fig. 3), that, according to for-
mula (4), generates y(k) ∀k = 1, N cutting off or changing some observations of the
unmeasurable internal signal x(k) ∀k = 1, N in a special way.

The process noise v(k) ≡ ξ(k) ∀k = 1, N and the measurement noise e(k) ≡
ζ(k) ∀k = 1, N are added to an internal intermediate signal x(k) ∀k = 1, N and an
output y(k) ∀k = 1, N , respectively; ξ(k), ζ(k) are mutually uncorrelated sequences of
independent Gaussian variables with E{ξ(k)} = 0, E{ζ(k)} = 0, E{ξ(k)ξ(k + τ)} =
σ2

ξδ(τ), E{ζ(k)ζ(k + τ)} = σ2
ζδ(τ); E{ · } is a mean value, σ2

ζ , σ2
ξ are variances of ζ

and ξ, respectively, δ(τ) is the Kronecker delta function.
The aim of the given paper is to avoid nonlinear distortions that appear in y(k) ∀k =

1, N by extracting the unmeasurable internal signal x(k) ∀k = 1, N , free from parasitic
effects, instead of designing of special and complex enough compensators.
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Fig. 2. Some examples of hard-nonlinearities: saturation (a), dead-zone (b), preload (c), backlash (d), η ≡ a, a

is a threshold.

Fig. 3. Examples of discontinuous nonlinearities with the different leaning over linear segments (Vörös, 2001):
m1 �= m2 (a), m1 = m2 (b), m2 = 0 (c), m1 = 0 (d), η = (m1, m2, b, D)T .

3. Data Rearrangement

Let us assume for simplicity that the process noise v(k) ∀k = 1, N and the measurement
noise e(k) ∀k = 1, N are absent. To calculate an auxiliary signal x̂(k) (the estimate of
unmeasurable x(k)) ∀k ∈ 1, N , one could approximate the model of the linear dynamic
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part of the Wiener system (1)–(4) by the finite impulse response (FIR) model of the form

y(k) = β0 + β1u(k) + β2u(k − 1) + · · · + βνu(k − ν + 1), (5)

∀k ∈ ν, N , or using the expression in a matrix form

Y = Λβ, (6)

Y =
(
y(ν), y(ν + 1), . . . , y(N − 1), y(N)

)T
(7)

is the (N − ν + 1) × 1 vector consisting of values y(k),

Λ =

⎡
⎢⎢⎢⎣

1 u(ν) . . . u(2) u(1)
1 u(ν + 1) . . . u(3) u(2)
...

...
...

...
...

1 u(N) . . . u(N − ν + 2) u(N − ν + 1)

⎤
⎥⎥⎥⎦ (8)

is the full rank (N − ν + 1) × (ν + 1) regression matrix, consisting only of observations
of the non-noisy input u(k) (see Fig. 1);

βT = (β0, β1 . . . , βν) (9)

is a (ν + 1) × 1 vector of unknown parameters, ν is the order of the FIR filter that can be
arbitrarily large but fixed.

The reason for the use of the FIR model is as follows: the dependence of some re-
gressors on the process output will be facilitated, and the assumption of the ordinary LS
that the regressors depend only on the non-noisy input signal, will be satisfied. This is the
main consequence of replacing the initial transfer function G(q−1,Θ) of the linear part
of the system by the FIR filter (5).

Next, let us rearrange the data in the vector Y in an ascending order of their values,
reordering the associated rows of matrix Λ, too. One could carry out that by interchang-
ing equations in the initial system (6). Then the vector Y and the matrix Λ should be
partitioned into three data sets (Pupeikis, 2003): the left-hand data set

Y1 = Λ1β, (10)

the middle data set

Y2 = Λ2β, (11)

and the right-hand data set according to the three regimes of respective nonlinearities

Y3 = Λ3β. (12)
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Here Y1,Y2,Y3 are N1 × 1, N2 × 1 and N3 × 1 vectors, respectively, Λ1,Λ2,Λ3 are
(N1 − ν + 1) × (ν + 1), N2 × (ν + 1) and N3 × (ν + 1) matrices, correspondingly,
N = N1 + N2 + N3.

