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Abstract. Hwang et al. proposed an ElGamal-like scheme for encrypting large messages, which
is more efficient than its predecessor in terms of computational complexity and the amount of
data transformation. They declared that the resulting scheme is semantically secure against chosen-
plaintext attacks under the assumptions that the decision Diffie–Hellman problem is intractable.
Later, Wang et al. pointed out that the security level of Hwang et al.’s ElGamal-like scheme is not
equivalent to the original ElGamal scheme and brings about the disadvantage of possible unsuccess-
ful decryption. At the same time, they proposed an improvement on Hwang et al.’s ElGamal-like
scheme to repair the weakness and reduce the probability of unsuccessful decryption. However, in
this paper, we show that their improved scheme is still insecure against chosen-plaintext attacks
whether the system is operated in the quadratic residue modulus or not. Furthermore, we propose
a new ElGamal-like scheme to withstand the adaptive chosen-ciphertext attacks. The security of
the proposed scheme is based solely on the decision Diffie–Hellman problem in the random oracle
model.
Keywords: public-key encryption, cryptanalysis, chosen-plaintext attack, adaptive chosen-chipher-
text attack, chosen-ciphertext attack, Diffie–Hellman problem, indistinguishable.

1. Introduction

Two typical primitives of the trapdoor one-way function are RSA (Rivest et al., 1978) and
ElGamal (ElGamal, 1985). They are used in many cryptographic applications (Chang,
2008, 2009, 2010; Chmielowiec, 2010; Hwang et al., 2003; Wang and Hy, 2010; Yang et
al. 2003), i.e., encryption and signatures. The difference between ElGamal function (Lee
et al., 2009; Shen et al., 2003) and RSA function (Bao et al., 2006; Hwang et al., 2000) is
that probabilistic, rather than deterministic. In a probabilistic trapdoor one-way function,
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when encrypting a plaintext x twice, the probability that we regain the same ciphertext
y must be negligibly small. Previously, what we have to face is that a passive attacker
could break a cryptosystem only in the all-or-nothing (one-wayness) sense. However,
this security notation which only deals with the case of passive attackers is not strong
enough. On the contrary, the attacker maybe more active rather than passive; that is, she
has more powerful capabilities to modify a ciphertext or to calculate a plaintext in some
unspecified ways. To capture the powerful attackers, the stronger security notations are
necessary and will be introduced in the following section.

1.1. Security Notations

To enhance the security notation, many stronger notations have been proposed. Bellare et
al. (1998) uses the pair goal (GOAL) and adversary models (ATK) to define the security
notations of PKE and describe the relations among them. The goals GOAL={IND, NM} are
defined as follows.

• Indistinguishability (IND): given the challenge ciphertext y, the adversary has no
ability to obtain any information about the plaintext x.

• Non-malleability (NM): given the challenge ciphertext y, the adversary has no abil-
ity to decrypt y to get a different ciphertext y′ and output a meaningful relation to
relate the corresponding plaintexts x and x′.

The adversary models ATK={CPA, CCA1, CCA2} are defined as follows.

• Chosen-Plaintext Attack (CPA; Goldwasser and Micali, 1984): the adversary is only
given the public key and she can obtain any ciphertext from any plaintext chosen
by her. In the PKEs, this attack cannot be avoided. It is considered as a basic re-
quirement for most provably secure PKE.

• Chosen-Ciphertext Attack (CCA1; Naor and Yung, 1990): not only given the public
key, but also the adversary has to access a decryption oracle before being given the
challenge ciphertext. It has also been called a lunch-time or midnight attack.

• Adaptive Chosen-Ciphertext Attack (CCA2; Rackoff and Simon,1991): The adver-
sary queries the decryption before and after being challenged; her only restriction
here is that she may not feed the decryption oracle with the challenge ciphertext
itself. It has also been called a small-hours attack.

The following (Bellare et al., 1998; Fujisaki et al., 2001) are the relations among those
GOAL-ATK.

NM-CPA ←− NM-CCA1
←−

NM-CCA2�−→↓ �↘ �↖ ↓ ↓ ↑
IND-CPA ←− IND-CCA1 ←− IND-CCA2

For A, B ∈GOAL-ATK, “A → B" denotes A implies B, which means if a PKE is
secure in the sense of A, it is also secure in the sense of B. “A �→ B" denotes A doesn’t
imply B, which means if a PKE is secure in the sense of A, it is not always secure in the
sense of B.
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1.2. Relative Works

Many various PKEs have been proposed. The security of most of the widely-used PKEs
is based on number-theoretic problems such as factoring integers and finding discrete
logarithms over some cyclic group. Aim at to be secure in the stronger notations is more
important. The general methodology for formally provable security is to reduce an alleged
attack on an encryption scheme to a solution of an intractable problem.

Tsiouns and Yung (1998) showed that the IND-CPA of the ElGamal PKE operated
in the quadratic residue modulo p is actually equivalent to the Decision Diffie–Hellman
(DDH) problem. At the same time, they also proposed an enhanced ElGamal PKE is
secure in the IND-CCA2 sense under the Random Oracle (RO) model and the decision
Diffie–Hellman assumption. The RO is assumed to be an ideally random function when
proving the security and it is replaced by a practical random-like function such as one-
way hash function (Bellare and Rogaway, 1993). On the other hand, Cramer and Shoup
(1998) proposed a new public-key PKE based on the ElGamal, which is the first practical
IND-CCA2 secure only under decision Diffie–Hellman assumption and the universal one-
way hash functions, i.e., in the standard model (without the use of RO).

Most schemes are specified, they cannot be adopted by other schemes. There are
two major conversions to convert existed trap-door one-way permutations to achieve
IND-CCA2. Bellare–Rogaway conversion (Bellare and Rogaway, 1994) faces on the de-
terministic trap-door one-way permutations such as RSA and a comment (Shoup, 2001)
revealed a flaw in that proof. Later, Fujisaki et al. (2001) find a way to rescue Bellare–
Rogaway conversion for the trap-door partial-domain one-way permutations. On the other
hand, Fujisaki–Okamoto conversion faces on the probabilistic trap-door one-way func-
tions such as ElGamal. Both conversions are under the RO model and trap-door one-way
function assumption.

Table 1 shows the different assumptions and GOAL-ATK among some related schemes.
As we realize it is not pratical to implement the security proof in the RO-based technique
since this kind of proof is heuristic only. However, the RO model usually has better effi-
ciency and is still a useful test-bed to prove the security.

For encrypting a lengthy plaintext space efficiently in the PKE, Hybrid Public-Key
Encryption (HPKE) schemes are devised (Abe et al., 2005), composed by two parts.
The PKE scheme is used for encrypting a symmetric key K and then the message x is
encrypted by the symmetric key. It is easy to construct a CCA2-secure HPKE (Abe et al.,
2005), where the PKE is CCA2-secure and a symmetric encryption is secure against the
passive attack such as the ciphertext is produced by x ⊕ K where K is one-time use.

