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Abstract. In a supervised learning, the relationship between the available data and the performance
(what is learnt) is not well understood. How much data to use, or when to stop the learning process,
are the key questions.

In the paper, we present an approach for an early assessment of the extracted knowledge (classifi-
cation models) in the terms of performance (accuracy). The key questions are answered by detecting
the point of convergence, i.e., where the classification model’s performance does not improve any
more even when adding more data items to the learning set. For the learning process termination
criteria we developed a set of equations for detection of the convergence that follow the basic prin-
ciples of the learning curve. The developed solution was evaluated on real datasets. The results of
the experiment prove that the solution is well-designed: the learning process stopping criteria are
not subjected to local variance and the convergence is detected where it actually has occurred.

Keywords: learning curve, learning process, classification, accuracy, assessment, data mining.

1. Introduction

The supervised learning algorithms have evolved drastically in the last decades. From
pure research ideas at the beginning, they are now used in many sophisticated appli-
cations, such as autonomous driving of vehicles, design of modern locomotive motors,
detecting credit card fraud, assisting in medical diagnostics, and many more.

Induction-based learning algorithms produce models based on the historic data, which
are in turn used on new, unseen data. For example, a classification model is built on
historic patients’ data and this model is then used on a new patient’s (measured) data
to assist an expert in medical diagnostic process. The performance of the models built
from historic data can be measured, such as in the number of correctly classified items
compared to the total number of classified items.

The data that is used for building the model is usually abundant. In fact, the amount of
data is enormous, and continues to grow at a very fast rate — the amount of data doubles
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in approximately 15 months, see, e.g., Moore et al. (2007), Hirschler (2010). Building
a statistical model using all the available data can be extremely expensive, if not impos-
sible. Additionally, a full multivariable representative sample may not be needed for the
purposes of automated learning (Pyle, 1999; Brumen et al., 2007).

The course of data overflow can be tackled in three ways. First, we may speed-up the
process by improving the existing algorithms, by developing novel, parallel ones, putting
their execution in the clouds, and by implementing machine learning and data mining us-
ing parallel approaches; an excellent article about the optimization and knowledge-based
techniques is available from Dzemyda and Sakalauskas (2009), an example of such opti-
mization is described by Norkin and Keyzer (2009). Second, we can reduce the vertical
dimensionality (i.e., reduce the number of features/attributes) of the data by developing
and using the feature selection methods. Third, we can reduce the horizontal dimension-
ality (i.e., reduce the number of instances) of the data by building the models using not
all, but a subset of available data.

In this paper, we deal with the latter. We examine an empirical algorithmic approach
to choosing an adequate number of data items for building a model. The number of items
is determined by a set of criteria which we develop here.

Paper contribution. The key contribution and the main hypothesis of the paper is as
follows: “It is possible to build a set of conditions and confining values at which an
additional learning does not contribute to the overall performance of the classification
model. The conditions and confining values are based on the properties of a learning
curve.” Basically, we address the question “When to stop the learning process?”” With the
answer to this question, we actually find a point of convergence of the learning curve. We
developed a set of equations that need to be checked each time the learning process is
invoked using the adaptive incremental approach. We prove the hypothesis by designing
an experimental study, in which we use empirical and measurable evidence against the
developed model.

Paper organization. We present the underlying and related work in Section 2. Here,
we give an overview of the related work with the description of a learning curve and how
to model it. In Section 3, we outline the basic process for building a learning curve and
present a general solution to the problem, i.e., how to observe the learning curve, and
develop a set of conditions to be met for the learning process to terminate. In Section 4,
we experimentally evaluate various parameters of the solution, and based on the chosen
criteria we propose the optimal solution. We conclude the paper with final remarks and
comments in Section 5.

2. Related Work

When measuring the accuracy of a classifier (being it a human or a machine), we build a
so-called learning curve. The learning curve depicts the relationship between sample size
and classifier’s performance (see Fig. 1). The horizontal axis represents [, the number
of instances in a given training set (I can vary between zero and L, the total number of
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Fig. 1. Real-life (a) and ideal (b) learning curves.

available instances). The vertical axis represents the performance (e.g., error rate) of the
model produced by a classifying algorithm when given a training set of size [;.

Learning curves typically have a steeply sloping portion early in the curve, a more
gently sloping middle portion, and a plateau late in the curve. This resembles the way
humans learn — Anderson and Schooler (1991) reviewed a number of paradigms in which
a power law appears to describe human performance. For this reason the curve is called
a learning curve.