Thus the initial system (6) is reordered into the system

Ỹ = Λ̃β; (13)

with

Ỹ =

⎡
⎣ Y1

Y2

Y3

⎤
⎦ , (14)

and

Λ̃ =

⎡
⎣ Λ1

Λ2

Λ3

⎤
⎦ , (15)

by simply interchanging equations in the initial system (6).
For the Wiener system with the saturation, the left-hand side data set Y1 (N1 sam-

ples) consists of the reordered cut-off values ỹ(k̃) ∀k ∈ 1, N1, equal to negative a, the
middle data set Y2 (N2 samples) of the reordered true values ỹ(k̃) ∀k ∈ 1, N2 higher
than negative a, but lower than a, and the right-hand side data set Y3 (N3 samples) con-
sists of the reordered cut-off values ỹ(k̃) ∀k ∈ 1, N3 equal to a, if the measurement
noise e(k) ∀k = 1, N is absent. Here 0 < a < ∞ is the unknown threshold of satu-
ration (Fig. 2a); k̃ is any integer k rearranged in an ascending order, depending on the
reordered values of observations y(k) ∀k ∈ 1, N , e.g., k̃ = 1 while k = 10. Hence, the
reordered cut-off observations with the same highest and positive value a will be concen-
trated on the right-hand side set, while the reordered cut-off observations with the same
lowest and negative value −a on the left-hand side set. The observations of the middle
data set of ỹ(k̃) are coincident with the respective observations of the unmeasurable in-
termediate signal x(k), i.e., ỹ(k̃) ≡ x(k) for |x(k)| < a ∀k = 1, N2 because, in the case
of saturation, the output signal y(k) ∀k ∈ 1, N has been generated by the formula (Bai,
2002)

y(k) =
1 + sign(a − |x(k)|)

2
x(k) +

1 + sign(|x(k)| − a)
2

a sign x(k), (16)

∀k = 1, N . Here sign is the standard sign function.
Note that, output signals y(k) ∀k = 1, N of the dead-zone, preload, and backlash

shown in Fig. 2 are generated by formula (Bai, 2002)

y(k) = x(k) − a sign(x(k)) − 1 + sgn(a − |x(k)|)
2

(x(k) − a sign(x(k)), (17)
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y(k) = x(k) + a sign(x(k)), (18)

y(k) =

⎧⎨
⎩

x(k) − a, if x(k) − x(k − 1) > 0,
x(k) + a, if x(k) − x(k − 1) < 0,
y(k − 1), if x(k) = x(k − 1),

(19)

respectively. The output of the discontinuous nonlinearity y(k) ∀k = 1, N is calculated
according to Vörös (2001)

y(k) =
{

ỹ(k), if |x(k)| > D,

0, if |x(k)| < D,
(20)

ỹ(k) = K(k)
{
x(k) − D sign[x(k)]

}
+ b sign[x(k)], (21)

and

K(k) = m1 + (m2 − m1)h(k). (22)

Here |m1| < ∞, |m2| < ∞ are respective coefficients that determine the leaning over
the corresponding linear segments and |b| < ∞ is the preload constants (see Fig. 3); the
switching function h(k) has the form

h(k) ≡ h[x(k)] =
{

0, if x(k) > 0,

1, if x(k) < 0.
(23)

It follows that for the saturation (16), dead-zone (17), and discontinuous nonlinear-
ity (20)–(23) there exist three regimes, in total. For the saturation (Fig. 2a), only the sys-
tem of linear equations (11), based on true reordered values of x̃(k̃) ≡ x(k) ∀k = 1, N2,
is valid while systems (10) and (12) are not usable because of the presence of cut-
off observations of y(k). For the dead-zone (Fig. 2b) and the discontinuous nonlinear-
ity (Fig. 3), the reordered observations of the left-hand side and right-hand side sets
Y1,Y3 are not cut-off by the corresponding nonlinearity, while the observations of the
middle data set Y2 of ỹ(k) are cut-off and equal to zero, i.e., y(k) ≡ 0 for |x(k)| < a

or for |x(k)| < D, respectively. Here 0 < a < ∞, 0 < D < ∞ are dead-zones of
dead-zone and discontinuous nonlinearity, correspondingly.