Hwang et al. (2002) consider a situation in the original ElGamal. When the plaintext
x is larger than the modulus p, it should be divided into several pieces x1, x2, . . . , xn and
each xi (for i = 1 to n) is smaller than p. Then we would need n times to apply ElGamal
encryption to obtain n ciphertexts yi’s. According n ciphertexts yi’s, we also need to
apply n times ElGamal decryption. It has the same results as in the HPKE schemes to
encrypt the enough length of symmetric key K. Of course, the HPKE can firstly encrypt
a smaller K and then apply a pseudo-random bit generator on K to generate an enough
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Table 1

Assumptions and security notations of some related schemes

Schemes Assumptions GOAL-ATK

ElGamal in QRp (Tsiounis and Yung, 1998) DDH problem IND-CPA
Tsiouns-Yung (Tsiounis and Yung, 1998) DDH problem, RO IND-CCA2
Shoup–Gennaro (Shoup and Gennaro, 1998) DDH problem, RO IND-CCA2
Cramer–Shoup (Cramer and Shoup, 1998) DDH problem, UOWHF IND-CCA2
Pointcheval (Pointcheval, 1999) DRSA problem, RO IND-CCA2
Paillier–Pointcheval (Paillier and Pointcheval, 1999) DCR problem, DPDL problem, RO IND-CCA2
Hwang et al. (Hwang et al., 2002) DDH problem IND-CPA
Bellare–Rogaway (Bellare and Rogaway, 1994) Deterministic trap-door partial-domain IND-CCA2

one-way permutations, RO
Fujisaki–Okamoto (Fujisaki et al., 2001) Probabilistic trap-door one-way IND-CCA2

functions, RO

Universal one-way hash function (UOWHF), dependent-RSA (DRSA) problem, decision composite
residuosity (DCR) problem, decision partial discrete logarithm (DPDL) problem

length of one-time pad to conform to the length of x. When the receiver decrypts the
ciphertext of K, she must also apply the pseudo-random bit generator to obtain the one-
time pad.

To withstand the reduce the computational complexity and the amount of data trans-
formation as compared to the ElGamal, they proposed an ElGamal-like PKE for encrypt-
ing large messages and declared that the resulting scheme is in the IND-CPA sense under
decision Diffie–Hellman assumption. Unfortunately, Wang et al. 2006) pointed out that
the security level of Hwang et al.’s ElGamal-like PKE is not equivalent to the original
ElGamal scheme and brings about the disadvantage of possible unsuccessful decryption.
At the same time, they proposed an improved version of Hwang et al.’s ElGamal-like
PKE to repair the weakness and reduce the probability of unsuccessful decryption.

Wang et al.’s improved version of ElGamal-like PKE can be used in the situation
for HPKE, which can remove a pseudo-random bit generator of the receiver since the
encryption of PKE can directly encrypt a lengthy K efficiently. However, we will show
that their scheme is insecure in the IND-CPA sense in this paper. That is, their improved
ElGamal-like PKE cann’t provide the same security level as in the original the original
ElGamal PKE. We also proposed an ElGamal-like PKE to satisfy the IND-CCA2 sense,
which provides higher security confidence than satisfying the IND-CPA sense in Hwang
et al.’s and Wang et al.’s PKEs. The security is under the assumption of the DDH problem
in the random oracle model.

1.3. Outline of the Paper

The remainder of our paper is organized as follows. In Section 2, we shall give some
definitions about the security of encryption scheme, quadratic residues, and Legendre
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symbol. In Section 3, we first give a brief review of the ElGamal which is not operated in
the quadratic residue modulo p (denoted as QRp) and then show that scheme is insecure
in the IND-CPA sense. In Section 4, we separately show that the Wang et al.’s improved
version of ElGmal-like PKE is insecure in the IND-CPA sense in QRp and not in QRp.
In Section 5, a new ElGamal-like PKE is proposed to satisfy the IND-CCA2 sense and its
security is proven under the assumption of the DDH problem in the random oracle model.
Then, we compare the computational complexity of our PKE with that of ElGamal PKE
for encrypting a large message. Finally, we shall present our discussion and conclusion
in Section 6.

2. Definitions and Security Models

In this section, we give some definitions about encryption scheme security, quadratic
residues, and Legendre symbol as follows.

DEFINITION 1. A function ε(k) is negligible if for every positive polynomial P (k) ∈
Z[X], there is k0, such that for every k � k0, ε(k) < 1/P (k).

DEFINITION 2. Let A be a probabilistic algorithm and let A(x1, x2, . . . ; r) be the result
of running A on input x1, x2, . . . and coins r. We let y ← A(x1, x2, . . .) denote the ex-
periment of choosing r at random and letting y be A(x1, x2, . . . ; r). If S is a finite set, let
x ←R S be the operation of choosing x at random and uniformly from S. For probability
spaces S, T, . . . , the notation Pr[x1 ← S; x2 ← T ; . . . : p(x1, x2, . . .)] denotes after the
ordered execution of the algorithms x1 ← S, x2 ← T, . . . , the probability that predicate
p(x1, x2, . . .) is true.

DEFINITION 3. Let a triple of algorithm Π = (K, E , D) be a probabilistic PKE.

– The key generation algorithm K, is a probabilistic algorithm which on input 1k,
where k is the security parameter, outputs a pair (pk, sk) of matching public and
secret key.

– The encryption algorithm E , is a probabilistic algorithm which on input a plaintext
x and public key pk, outputs a ciphertext y.

– The decryption algorithm D, is a deterministic algorithm which on input ciphertext
y and the secret key sk, outputs the plaintext x.

Here, we only give the definition of IND-ATK. The following sections will show that
the ElGamal which is not operated in QRp is not secure in the IND-CPA sense, and Wang
et al.’s ElGamal-like PKE is not secure in the IND-CPA either the system is operated in
QRp or not.

DEFINITION 4. Let n ∈ N and x ∈ Z. We call that x is quadratic residue modulo n

if there is an element y ∈ Z with x = y2 mod n. Otherwise, x is called a quadratic
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non-residue modulo n. The subgroup of Z
∗
n which consists of the residue classes repre-

sented by a quadratic residue, is denoted by QRn. The complement of QRn is denoted
by QNRn = Z

∗
n/QRn.

DEFINITION 5. Let p be a prime > 2, and let x ∈ Z be prime to p.

(
x

p

)
:=

{
+1, if [x] ∈ QRp,

−1, if [x] ∈ QNRp,

is called the Legendre symbol of x mod p.

DEFINITION 6. Let A = (A1, A2) be a pair of probabilistic algorithms, say Adversary
for Π = (K, E , D). For ATK={CPA, CCA1, CCA2} and k ∈ N, denote the success event of
A for Π by

SuccATK
A,Π(k) =

[
(pk, sk) ← K

(
1k

)
; (x0, x1, state) ← A O1

1 (pk); b ←R {0, 1};

y ← Epk(xb) : A O2
2 (x0, x1, state, y) = b

]
,

where the first two components of a triple (x0, x1, state) are the plaintexts with the same
length |x0| = |x1|, and the last is a state information (including the public key pk) and
some information to preserve. Here, O1(·), O2(·) are defined as follows:

–If ATK=CPA then O1(·) = null and O2(·) = null;
–If ATK=CCA1 then O1(·) = Dsk(·) and O2(·) = null;
–If ATK=CCA2 then O1(·) = Dsk(·) and O2(·) = Dsk(·).

We denote the advantage of A for Π as

AdvATK
A,Π(k) = 2 · Pr

[
SuccATK

A,Π(k)
]

− 1.

We say that Π is secure in the IND-ATK sense if for any adversary A being polynomial-
time in k, AdvATK

A,Π(k) is negligible in k.

3. Analysis of ElGamal PKE Scheme

Though the ElGamal operated in the quadratic residue modulo p has been showed that is
secure in the IND-CPA sense under the Diffie–Hellman assumption (Tsiounis and Yung,
1998). In order to state our results clearly and precisely in breaking the Wang et al.’s
ElGamal-like PKE (Wang et al., 2006), we begin with a review of the ElGamal which
is not operated in the quadratic residue modulo p and then show that is insecure against
IND-CPA.