It is easy to separate the particles of ỹ(k) by choosing the middle data set Y2 in the
case of saturation, or the left-hand side and right-hand side sets Y1,Y3 in the cases of a
dead-zone and a discontinuous nonlinearity, respectively, if the measurement noise e(k)
is absent. In such a case, only these corresponding data particles are needed for further
extraction of the unmeasurable internal signal x(k). Note that, for saturation there exists
a regime where true values of y(k) are assured. In such a case, they are equal to respective
values of the unmeasurable intermediate signal x(k).
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4. Internal Signal Extraction

To estimate the parameters β of the FIR model (5), one can use the expression of the form

β̂ =
(
ΛT

2 Λ2

)−1
ΛT

2 Y2, (24)

for the Wiener system with the saturation (16) or that of the form

β̂ =
(
Λ̃T

4 Λ̃4

)−1
Λ̃T

4 Ỹ4, (25)

for the dead-zone (17) and discontinuous nonlinearity (20)–(23). Here

β̂T =
(
β̂0, β̂1, . . . , β̂ν

)
(26)

is a (ν + 1) × 1 vector of the estimates of parameters (9);

Ỹ4 =
[
Y1

Y3

]
(27)

and

Λ̃4 =
[
Λ1

Λ3

]
. (28)

Note that, all proofs based on the deterministic regression matrix are valid here as well
because the interchange of equations does not influence the accuracy of LS estimates to
be calculated.

Then the estimate x̂(k) of the intermediate signal x(k) could be extracted using (5)
where true values (9) are replaced by their estimates β̂, calculated by (24) or (25), i.e.,

x̂(k) = β̂0 + β̂1u(k) + β̂2u(k − 1) + · · · + β̂νu(k − ν + 1), (29)

∀k ∈ ν, N , respectively. Thus, the result of this step is the auxiliary signal x̂(k) that is
a reconstructed version of the intermediate unmeasurable one x(k). It will be used to
calculate the LS estimate Θ̂ of the vector of parameters ΘT = (b1, . . . , bm, a1, . . . , am)
of the linear block (1) (Fig. 1) by the well-known formula (7)

Θ̂ =
(
XT X

)−1
XT Y. (30)

Here Θ̂T = (b̂1, . . . , b̂m, â1, . . . , âm) is 2m × 1 is the estimate of the vector of parame-
ters Θ,

X =

⎡
⎢⎢⎢⎣

u(m + ν) . . . u(ν + 1) −x̂(m + ν) . . . −x̂(ν + 1)
u(m + ν + 1) . . . u(ν + 2) −x̂(m + ν + 1) . . . −x̂(ν + 2)

...
...

...
...

u(N − 1) . . . u(N − m) −x̂(N − 1) . . . −x̂(N − m)

⎤
⎥⎥⎥⎦

(31)
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is the (N − m − ν) × 2m matrix, consisting of observations of the input u(k) and the
auxiliary signal x̂(k) (29), Y is the (N − m − ν) × 1 vector of output observations.

Then, the second, and the main estimate x̃(k) ∀k ∈ 1, N of the internal signal is
calculated by

x̃(k) = G
(
q−1, Θ̂

)
u(k) =

b̂1q
−1 + · · · + b̂mq−m

1 + â1q−1 + · · · + âmq−m
u(k), (32)

that can be compared with its previous version (29), based on the FIR model.
Sometimes, in the presence of the measurement noise e(k) ∀k ∈ 1, N we cannot

accurately determine to which of the three regimes given an observation belongs. The
wrong attribution of observations to any of the given regime is likely to yield an inaccu-
racy in the extraction of the internal signal (29) as well as in the estimation of unknown
parameters Θ. Thus, a question arises to which regime the observation belongs at the
boundary of the respective data set in a noisy environment. Such a problem could be
solved if one rewrites the middle data set (11) as follows:

Y2 =

⎡
⎣ Y21

Y22

Y23

⎤
⎦ = Λ2β =

⎡
⎣ Λ21

Λ22

Λ23

⎤
⎦ β. (33)

Assuming that the hard nonlinearity damages about 10 percent of observations of
y(k) ∀k ∈ 1, N the rearranged data contained in the vector Y22 should be chosen from
the interval with a lower interval bound slightly higher than 5 percent and the upper inter-
val bound slightly lower than 95 per cent of the sampled reordered observations of ỹ(k).
Thus, both vectors Y21 and Y23 will contain approximately 10 percent of observations
of ỹ(k) that one could attribute to the left-hand or right-hand data sets, respectively. Such
observations ought to be rejected, and only the observations that belong to the true middle
data set Y22 ought to be processed. Then expression (24) turns out to be of the form

β̂ =
(
ΛT

22Λ22

)−1
ΛT

22Y22. (34)

For a discontinuous-nonlinearity (20)–(23) one can also rewrite Ỹ4 in (25) according
to

Ỹ4 =

⎡
⎢⎢⎣

Y11

Y12

Y31

Y32

⎤
⎥⎥⎦ = Λ̃4β =

⎡
⎢⎢⎣

Λ11

Λ12

Λ31

Λ32

⎤
⎥⎥⎦ β. (35)

Let us now rearrange the vector Ỹ4 as follows

Ỹ4 =
[
Y11

Y32

]
, (36)
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assuming that both vectors Y12 and Y31, to be rejected, will contain approximately 10
percent of observations of ỹ(k) attributed to the middle data set, respectively. In such a
case, the matrix Λ̃4 is

Λ̃4 =
[
Λ11

Λ32

]
. (37)

Afterwards β̂ is calculated according to (25). Note that, before the estimation of pa-
rameters of the FIR filter (29), one has to sort out correct samples from the initial set
of rearranged output observations rejecting some incorrect data portions, if the avail-
able hard-nonlinearity is a saturation or dead-zone. For the preload and backlash a com-
plete set of data could be used, because both nonlinearities do not cut off observations
y(k) ∀k = 1, N . Moreover, in (7) instead of y(k) the values y(k) + â sign(y(k)) or
y(k) − â sign(y(k)) k = 1, 2, . . . , N ought to be substituted, if the hard-nonlinearity is
the preload. The respective abovementioned values are needed if the hard-nonlinearity is
the dead-zone, too. In such a case, instead of ordinary rearranged y(k) meanings avail-
able in the right- and left-data sets, they ought to be substituted, respectively. Here â is an
initial value of a threshold a to be chosen in advance. For the backlash the initial version
x̂(k) of the internal signal has to be available. Then, in (29) instead of y(k) the value of
y(k) + â, if x̂(k) − x̂(k − 1) > 0 or y(k) − â, if x̂(k) − x̂(k − 1) < 0, or x̂(k − 1), if
x̂(k) = x̂(k − 1) ought to be replaced according to (19).

The estimate of the signal x̂(k) ∀k ∈ 1, N can be determined using the tech-
nique, based on the iterative procedure, consisting of two steps. In the first step, the
estimate of the internal signal x̂(k) ∀k ∈ 1, N is calculated, given the available data
(u(k), y(k)) ∀k ∈ 1, N , and the estimates β̂. In the second step, x̂(k) ∀k ∈ 1, N is used
to recalculate the estimates of parameters β. The technique to be used for the saturation
could be explained by the following steps: (a) cut-off observations of y(k) could be re-
jected beforehand; (b) the LS problem (24), consisting of the identification of parameters
of the FIR filter (5) has been solved using the middle data set; (c) the estimate of the inter-
nal signal has been calculated by (24), using the estimates of parameters of the FIR filter
that have been calculated in (b); (d) the LS problem (30), consisting of the identification
of parameters of the linear block (1) has been solved using the matrix (31); (e) return
to (b). Iterations of the above mentioned calculations are continued until the convergence
is assured.