3.1. ElGamal PKE Scheme

Let Π = (K, E , D) be the ElGamal PKE.
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– Key generation algorithm K: (pk, sk) ← K(1k), pk = (p, g, Y ) and sk = s, where
Y = gs mod p, |p| = k, s ∈ Z

∗
p, and #〈g〉 = p. Let Gp be a group of prime order

p of the multiplicative group Z
∗
p.

– Encryption algorithm E :

(y1, y2) = Epk(x; r) =
(
gr mod p, x · Y r mod p

)
,

where message x ∈ {0, 1}k and r ←R {0, 1}k.
– Decryption algorithm D:

x = Dsk(y1, y2) = y2 ·
(
ys
1

)−1 mod p.

3.2. Security Analysis

We can see that g is a primitive root of Gp by employing the key generation algorithm K
in Section 3.1. Below, we first give the following lemmas and then show that encryption
scheme is not secure in the IND-CPA sense.

Lemma 1. Let p be a prime > 2 and g be a primitive root of Z
∗
p. Let [x] ∈ Z

∗
p. Then x ∈

QRp if and only if x = ga mod p some even number a, 0 � a < p − 1.

Lemma 2. The Legendre symbol is multiplicative in x

(
xy

p

)
=

(
x

p

) (
y

p

)
.

It means [xy] ∈QRp if and only if either both [x], [y] ∈ QRp or both [x], [y] ∈ QNRp.

Theorem 1. Let Π = (K, E , D) be the ElGamal described in Section 3.1. An adversary
A is a (t, ε)-breaker for Π(1k) in IND-CPA if AdvCPA

A,Π(k) � ε and A runs within at most
running time t, where

ε = 1 and t � t1 + 3 · tQR.

Proof. We construct a breaking algorithm A = (A1, A2) for Π = (K, E , D) as follows.
Adversary: A1(pk)

Obtain {x0, x1}, where x0 ∈ QRp and x1 ∈ QNRp

Return (x0, x1, state)
End.
Encryption oracle: Oen(x0, x1, pk)

b ←R {0, 1}
(y1, y2) = Epk(xb; r) = (gr mod p, xb · Y r mod p)

End.
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Adversary: A2(x0, x1, state, (y1, y2))
Case 1: Y ∈ QRp and y1 ∈ {QRp, QNRp}

If y2 ∈ QRp, then outputs 0
If y2 ∈ QNRp, then outputs 1

Case 2: y1 ∈ QRp and Y ∈ QNRp

If y2 ∈ QRp, then outputs 0
If y2 ∈ QNRp, then outputs 1

Case 3: Y ∈ QNRp, y1 ∈ QNRp

If y2 ∈ QNRp, then outputs 0
If y2 ∈ QRp, then outputs 1

End.
We now analyze the successful probability of adversary A = (A1, A2). We define the

following events. E1 be the event (Y ∈ QRp)∧(y1 ∈ {QRp, QNRp}), E2 be the event
(y1 ∈ QRp)∧(Y ∈ QNRp) and E3 be the event (Y ∈ QNRp)∧(y1 ∈ QNRp).

Let b′ be the output of A2. For Case 1, Y = gs ∈ QRp. By Lemma 1, s is even, no
matter what y1 ∈ QRp, or y1 ∈ QNRp, we know that Y r = gsr ∈ QRp. We see that A2

will output the correct b′=0 (b′=1) if and only if y2 ∈ QRp (y2 ∈QNRp). This is due to
the multiplicative property of Legendre symbol in Lemma 2 as follows.(

y2

p

)
=

(
xb

p

) (
Y r

p

)
.

Therefore, the condition probability Pr[b = b′ |E1]=1 and the probability Pr[E1] = 1/2.
For the same reason, in Case 2, the condition probability Pr[b = b′ |E2]=1. Note that
(y1 ∈ QRp)∧(Y ∈ QRp) is included in the event E1 and the probability Pr[E1] = 1/4.
For Case 3, Y ∈ QNRp and y1 ∈ QNRp, by Lemma 1, s and r are odd, Y r = gsr ∈
QNRp. A2 will output the correct b′=0 (b′=1) if and only if y2 ∈ QRp (y2 ∈ QNRp).
Thus, the condition probability Pr[b = b′ |E3] = 1 and the probability Pr[E3] = 1/4. By
the law of total probability,

Pr
[
SuccCPA

A,Π(k)
]

= Pr
[
b = b′]

=
3∑

i=1

Pr
[
b = b′ |Ei

]
· Pr[Ei]

= 1 · 1
2

+ 1 · 1
4

+ 1 · 1
4

= 1,

we have AdvCPA
A,Π(k) = 2 · Pr[SuccCPA

A,Π(k)] − 1 = 1.
Thus, we have the ability to distinguish the distinct plaintext x0 and x1. To secure

against IND-CPA, for security parameter k, primes p and q are chosen such that p = 2q+1
(q is called a Sophie–Germain prime if p is also a prime), where |p| = k and |q| = k − 1.
Then a unique subgroup Gq of prime order q of the multiplicative group Z

∗
p and g of Gq

are defined. In other words, the key generation K should be modified as K̂.
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– Key generation K̂: (pk, sk) ← K̂(1k), pk = (p, g, Y ) and sk = (p, g, s), where
Y = gs mod p, |p| = k, p = 2q + 1, #〈h〉 = p, g = h2 mod p, s ∈ Z/qZ, and
#〈g〉 = q.

Since g generates all the quadratic residues in QRp and the message for encrypting is
needed to be a QRp, the algorithm A does not work.

A value is determined whether it is in QRp or not can be computed efficiently by
Euler’s criterion in a polynomial time. Let tQR be the time of determining whether a
value is in QRp or not. Let t1 be the time of choosing two messages x0 ∈ QRp and
x1 ∈ QNRp. Then, from the specification of A = (A1, A2), it runs within at most 3
times tQR in Case 2 or Case 3. Hence, t � t1 + 3 · tQR and it is in a polynomial time.

4. Analysis of ElGamal-Like PKE Scheme

The ElGamal should employ the key generation algorithm K̂ to ensure that the IND-CPA
sense. However, in this section, we will show that even if the ElGamal-like PKE are given
the same repair, it is still insecure in the IND-CPA sense.

4.1. ElGamal-Like PKE Scheme

Let Π′ = (K ′, E ′, D ′) be Wang et al.’s ElGamal-like PKE.

– Key generation algorithm K ′: (pk, sk) ← K ′(1k), pk = (p, g, Y ) and sk =
(p, g, s), where Y = gs mod p, |p| = k, s ∈ Z

∗
p, and #〈g〉 = p.

Note that the prime p should be chosen such that the smallest positive integer T

for 2T+1 = 2 mod p − 1 is as large as possible (Please see (Wang et al., 2006) for
more details). Otherwise, g2j

mod p cannot generate all the elements in Z∗
p where

j = 1, 2, . . . , p − 1.
– Encryption algorithm E ′:

(y1, y2, y3,i) = E ′
pk(xi; r1; r2) =

(
gr1 mod p, gr2 mod p, xi

×
(
Y r1 ⊕

(
Y r2

)i) mod p
)
,

where message x ∈ {0, 1}>k, x is divided into x1, x2, . . . , xn (|x1| = |x2| =
· · · = |xn−1|, n = �|x|/k�, |xn| = |x| mod k, and each xi < p) and r1, r2 ←R

{0, 1}k. The notation ⊕ denotes as the bit-wise exclusive-or operation.
– Decryption algorithm D ′:

xi = D ′
sk(y1, y2, y3,i) = y3,i ·

(
ys
1 ⊕

(
ys
2

)i)−1 mod p,

x = x1x2 . . . xn.

This scheme is designed for encrypting large messages, which will more efficient
than the ElGamal. Here, we consider the same situation in the original ElGamal
where the message x < p is for encrypting as follows.
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– Encryption algorithm E ′:

(y1, y2, y3) = E ′
pk(x; r1; r2)

=
(
gr1 mod p, gr2 mod p, x ×

(
Y r1 ⊕ Y r2

)
mod p

)
,

where message x ∈ {0, 1}k, x < p, and r1, r2 ←R {0, 1}k.
– Decryption algorithm D ′:

x = D ′
sk(y1, y2, y3) = y3 ·

(
ys
1 ⊕ ys

2

)−1 mod p.

4.2. Security Analysis

In the following theorem, we prove that Wang et al.’s ElGamal-like PKE in Section 4.1 is
insecure in the IND-CPA sense and has the probability to make that cryptosystem failed.

Theorem 2. Let Π′ = (K ′, E ′, D ′) be the ElGamal-like PKE described in Section 4.1.
An adversary A′ is a (t′, ε′)-breaker for Π′ in IND-CPA if AdvCPA

A ′,Π′ (k) � ε′ with the
event Fail does not occur, and A ′ runs within at most running time t′, where

ε′ = 1 and t′ � t1 + 3 · tQR.

Proof. We give a simple example and then analyze the results as follows. In the key
generation algorithm K ′, for p = 7, we select a generator g = 5 of Z

∗
p. It satisfies the

requirement of p such that the smallest positive positive integer T for 2T+1 = 2 mod p −
1 is as large as possible. In this example, 2j mod p generate {5, 7} for all integer j in
[1, 6] since the smallest positive integer such that 2T+1 = 2 mod p − 1 is 2. Consider
the sets QRp = {1, 2, 4} and QNRp = {3, 5, 6}. By Lemma 1, the following situations
(mod p is abridged) are considered.

Situation 1: Y r1 ∈ QRp and Y r2 ∈ QRp

The values of computing Y r1 ⊕ Y r2 are in the set S1 = {1 ⊕ 1, 1 ⊕ 2, 1 ⊕ 4, 2 ⊕ 1, 2 ⊕
2, 2 ⊕ 4, 4 ⊕ 1, 4 ⊕ 2, 4 ⊕ 4} = {0, 3, 5, 3, 0, 6, 5, 6, 0}.

Situation 2: Y r1 ∈ QRp and Y r2 ∈ QNRp

The values of computing Y r1 ⊕ Y r2 are in the set S2 = {1 ⊕ 3, 1 ⊕ 5, 1 ⊕ 6, 2 ⊕ 3, 2 ⊕
5, 2 ⊕ 6, 4 ⊕ 3, 4 ⊕ 5, 4 ⊕ 6} = {2, 4, 0, 1, 0, 4, 0, 1, 2}.

Situation 3: Y r1 ∈ QNRp and Y r2 ∈ QRp

The values of computing Y r1 ⊕ Y r2 are the same as in S2. S2 = S3 =
{2, 4, 0, 1, 0, 4, 0, 1, 2}.

Situation 4: Y r1 ∈ QNRp and Y r2 ∈ QNRp

The values of computing Y r1 ⊕ Y r2 are in the set S4 = {3 ⊕ 3, 3 ⊕ 5, 3 ⊕ 6, 5 ⊕ 3, 5 ⊕
5, 5 ⊕ 6, 6 ⊕ 3, 6 ⊕ 5, 6 ⊕ 6} = {0, 6, 5, 6, 0, 3, 5, 3, 0}.

We can see that the values of Y r1 ⊕ Y r2 has the probability to be 0, no matter what
plaintext x is input to encrypt algorithm E ′, the value of y3 = x·(Y r1 ⊕Y r2) is equal to 0.
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The encrypt algorithm E ′ is failed, together with the decrypt algorithm D ′. Obviously,
the probability of Π′ = (K ′, E ′, D ′) crashed in the above situations is 1/3, denoted as
Pr[Fail] = 1/3.

If the encryption algorithm E ′ chooses r1 or r2 ←R {0, 1}k again to avoid the case
Y r1 ⊕ Y r2 = 0, we still can construct a breaking algorithm A′ = (A ′

1, A ′
2) in the

IND-CPA sense for Π′ = (K ′, E ′, D ′).
Adversary: A′

1(pk)
Obtain {x0, x1}, where x0 ∈ QRp and x1 ∈ QNRp

Return (x0, x1, state)
End.
Encryption oracle: Oen(x0, x1, pk)

b ←R {0, 1}
(y1, y2, y3) = E ′

pk(xb; r1; r2) = (gr1 , gr2 , xb ·(Y r1 ⊕Y r2))
End.
Adversary: A′

2(x0, x1, state, (y1, y2, y3))
Case 1: Y ∈ QRp // Y r1 ⊕ Y r2 ∈ QNRp

If y3 ∈ QRp, then outputs 1
If y3 ∈ QNRp,then outputs 0

Case 2: Y ∈ QNRp and y1 ∈ QRp and
y2 ∈ QRp //Y r1 ⊕ Y r2 ∈ QNRp

If y3 ∈ QRp, then outputs 1
If y3 ∈ QNRp, then outputs 0

Case 3: Y ∈ QNRp and
y1 ∈ QNRp and y2 ∈ QRp //Y r1 ⊕ Y r2 ∈ QRp

If y3 ∈ QRp, then outputs 0
If y3 ∈ QNRp, then outputs 1

Case 4: Y ∈ QNRp and
y1 ∈ QRp and y2 ∈ QNRp //Y r1 ⊕ Y r2 ∈ QRp

If y3 ∈ QRp, then outputs 0
If y3 ∈ QNRp, then outputs 1

Case 5: Y ∈ QNRp and
y1 ∈ QNRp and y2 ∈ QNRp //Y r1 ⊕ Y r2 ∈ QNRp

If y3 ∈ QRp, then outputs 1
If y3 ∈ QNRp, then outputs 0

End.
The successful probability of adversary A′ = (A ′

1, A ′
2) is similar to A = (A1, A2) if

Π′ = (K ′, E ′, D ′) is not crashed, i.e., Fail does not occur. By the multiplicative property
of Legendre symbol,

(
y3

p

)
=

(
xb

p

) (
Y r1 ⊕ Y r2

p

)
,

the conditional probability Pr[AdvCPA
A ′,Π′ (k)| ¬Fail] is equal to 1 and AdvCPA

A ′,Π′ (k) =
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2 · Pr[SuccCPA
A ′,Π′ (k)| ¬Fail] − 1 = 1. For the same reason, from the specification of A ′, it

runs within at most t′ � t1 + 3 · tQR.

If we attempt to repair this scheme Π′ = (K ′, E ′, D ′) as the same fashion in Section
3.2, the key generation algorithm K ′ is replaced as K̂, and then the PKE becomes Π′ ′ =
(K̂, E ′, D ′). The following theorem will show that Π′ ′ = (K̂, E ′, D ′) is still insecure in
the IND-CPA sense.