5. Simulation Results

We consider here the common examples of hard-nonlinearities in a control system, such
as the saturation, preload, dead-zone, and backlash (Fig. 2), and discontinuous nonlinear-
ity (Fig. 3), too. The true intermediate signal of the control system is given by

x(k) =
q−1

(1 − 0.7q−1)2
u(k), (38)
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Fig. 4. Signals of the simulated linear system (38): input u(k) ∀k ∈ 1, N is a continuous line; internal signal
x(k) ∀k ∈ 1, N is a dashed line.

with the sum of sinusoids

u(k) =
20∑

l=1

sin(kπl/10 + ϕl), (39)

∀k = 1, N , having the stochastic phases ϕl ∀l = 1, 20 with a uniform distribution
on [0, 2π], as an input to the linear block (1). Firstly, four output signals were gener-
ated: for the saturation, for the dead-zone, for the preload, and for the backlash by for-
mulas (16)–(19), respectively. Thus, for each of the four simulated control system out-
puts (16)–(19) (see Fig. 5) the internal signal x(k) ∀k ∈ 1, N is the same (Fig. 4), and as
shown in (Fig. 5), for each of hard-nonlinearities, too.

N = 100 data points were generated, without additive process and measurement
noises (Fig. 6), and with them (Fig. 7) according to x(k) = x(k) + λ1v(k) ∀k ∈
1, N , y(k) = y(k) + λ2e(k) ∀k ∈ 1, N , respectively. Here λ1, λ2 were chosen such
that SNRs (the square root of the ratio of signal and noise variances) were equal to
100 for the process noise v(k) ∀k ∈ 1, N , and to 50 for the measurement noise
e(k) ∀k ∈ 1, N . Further SNRv and SNRe will be used for process and measure-
ment noises, respectively. Next, it followed parametric identification of FIR model (5),
and the recursive extraction of the internal signal by (29). Note that for the saturation
and the dead-zone, 60 cut-off rearranged output y(k) observations were rejected be-
forehand, and only 40 observations were processed in both cases by means of tech-
niques described in the fourth chapter. It could be mentioned that we also do not
use the first 14 observations of y(k) because it is important to fill the matrix (8)
and the vector (7) completely, thus avoiding the influence of initial conditions. The
simulation results imply that the accuracy of extracted versions of the internal sig-
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Fig. 5. Signals of the simulated system (38): output y(k) ∀k ∈ 1, N is a continuous line, the internal signal
x(k) ∀k ∈ 1, N is a dashed line. The hard-nonlinearity: saturation (a), dead-zone (b), preload (c), backlash (d).
The threshold a = 7.5.

Fig. 6. Signals of the simulated system (38): reconstructed according the formula (29) internal signal
x̂(k) ∀k ∈ 1, N is a continuous line, true internal signal x(k) ∀k ∈ 1, N calculated by (38) is a dashed
line. The hard-nonlinearity: saturation (a), dead-zone (b), preload (c), backlash (d).
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Fig. 7. The values and markings are the same as in Fig. 6 except that signals are observed in a noisy environment.

nal x(k) ∀k ∈ 1, N , calculated for the saturation, dead-zone and preload, is higher
as compared to the accuracy of the same signal reconstructed version, obtained for
the backlash with the exception of the transition process for the FIR model. Note
that for the backlash, it is important to have the initial version of the internal signal
x(k) ∀k ∈ 1, N close enough to the true one. The main estimates of the internal sig-
nal also were calculated by formula (32) for each hard-nonlinearity. They were compared
with the previous respective versions (29). It was concluded that the results were similar
enough.