Theorem 3. Let Π′ ′ = (K̂, E ′, D ′) be the ElGamal-like PKE operated in QRp. An ad-

versary A′ ′ is a (t′ ′, ε′ ′)-breaker for Π′ ′ in IND-CPA if AdvCPA
A ′ ′,Π′ ′ (k) � ε′ ′ with the event

Fail does not occur, and A ′ ′ runs within at most running time t′ ′, where

ε′ ′ = 1 and t′ ′ � t1 + tQR.

We also give an example for the key generation algorithm K̂, where q = 3, p =
2q + 1 = 7, h = 5, g = h2 mod p = 4. Obviously, g ∈ QRp, therefore, the group is
in QRp, where QRp = {1, 2, 4}. The value of Y r1 ⊕ Y r2 mod p are in the set S1 as

the same as in Situation 1 of Theorem 2. Π′ ′ = (K̂, E ′, D ′) has the probability to fail as
follows:

Pr[Fail] = Pr
[
Fail|Y r1 ∈ QRp

]
· Pr

[
Y r1 ∈ QRp

]
=

3
9

· 1

=
1
3
.

A breaking algorithm A ′ ′ =: (A ′ ′
1 , A ′ ′

2) in the IND-CPA sense for Π′ ′ = (K̂, E ′, D ′) is as
follows:

Proof.
Adversary: A′ ′

1(pk)
Obtain {x0, x1}, where x0 ∈ QRp and x1 ∈ QNRp

Return (x0, x1, state)
End.
Encryption oracle: Oen(x0, x1, pk)

b ←R {0, 1}
(y1, y2, y3) = E ′

pk(xb; r1; r2) = (gr1 , gr2 , xb ·(Y r1 ⊕Y r2))
End.
Adversary: A′ ′

2(x0, x1, state, (y1, y2, y3))
Case 1: If y3 ∈ QRp, then outputs 1
Case 2: If y3 ∈ QNRp, then outputs 0

End.
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Except the values when Y r1 ⊕ Y r2 = 0, the Legendre symbol of Y r1 ⊕ Y r2 is(
Y r1 ⊕ Y r2

p

)
= −1,

By the multiplicative property of Legendre symbol,(
y3

p

)
=

(
xb

p

) (
Y r1 ⊕ Y r2

p

)
,

we can determine xb is x0 ∈ QRp or x1 ∈ QNRp, according to the Legendre symbol
(y3

p ). This forms Case 1 and Case 2 of A ′ ′
2 , respectively. The advantage of A ′ ′ for Π′ ′ is

AdvCPA
A ′ ′,Π′ ′ (k) = 2 · Pr[SuccCPA

A ′ ′,Π′ ′ (k)| ¬Fail] − 1 = 1.
From the specification of A ′ ′, it runs within at most t′ ′ � t1 + tQR. Obviously, the

both breaking algorithms A′ = (A ′
1, A ′

2) and A ′ ′ = (A ′ ′
1 , A ′ ′

2) are in a polynomial time
in Theorems 4.2 and 4.3, respectively.

We can see that no matter what Wang et al.’s ElGamal-like PKE employs K ′ or K̂, the
scheme is insecure in the IND-CPA sense, even the cryptosystem will be failed to encrypt
and/or decrypt. Though the probability of event Fail will decrease when we chose a large
prime q or p (the security parameter k), for both Π′ = (K ′, E ′, D ′) and Π′ ′ = (K̂, E ′, D ′),
the values after exclusive-or operation may not in the group Gp and Gq , respectively. This
results in their scheme is insecure in the IND-CPA sense.

5. The Proposed ElGamal-Like Encryption Scheme

In this section, an ElGamal-like PKE is proposed and then we show that the proposed
ElGamal-like PKE satisfies the IND-CCA2 sense under the DDH problem in the random
oracle model.

5.1. ElGamal-Like PKE Scheme

Let Π† = (K †, E †, D †) be the ElGamal-extended encryption scheme.

– Key generation algorithm K †: (pk, sk) ← K †(1k), pk = (p, g, Y ) and sk = s,
where Y = gs mod p, |p| = k, p = 2q + 1, #〈h〉 = p, g = h2 mod p, s ∈ Z/qZ,
and #〈g〉 = q. Let k = k0 + 2k1 + ι.

– Hash functions H and J : H: {0, 1}k0+2k1 → {0, 1}ι, J : {0, 1}k → {0, 1}k.
– Encryption algorithm E †:

(
y′
1, y

′
2, y

′
3,i

)
= E †

pk(xi; r1; r2),

1. Concatenate Xi = xi| |r1| |r2, where xi ∈ {0, 1}k0 , r1, r2 ∈R {0, 1}k1 ∈ Zq,
and | | denotes concatenation.

2. Compute Ji = J(Y i·r2 mod p).
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3. Compute (y1, y3,i) = (gr1 mod p, (Xi| |H(Xi)) · Y r1 mod p).
4. Compute (y′

1, y
′
2, y

′
3,i) = (y1, g

r2 mod p, y3,i · Ji mod p).
– Decryption algorithm D †:

xi = D †
sk

(
y′
1, y

′
2, y

′
3,i

)
,

1. Compute Ji = J(y′i·s
2 mod p).

2. Compute Wi = (y′
3,i · J −1

i ) · (y′s
1 )−1 mod p.

3. Output

{
[Wi]k0 , if H

(
[Wi]k0+2k1

)
= [Wi]ι

null, otherwise.

The notations of [Wi]a and [Wi]b denote the first a-bit and the last b-bit
of Wi, respectively. Finally, the whole plaintext x can be concatenated as
x1, x2, . . . , xn.

There is an additional random value Ji for each xi. Even if there are only two random
numbers r1 and r2, the hash value Ji still makes the encryption scheme probabilistic.
If the adversary can obtain the hash value J(Y i·r2 mod p), she is still faced with the
of breaking the ElGamal encryption scheme, i.e. (y′

3,i · J −1
i ) · (y′s

1 )−1 mod p = Wi. It
already knows the ElGamal encryption scheme is IND-CPA secure (Tsiounis and Yung,
1998) under the DDH assumption, in which the adversary cannot obtain any bit about the
plaintext Wi = Xi| |H(Xi).

Furthermore, to compute the hash value Ji = J(gi·s·r2 mod p) with the knowledge
of the public key Y = gs mod p and the value y′

2 = gr2 mod p is equivalent to solve the
CDH assumption, which is weaker than the DDH assumption in the same group (Shoup,
1997). If the DDH assumption is held in the group, then the CDH assumption must be
held in that group. Therefore, the security of the proposed scheme can be solely based on
the DDH assumption.

To reveal other plaintext xj’s, the adversary cannot compute Jj (∀j �= i) under the
assumption of hash function J(·), since the values of Ji and Jj are nonlinearly related.
To meet IND-CCA2, the plaintext xi is protected under the hash function H(·) to ensure
the data integrity and has a data integrity validating step in the decryption algorithm.
Without this validating step, the adversary could trivially generate ciphertext for which
the corresponding plaintext is unknown. To do this, she just outputs the random strings.
In the next section, we give the analyses of the reduction for proving its securities.

5.2. Security Analysis

This section shows that the proposed ElGamal-like PKE is secure in the IND-CCA2 sense
via Proposition 1. Theorems 4 and 5 shows that there is a plaintext extractor in the
ElGamal-extended encryption and is secure in the IND-CPA sense, respectively. Here,
we only consider that the plaintext x is smaller than p. The sequence number i of xi

presented in the ElGamal-like encryption scheme is omitted.
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PROPOSITION 1. PA−→IND-CCA2 (NM-CCA2) in the random oracle model.

A PKE scheme is PA (Plaint-awareness) is for any ciphertext the adversary produces, s/he
must know the corresponding the plaintext. Belleare et al. (1998) proved that if a PKE
scheme is secure in the PA sense, then it is secure in the IND-CCA2 (or NM-CCA2) sense
in the random oracle model.

Theorem 4. Plaintext extractor P of Π† = (K †, E †, D †). If there exists a (t, qH , qJ)-
adversary B, then there exists a constant c and a (t′, λ)-plaintext extractor P such that

t′ = t + qJqH(tE + c) and λ = 1 −
(

qJ

2k
+ |H| · 1

2ι

)
.

tE denotes the computational running time of the encryption algorithm E such that
(y′

1, y
′
3 · (Y [[hv ]2k1 ]k1 )−1 mod p) = Epk(h| |Hv, [[h]2k1 ]

k1) in the specification of P . |H|
denotes the number of pairs (h, Hv) in the set Hs

Proof. We construct a plaintext extractor P as follows:
Extractor: P (hH, jJ, C, (y′

1, y
′
2, y

′
3), pk)

For u = 1, . . . , qJ do
For v = 1, . . . , qH do

(y1, y3) ← (y′
1, y

′
3 · J −1

u mod p)
If (y1, y3) == Epk(hv | |Hv, [[hv]2k1 ]

k1)
If ju == Y [[hv ]2k1 ]k1 mod p

then x ← [hv]k0 and break
Else x ← null

Return x

End.

Let c be the computation time of comparing two strings is equal or not, and some
overhead. From the specification of P , it runs within t + qJqH(tE + c).

Since there exists an additional random oracle J(·), jJ = {(j1, J1) , . . . , (jqJ
, JqJ

))}
denotes the set of all B’s queries and the corresponding answers of J(·). Intuitionally, the
plaintext x together with the random numbers r1, r2 are inputs to the random oracle
H(·). Moreover, all the answers to queries should be obtained by the random oracles in
the random oracle model. Furthermore, those queries and the corresponding answers are
recorded in the lists hH and jJ . Any generation of valid ciphertext should be obtained
via that step. Hence, upon input of the valid ciphertext, P can find out the corresponding
plaintext by watching the lists hH and jJ .

Now the probability that P correctly outputs the plaintextx, that is x = D †
sk(y′

1,y
′
2,y

′
3).

Consider the following events.
Con1∧Con2: the product of events Con1 and Con2, which is assigned to be true

if there exists (j, J) in the list jJ and (h, H) in the list hH such that the conditions
(y1, y3) == Epk(hv | |Hv, [[hv]2k1 ]

k1) and ju == Y [[hv ]2k1 ]k1 mod p in the specification
of P hold. Two conditions are separately denoted as Con1 and Con2.
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Fail: an event assigned to be true if x �= D †
sk(y′

1, y
′
2, y

′
3).

We now bound the failure probability as follows:

Pr[Fail] = Pr[Fail|Con1 ∧ Con2] · Pr[Con1 ∧ Con2]

+ Pr[Fail|Con1 ∧ ¬Con2] · Pr[Con1 ∧ ¬Con2]

+ Pr[Fail| ¬Con1] · Pr[¬Con1]

� Pr[Fail|Con1 ∧ Con2] + Pr[Con1 ∧ ¬Con2]

+ Pr[Fail| ¬Con1].

In the following, we upper bound Pr[Fail|Con1 ∧ Con2], Pr[Con1 ∧ ¬Con2], and
Pr[Fail| ¬Con1], respectively.

The specification of P is as follows. If Con1∧Con2 is true then P never fails to guess
the plaintext x and hence Pr[Fail|Con1 ∧ Con2] = 0.

We further upper bound Pr[Con1 ∧ ¬Con2] as follows:

Pr[Con1 ∧ ¬Con2] � Pr[Con1| ¬Con2].

When ¬Con2 is true, there is a Ju in the list jJ such that (y′
1, y

′
3 · J −1

u mod p) =
Epk(hv | |Hv, [[hv]2k1 ]

k1). Under the random oracle model assumption, the probability

of such Ju is
1
2k

. The conditional probability Pr[Con1| ¬Con2] is
qJ

2k
.

For Pr[Fail| ¬Con1], ¬Con1 is true and P outputs null. That is, it guesses (y′
1, y

′
2, y

′
3)

is a invalid ciphertext. Therefore, Fail is true implies B outputs the valid ciphertext
(y′

1, y
′
2, y

′
3). For a fixed (y′

1, y
′
2, y

′
3) and J = J(Y [[hv ]2k1 ]k1 mod p), let Hs be the

set of (h, Hv) such that (y′
1, y

′
3 · J −1 mod p) = Epk(h| |Hv, [[h]2k1 ]

k1). Then since
(y′

1, y
′
2, y

′
3) �∈ C = {(y′

1, y
′
2, y

′
3)1, . . . , (y

′
1, y

′
2, y

′
3)qE

} and hence Dsk((y′
1, y

′
3 · J −1 mod

p)i) �= h| |H(h) for every (y′
1, y

′
2, y

′
3)i ∈ C. For a fixed (y′

1, y
′
2, y

′
3) and a fixed h, since

B doesn’t ask query h to oracle H(·),

Pr[Fail| ¬Con1] = Pr
H←Ω

[
H(h) ∈ H

]
= |H| · 1

2ι
,

Obviously, |H| is small. We conclude that Pr[Fail] � qJ

2k
+

|H|
2ι

. Hence, ε = 1−Pr[Fail] =

1 − (
qJ

2k
+

|H|
2ι

).

Theorem 5. PKE: IND-CPA. If there exists a (t, qH , qJ , ε)-breaker A = (A1, A2) for
Π† = (K †, E †, D †) in the IND-CPA sense in the random oracle model, then there exists
a constants c and a (t′, ε′)-breaker A ′ = (A ′

1, A ′
2) for Π = (K̂, E , D) in the IND-CPA

sense in the standard model, where

t′ = t + qH · c + qJ · c and ε′ = ε − qH

2(2k1−2)
.
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Proof. We construct a breaking algorithm A ′ = (A ′
1, A ′

2) in the IND-CPA and standard
model setting by using A = (A1, A2) as an oracle.

Firstly, A ′ initiates two lists hH and jJ , to empty. Basically, when A asks query
h and j, A ′ simulates two random oracles H(·) and J(·) as follows: If h has not been
asked in the list hH , A ′ provides a random string H of length ι-bit, and adds an entry
(h, H) to the list hH . Similarly, if j has not been asked in the list jJ , A′ provides a
random string J of length k-bit, and adds an entry (j, J) to the list jJ . When A1 halts
and outputs (x0, x1, ω), A ′

1 outputs (x0| |γ0| |β0, x1| |γ1| |β1, ω) where γ0, γ1 are (2k1)-bit
random strings and β0, β1 are ι-bit random strings.

Adversary: A ′
1(pk)

hH , jJ ←empty
Run A1(pk)

Do while A1 does not make H-query h and J-query j
If A1 makes J-query j

If j �∈ jJ
J ←R {0, 1}k

Put (j, J) on jJ
Answer J to A1

Else j ∈ jJ
Answer J to A1 such that (j, J) ∈ jJ

Else if A1 makes H-query h
If h �∈ hH

H ←R {0, 1}ι

Put (h, H) on hH
Answer H to A1

Else h ∈ hH
Answer H to A1 such that (h, H) ∈ hH

A1 outputs (x0, x1, ω)
γ0, γ1 ←R {0, 1}2k1

β0, β1 ←R {0, 1}ι

Return (x0| |γ0| |β0, x1| |γ1| |β1, ω)
End.