For a discontinuous nonlinearity N = 100 data points have been generated, without
additive process and measurement noises (see Fig. 8a), too. The output y(k) was calcu-
lated according to (20)–(23) with the following values of parameters:

m1 = 1, m2 = 1.5, D = 1.25, b = 0.3, (40)

for the nonlinear block. First of all the LS problem, consisting in the estimation of pa-
rameters of the FIR filter (5), was solved. The whole number of its parameters ν = 14
was chosen. The initial values of respective constants were determined as follows:

m̂1 = 0.1, m̂2 = 0.15, D̂ = 0.125, b̂ = 0.03. (41)
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Fig. 8. Signals x(k) and y(k), and the extracted x(k) versions depending on the number (a) of observations
as well as on that of iterations (b)–(d). Signals: x(k), y(k) (a), x(k), x̂1(k) (b), x(k), x̂2(k) (c), x(k), x̂3(k)
(d). Curves: x(k) (1), y(k) (2), x̂1(k), x̂2(k), x̂3(k) (3). Iterations: 1 (b), 10 (c), 20 (d).

In such a case, 19 cut-off observations of y(k) from 100 initial ones were rejected
beforehand. Note that like for other hard-nonlinearities we do not use here the first 14
observations of y(k). The estimates of FIR filter parameters were calculated using 30 ob-
servations

x̃(k) = m̂−1
1 y(k) + D̂ sgn

(
y(k)

)
− b̂ m̂−1

1 sign
(
y(k)

)
, (42)

as y(k) > 0, and 37 observations

x̃(k) = m̂−1
2 y(k) + D̂ sgn

(
y(k)

)
− b̂ m̂−1

2 sign
(
y(k)

)
, (43)

with y(k) < 0. They were substituted instead of the respective values of y(k) in (7). Later
on, the internal signal x(k) was reconstructed according to (29), using the estimates of the
FIR filter parameters that were calculated beforehand. Thus, the signal x̂(j) ∀j = 15, 100
has been determined. The estimates b̂1, â1, â2 of parameters b1, a1, a2 of the control sys-
tem (38):

b̂1 = 1, â1 = −1.4, â2 = 0.49, (44)

have been calculated at the next step, and they have been used to calculate the second
estimate (32) of the intermediate internal signal x̃(k) ∀k = 3, 100. Estimates of the
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parameters m1, m2 and D, b have been calculated as follows (Malinvaud, 1969):

m̂1 =

∑N̂1
j=3 y(j)x̃(j)∑N̂1

j=3 x̃2(j)
, for y(j) > 0 ∀j = 1, N̂1, (45)

m̂2 =

∑N̂2
j=3 y(j)x̃(j)∑N̂2

j=3 x̃2(j)
, for y(j) < 0 ∀j = 1, N̂2, and (46)

D̂ =
1

m̂2 − m̂1

{
1

N̂1

N̂1∑
j=3

[
y(j) − m̂1x̃(j)

]
+

1
N̂2

N̂2∑
j=3

[
y(j) − m̂2x̃(j)

]}
, (47)

b̂ =
1
2

{
1

N̂1

N̂1∑
j=3

[
y(j) − m̂1x̃(j)

]
− 1

N̂2

N̂2∑
j=3

[
y(j) − m̂2x̃(j)

]

+
(
m̂1 + m̂2

)
D̂

}
, (48)

respectively. Here N̂1 = 30 and N̂2 = 37 were used. The iterations of the calcula-
tions have been repeated for several times. Note that, during the previous calculations,
the estimates b̂1, â1, â2 of parameters b1, a1, a2 of the linear block (1) and estimates
m̂1, m̂2, D̂, b̂ of parameters m1, m2, D, b of the discontinuous nonlinearity (20)–(23),
that were determined in the previous iteration, have been used in the current iteration, re-
spectively.