Then, outside of A ′, the ciphertext (y1, y3) = Epk(xb| |γb| |βb, R) is computed by the
encryption oracle Oen, where b ∈R {0, 1} and R ∈R Zq . Finally, (x0, x1, ω, (y1, y3)) is
input to A2.

Encryption oracle: Oen(x0| |γ0| |β0, x1| |γ1| |β1, pk)
R ←R Zq

b ←R {0, 1}
(y1, y3) ← Epk(xb| |γb| |βb, R)
Return (y1, y3)

End.

A ′
2 chooses a random string r2 ∈ Zq and k-bit random string J ∗. Then it sets y′

1 = y1,
y′
2 = gr2 mod p, and y′

3 = y3·J ∗ mod p. Note that (y′
1, y

′
2, y

′
3) is treated as the ciphertext

of xb.
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Adversary: A ′
2(x0| |γ0| |β0, x1| |γ1| |β1, ω, (y1, y3))

r2 ←R Zq; J ∗ ←R {0, 1}k

y′
1 ← y1; y′

2 ← gr2 mod p; y′
3 ← y3 · J ∗ mod p

Run A2(x0, x1, ω, (y′
1, y

′
2, y

′
3))

Do while A2 does not make H-query h and J-query j

Askj ←false
If A2 makes J-query j

If j = Y r2 mod p

Answer J ∗ to A2

Put (j, J ∗) on jJ

Askj ←true
Else if j �∈ jJ

J ←R {0, 1}k

Answer J to A2

Else j ∈ jJ

Answer J to A2 such that (j, J) ∈ jJ

Else if A2 makes H-query h

If Askj =true and h = xb| |γb

Stop A2 and output b

Else if h �∈ hH

H ←R {0, 1}ι

Put (h, H) on hH

Answer H to A2

Else h ∈ hH

Answer H to A2 such that (h, H) ∈ hH

A2 outputs b

Return b

End.
The argument behind the proof is as follows: When A2 asks the query j = Y r2 mod

p, A ′
2 answers J ∗ and Askj is set be true. Since the random string r2 is chosen by A ′

2, it
has the ability to check whether the query j is equal to Y r2 mod p or not. Once Askj is
true and A2 asks a query h = xb| |γb, it is almost equivalent to Dsk(y1, y3) = Dsk(y′

1, y
′
3 ·

(J ∗)−1 mod p), since A2 has no clue to γb̄ where b̄ is the complement of bit b. The
probability to ask h = xb̄| |γb̄ is 1

22k1
which is negligible. Under the condition Askj

is true, A ′
2 can expect that it will output a correct bit b if A2 asks either h = x0| |γ0

or h = x1| |γ1. If A2 asks neither of them, A ′
2 can expect that A2 cannot distinguish

(y′
1, y

′
2, y

′
3) from a correct ciphertext.

To analyze the success probability of A ′ = (A ′
1, A ′

2), the definitions of success prob-
abilities of A ′ = (A ′

1, A ′
2) and A = (A1, A2) in Definition 6 are recalled. Consider the

follows events to capture the success probabilities of A = (A1, A2) and A ′ = (A ′
1, A ′

2)
Askj: is true if a J-query j = Y r2 mod p was made by A2.
Askb: is true if a H-query h = xb| |γb was made by A2.
Askb̄: is true if a H-query h = xb̄| |γb̄ was made by A2.
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The probability of SuccIND−CPA
A ′,Π (k) can be obtained by considering the conditions of

the product of events Askj∧Askb and its complement. Then,

Pr
[
SuccIND−CPA

A ′,Π (k)
]

= Pr
[
SuccIND−CPA

A ′,Π (k)|Askj ∧ Askb
]

·Pr
[
Askj ∧ Askb

]
+ Pr

[
SuccIND−CPA

A ′,Π (k)| ¬Askj ∨ ¬Askb
]

× Pr[¬Askj ∨ ¬Askb].

The probability of ¬Askj ∨ ¬Askb can be written as,

Pr[¬Askj ∨ ¬Askb] = Pr
[
(¬Askj ∨ ¬Askb) ∧ Askb̄

]
+ Pr

[
(¬Askj ∨ ¬Askb) ∧ ¬Askb̄

]
.

Then,

Pr
[
SuccIND−CPA

A ′,Π (k)
]

= Pr
[
SuccIND−CPA

A ′,Π (k)|Askj ∧ Askb
]

· Pr[Askj ∧ Askb]

+ Pr
[
SuccIND−CPA

A ′,Π (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄
]

× Pr
[
(¬Askj ∨ ¬Askb) ∧ Askb̄

]
+ Pr

[
SuccIND−CPA

A ′,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄
]

× Pr
[
(¬Askj ∨ ¬Askb) ∧ ¬Askb̄

]
.

Similarly,

Pr
[
SuccIND−CPA

A,Π† (k)
]

= Pr
[
SuccIND−CPA

A,Π† (k)|Askj ∧ Askb
]

· Pr[Askj ∧ Askb]

+ Pr
[
SuccIND−CPA

A,Π† (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄
]

× Pr
[
(¬Askj ∨ ¬Askb) ∧ Askb̄

]
+ Pr

[
SuccIND−CPA

A,Π† (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄
]

× Pr
[
(¬Askj ∨ ¬Askb) ∧ ¬Askb̄

]
.

From the specification of A ′, we have the following equations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr
[
SuccIND−CPA

A,Π† (k)|Askj ∧ Askb
]

= 1,

Pr
[
SuccIND−CPA

A,Π† (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄
]

= 0
Pr

[
SuccIND−CPA

A,Π† (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄
]

= Pr
[
SuccIND−CPA

A ′,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄
]

Equations (1) and (2) are computed as follows.

Pr
[
SuccIND−CPA

A ′,Π (k)
]

− Pr
[
SuccIND−CPA

A,Π† (k)
]

=
(
1 − Pr

[
SuccIND−CPA

A,Π† (k)|Askj ∧ Askb
])

· Pr[Askj ∧ Askb]
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− Pr
[
SuccIND−CPA

A,Π† (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄
]

· Pr
[
(¬Askj ∨ ¬Askb) ∧ Askb̄

]
� −Pr

[
(¬Askj ∨ ¬Askb) ∧ Askb̄

]
= −Pr

[
(¬Askj ∧ Askb̄) ∨ (¬Askb) ∧ Askb̄)

]
� −

(
Pr[¬Askj ∧ Askb̄] + Pr[¬Askb ∧ Askb̄]

)
.

Since γb̄ is a uniform random string over {0, 1}2k1 , we have Pr[¬Askj ∧ Askb̄] � qH

22k1

and Pr[¬Askb ∧ Askb̄] � qH

22k1
. Thus,

Pr
[
SuccIND−CPA

A,PKE (k)
]

−
(
Pr

[
¬Askj ∧ Askb̄

]
+ Pr

[
¬Askb ∧ Askb̄

])
� ε + 1

2
− qH

22k1−1
.

and we obtain that ε′ = ε− qH

2(2k1−2) . The running time of A ′ is at most time t+qH ·c+qJ ·c.