The intermediate signal x(k), the output signal y(k), and three reconstructed ver-
sions x̂1(k), x̂2(k) and x̂3(k) of the second estimate x̃(k) of the internal signal x(k)
that have been determined after executing a different number of iterations (1, 10, 20),
are shown in Fig. 8. Note that, the signal x̂1(k) (curve 3 in Fig. 8b),extracted in the first
iteration, is the worst estimate of internal x(k) in comparison with the signals x̂2(t),
x̂3(t) (curves 3 in Figs. 8c, 8d). It follows that by increasing the number of iterations, the
accuracy of reconstruction of the true signal x(k) has been increased, too. Therefore, it
suffices to perform approximately 30 iterations in order to determine the estimate x̂(k)
that accurately enough approximates the true x(k). In Fig. 9a input and output signals
are shown. A complete set of the output data is presented here, too. Really, a reduced
set (67 observations) was used during the intermediate signal extraction and the para-
metric estimation. The estimates b̂1, â1, â2 of parameters b1, a1, a2 depending on the
numbers of iterations are shown in Figs. 9b–9d. It is easy to understand that deviation of
estimates from the true values is not significant. On the other hand, the estimates â1, â2

do not approach their true values with a remarkable increase of the iteration number. In
Fig. 10, the estimates m̂1, m̂2, D̂, b̂ of parameters m1, m2, D, b are presented de-
pending on the number of iterations of the calculations performed. In such a case, the
transition process of convergence of the estimates b̂1, â1, â2 and m̂1, m̂2, D̂, b̂ to the
true values b1, a1, a2 and m1, m2, D, b, respectively, is over, too. In Figs. 11–13,
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Fig. 9. Signals: u(k) (1), y(k) (2) in (a), and estimates b̂1 (b), â1 (c), â2 (d) of parameters b1, a1, a2 (b)–(d)
(dotted lines) depending on observations (a), as well as on iterations (b)–(d).

the same values are shown as in Figs. 8–10, respectively, but almost twice larger sets of
observations as the previous ones. The accuracy of x̂(k) and estimates b̂1, â1, â2 and
m̂1, m̂2, D̂, b̂ changes slightly, when the number of processed observations is increased
(see Fig. 11–13) – only the estimate b̂ of the preload constant b (Fig. 13d) is more ac-
curate than that calculated by processing 67 samples (Fig. 10d). Note that, actually, in
such a case, only 130 observations of the input-output data have been processed by the
proposed iterative technique. As much as 70 observations from 200 have been rejected
as cut-off observations that had been damaged while passing through the discontinuous
nonlinearity.

The estimation results shown in Figs. 14–19 are determined in the presence of the
additive measurement noise (Figs. 14–17), as well as in the presence of both process
and measurement noises (Figs. 18–19). Note that, in parts b, c, d of (Fig. 18), and
in all the parts of (Fig. 19) the respective estimates are presented in ten curves. The
additive measurement noise, corrupting y(k), affects x̂(k), as well as the estimates
b̂1, â1, â2 and m̂1, m̂2, D̂, b̂ (Figs. 14–17). It seems that b̂ does not approach the
true b (Fig. 17d) for such two realizations of process and measurement noises, corre-
spondingly. Figs. 20 and 21 illustrate the estimates b̂1, â1, â2 and m̂1, m̂2, D̂, b̂,
that are averaged by 10 experiments. We can assert that the estimates b̂1, â1, â2

and m̂1, m̂2, D̂, b̂ approach the true values in the sense of mean squares, respec-
tively, after the number of different realizations of noisy input-output data, used to es-
timate the parameters b1, a1, a2 and m1, m2, D, b (Figs. 18–21), has been in-
creased.
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Fig. 10. Estimates m̂1 (a), m̂2 (b), D̂ (c), b̂ (d) of the true values of m1, m2, D, b (dotted lines) of the
nonlinearity (20)–(23).

Fig. 11. Values and markings are the same as in Fig. 8.
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Fig. 12. Values and markings are the same as in Fig. 9.

Fig. 13. Values and markings are the same as in Fig. 10.
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Fig. 14. Values and markings are the same as in Fig. 8. SNRe = 100.

Fig. 15. The internal signal x(k) and x̂(k). Iterations: 30 (a), 40 (b). Curves: continuous is x̂(k), dashed is
x(k). SNRe = 100.
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Fig. 16. Values and markings are the same as in Fig. 9. SNRe = 100.

Fig. 17. Values and markings are the same as in Fig. 10. SNRe = 100.
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Fig. 18. Values and markings are the same as in Fig. 16 except the number of curves in parts (b)–(d),
where the estimates of b1, a1, a2 depending on the number of iterations are shown in ten, respectively.
SNRv = 100, SNRe = 50.

Fig. 19. Values and markings are the same as in Fig. 17 except the number of curves, where estimates of
m1, m2, D, b depending on the number of iterations are shown in ten. SNRv = 100, SNRe = 50.
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Fig. 20. Averaged estimates of the values shown in Figs. 18b, 18c, 18d. Parts: b̂1 (top), â1 (middle), â2 (bottom).

Fig. 21. Averaged estimates of values shown in Fig. 19. Parts: m̂1 (a), m̂2 (b), D̂ (c), b̂ (d).

6. Conclusions

In control systems hard-nonlinearities can occur either in the control actuators or in mea-
surement devices. There exist intelligent control approaches for the compensation of par-
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asitic effects of hard-nonlinearities, based on static and dynamic compensators that use
neural networks. It is known that various control techniques with tuning algoritms are
developed for common actuator nonlinearities that guarantee small tracking error and
bounded internal states, too. On the other hand, we present here the common approach
based on extraction of an unmeasurable internal signal, acting between linear and non-
linear blocks of the Wiener system, avoiding design of compensators. We propose here
to extract an internal signal using the trivial rearrangement of observations. Two para-
metrical models of the linear block and the iterative technique, based on ordinary LS,
are used. The simulation results, presented in Figs. 5–21, imply that the iterative tech-
nique, based on the input-output data rearrangement and on the FIR model (5), where
such reordered observations have been used to fill the respective matrix (8) and vectors
(10)–(12) differently for each hard-nonlinearity, rejecting cut-off observations, could be
used for the iterative estimation of unknown parameters of Wiener systems. Later on, the
internal signal is extracted by formula (32). It appears that with an increase of the amount
of observations to be processed, the accuracy of estimates also slightly grows because
of the increased number of incorrect observations. The additive process and measure-
ment noises in observations to be processed strongly influence the quality of parametric
identification of the Wiener system with a discontinuous nonlinearity.
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Apie suman ↪uj ↪i vidinio signalo išgavim ↪a Vinerio sistemoje,
susidedančioje iš tiesinio bloko ir po jo sekančio kieto netiesiškumo

Kazys KAZLAUSKAS, Rimantas PUPEIKIS

Straipsnyje nagrinėjamas Vinerio sistem ↪u su dinamine tiesine dalimi ir po jos sekančio kieto
netiesiškumo netiesinėje dalyje nematuojamo vidinio signalo išgavimo uždavinys. Parodyta, kad
šis uždavinys, pertvarkius ↪iėjimo bei užtriukšminto išėjimo signal ↪u stebėjimus ir juos atskyrus,
suvedamas ↪i tiesin↪i parametrinio vertinimo uždavin↪i. Pasiūlyta nuosekli Vinerio sistemos vidinio
signalo, esančio tarp netiesinės ir tiesinės dali ↪u atkūrimo procedūra ↪ivairiems kietiems netiesišku-
mams triukšm ↪u aplinkoje. Gautos šio signalo einamosios reikšmės gali būti taikomos rekuren-
tiniams abiej ↪u dali ↪u koeficient ↪u ↪iverčiams gauti. Pateikti Vinerio sistem ↪u su penkiais kietais
netiesiškumais modeliavimo, j ↪u parametrinio identifikavimo bei vidinio nematuojamo signalo iš-
gavimo rezultatai.