Theorem 6. PKE: IND-CCA2. If there exists a (t, qH , qJ , qD, ε)-breaker A = (A1, A2)
for Π† = (K †, E †, D †) in the sense of IND-CCA2 in the random oracle model, then there
exist a constant c and a (t′, ε′)-breaker A ′ = (A ′

1, A ′
2) for Π = (K̂, E , D) in the sense of

IND-CPA in the standard model where

t′ = t + qHqJ(tE + c) + qHc + qJc and ε′ = (ε − qH

2(2k1−2)
) · λqD .

Proof. From the result of Theorem 6, it is found out that the encryption scheme Π† is
secure in the IND-CCA2. The proof is omitted since it is clear from the following specifi-
cation of adversary A ′ combined with the proofs in Theorems 4 and 5.

Adversary: A ′
1(pk)

hH , jJ ←empty
Run A Dsk,H,J

1 (pk)
Do while A1 does not make H-query h, J-query j,
D-query (y1, y2, y3)′

If A1 makes J-query j

If j �∈ jJ

J ←R {0, 1}k

Put (j, J) on jJ

Answer J to A1

Else j ∈ jJ

Answer J to A1 such that (j, J) ∈ jJ

Else if A1 makes H-query h

If h �∈ hH

H ←R {0, 1}ι

Put (h, H) on hH

Answer H to A1
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Else h ∈ hH

Answer H to A1 such that (h, H) ∈ hH

Else if A1 makes D-query (y1, y2, y3)′

Run P (hH, jJ, C, (y1, y2, y3)′, pk)
P outputs x′

Answer x′ to A1

A1 outputs (x0, x1, ω)
γ0, γ1 ←R {0, 1}2k1

β0, β1 ←R {0, 1}ι

Return (x0| |γ0| |β0, x1| |γ1| |β1, ω)
End.

Encryption oracle: Oen(x0| |γ0| |β0, x1| |γ1| |β1, pk)
b ←R {0, 1}
(y1, y3) ← Epk(xb| |γb| |βb, R)
Return (y1, y3)

End.

Adversary: A ′
2(x0| |γ0| |β0, x1| |γ1| |β1, ω, (y1, y3))

r2 ←R Zq; J ∗ ←R {0, 1}k

y′
1 ← y1; y′

2 ← gr2 mod p; y′
3 ← y3 · J ∗ mod p

Run A Dsk,H,J
2 (x0, x1, ω, (y′

1, y
′
2, y

′
3))

C ← (y′
1, y

′
2, y

′
3)

Do while A2 does not make H-query h and J-query j

D-query (y1, y2, y3)′

Askj ←false
If A2 makes J-query j

If j = Y r2 mod p

Answer J ∗ to A2

Put (j, J ∗) on jJ

Askj ←true
Else if j �∈ jJ

J ←R {0, 1}k

Answer J to A2

Else j ∈ jJ

Answer J to A2 such that (j, J) ∈ jJ

Else if A2 makes H-query h

If Askj =true and h = xb| |γb

Stop A2 and output b

Else if h �∈ hH

H ←R {0, 1}ι

Put (h, H) on hH

Answer H to A2
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Else h ∈ hH

Answer H to A2 such that (h, H) ∈ hH

Else if A2 makes D-query (y1, y2, y3)′

Run P (hH, jJ, C, (y1, y2, y3)′, pk)
P outputs x′

Answer x′ to A1

A2 outputs b

Return b

End.

5.3. Performance Analysis

In this section, the computational complexity of the ElGamal encryption scheme with
that of the ElGamal-like encryption scheme is compared. Since the time for computing
a modular exponentiation computation is much larger than other operations (modular
multiplication computation, modular addition computation, hash function), the following
descriptions only compare the number of modular exponentiation computations.

Assume that the whole plaintext x with length n · k is divided into x1, x2, . . . , xn and
the length of each xi is k. To encrypt x, the ElGamal encryption scheme requires requires
2n modular exponentiation computations. The computational complexity of decrypting
requires n modular exponentiation computations.

For the same plaintext x with the length n · k in our ElGamal-like encryption
scheme, the maximal length of plaintext is limited by k0. The number of divisions is
n·k
k0

= n + � n·(2k1+ι)
k0

�. Let n′ = n + � n·(2k1+ι)
k0

�. To encrypt x1, the ElGamal-extended
scheme requires 4 modular exponentiation computations. To derive the plaintext x1,
it requires 2 modular exponentiation computations. To encrypt other n′ − 1 plaintexts
x2, . . . , xn′ , it is not necessary to compute the values y1 = gr1 mod p, y2 = gr2 mod p,
Y r1 mod p, and Y r2 mod p again. Hence, 4 modular exponentiation computations is
only needed for x1. The total computational complexity of encrypting x requires 4 mod-
ular exponentiation computations. To decrypt other n′ − 1 ciphertexts (y3,2, . . . , y3,n′ ),
the values y′s

1 mod p and y′s
2 mod p have also been computed. The total computational

complexity of decrypting requires 2 modular exponentiation computations.

6. Discussion and Conclusion

The ElGamal PKE has been proven to be secure in the IND-CPA sense in the standard
model if the operation is in QRp (Tsiounis and Yung, 1998). The IND-CPA sense is con-
sidered as a basic requirement for most provably secure PKEs. In many applications,
plaintexts may contain information which can be guessed easily such as in a BUY/SELL
instruction to a stock broker. In this paper, we precisely show that the ElGamal is inse-
cure in the IND-CPA sense if the operation is in not QRp. For Wang et al.’s improved
ElGamal-like PKE, we give two simple examples to prove it is insecure in the IND-CPA
sense either operated in QRp or not (employ the key generation K ′ or K̂). Besides, the
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cryptosystem has the probability to be crashed when Y r1 ⊕ (Y r2)i mod p = 0. Since the
exclusive-or operation is not suitable for the group operation, the computed values cannot
be expected in that group.

The motivation for encrypting large messages in PKEs is practical, since they have bad
performance as compared to symmetric encryption schemes. The proposed ElGamal-like
encryption scheme for encrypting large messages is easily proven IND-CCA2 security
in the random oracle model. Obviously, if the hash functions H(a) and J(a) are im-
plemented by ga mod p (universal one-way hash functions) rather than MD5 or SHA
( collision-resistant hash functions), the ElGamal-extended encryption scheme can be
proven in the standard model. However, it is contradiction for encrypting large messages
efficiently.
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Patobulintos ElGamal’io viešojo rakto šifravimo schemos,
skirtos didelės apimties pranešimams šifruoti, kriptoanalizė

Ting-Yi CHANG, Min-Shiang HWANG, Wei-Pang YANG

Hwang ir kt. pasiūlė ElGamal’io tipo schem ↪a, skirt ↪a didelės apimties pranešimams šifruoti, kuri
yra efektyvesnė skaičiavimo sudėtingumo ir duomen ↪u transformacij ↪u kiekio prasmėmis. Jie teigė,
kad schema yra saugi pasirinkto atvirojo teksto atakoms esant prielaidai, kad Diffie-Helman’o
problema yra neišsprendžiama. Vėliau Wang ir kt. parodė, kad Hwang’o schemos sauga nėra
pakankama ir galimi nesėkmingo dešifravimo atvejai. Be to jie patobulino Hwang ir kt. schem ↪a
padidindami jos saugum ↪a ir sumažindami nesėkmingo dešifravimo galimyb ↪e. Šiame straipsnyje
parodyta, kad j ↪u schema yra vis dar nesaugi nuo pasirinkto teksto atak ↪u. Taip pat pasiūlyta nauja
ElGamal’io tipo schema, atspari pasirinkto teksto atakoms.