The middle portion can be extremely large in some curves and almost entirely miss-
ing in others (Harris-Jones and Haines, 1997). The plateau occurs when additional data
instances (training) do not improve accuracy. The plateau, and even the entire middle por-
tion, can be missing from curves when [ is not sufficiently large. Conversely, the plateau
region can constitute the majority of curves when [ is very large. The plateau level can be
considered as the capacity or the final performance the classifying algorithm (based on
the available data).

For example, in their study of two large business data sets, Harris-Jones and Haines
(1997) found that learning curves reach a plateau quickly for some algorithms, but small
accuracy improvements continue up to L for other algorithms.

Accuracy of a pruned decision tree, generated by C4.5 (Quinlan, 1993) was success-
fully modeled by the power law by Frey and Fisher (1999). They used power function
y = a x x° and tried to fit parameters a and b. They also warn that the ability of the
power law can also fail if an insufficient amount of data is used for the projection.

Various authors, e.g., Meek et al. (2002) and Anderson (2001), confirming our results
(Brumen et al., 2001), observe that the typical shape of a learning curve is concave (up)
with performance approaching some limiting behavior.

The above mentioned works, and specifically the works of Harris-Jones and Haines
(1997), and of Frey and Fisher (1999) lead to the conclusion that the shape of a learning
curve (and thus its parameters) depends on both, the type and the contents of the data and
the learning algorithm being used.
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3. Process of Building and Observing of a Learning Curve

The optimal solution of the learning problem would be a functional dependency between
the data, the learning algorithm and its performance (e.g., accuracy). This way we could
analytically determine the number of data items needed to build the model for a chosen
performance parameter. Unfortunately, for real-life situations, such an approach does not
yet exist. It is often so that standard numerical (and other statistical) methods become
unstable when using large data sets (Dzemyda and Sakalauskas, 2011). Other theories,
such as the founding Vapnik—Chervonenkis theory (Vapnik, 1982), has some limits (e.g.,
oracle is never wrong) that make it hard to implement in real life situations, as described
in detail (Brumen et al., 2007). Analytical results for a specific learner can be found in
the literature, e.g., Ducinskas and Stabingiene (2011), but no general ad-hoc analytical
solution is available. Thus, we propose an empirical approach where the learning curve is
built as early in the learning process as possible and conclusions are drawn from the curve
itself. We can do it by empirically measuring the learning curve points and observing the
modeled curve on the fly. Algorithm 1 contains the steps for the proposed method of
observing a learning curve.

01 sample_size:=initial_sample_size;

02 i := 0;

03 difference:=false;

04 REPEAT

05 i := 1 + 1;

06 class_model := build_classification_model (training_set,
1; := training size);

07 e; := measure_performance(class_model, testing_set,
testing_size);

08 IF discrete_concavity test (1, e) = true THEN

09 Enext := estimate_model_performance( size_next() );
10 €final := estimate_model_performance( size_final() );
11 difference := estimates_and_actual_performance

_within bounds? (ej, €nextsCfinal) ;
12 END IF
13 increase (training size, testing_size);
15 UNTIL difference = true OR cancelled;

Algorithm 1. Learning curve observation procedure.

A brief description of the procedure is as follows: first, initialize the parameters (Lines
1-3 of the Algorithm 1). Second, build a set of classification models using adaptive in-
cremental k-fold cross-validation (Lines 6—7). Third, after each run, check if the curve
meets the discrete concavity criteria (Line 8). If so, estimate the classifier’s future perfor-
mance (Lines 9 and 10), and compare the estimated future performance with the current
one. If the estimates and current performance are all within certain bounds (Line 11),
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the loop-stop criteria is met, i.e., the future performance of the classifier will not im-
prove. Otherwise, the performance still has some potential, so increase the sample size
(Line 13) and loop again (Line 15). The same applies if the discrete concavity criterion is
not met. A detailed description and elaboration of each step of Algorithm 1 is as follows:

e Lineslto5

First, we initialize the parameters: the initial sample size to be used for building a clas-
sification model (sample_size), and the loop variable (difference), and the step number
(i), in Lines 1 to 3, respectively. Then the loop is entered (Line 4) and the step number is
increased by one (Line 5).

e Lines 6 and 7

In Line 6, we build a learning model. After the classification model is built, we can
measure its performance (Line 7).

To build a learning curve, though, we repeatedly run a learning algorithm using dif-
ferent sample sizes. We obtain a set of pairs (l;, e;), where I; is a number of data items
used for classification model building and e; is the number of wrongly classified items,
i.e., the error rate.

However, single run of the algorithm yields an error rate that is not reliable (Cohen,
1995; Anderson et al., 2008). It does not represent the true error rate: selecting another
sample of the same size (especially when the sample size is small) would produce a
completely different model and hence a different error rate. Thus, the error rate from a
single-run is not statistically valid. In order to get a reliable, statistically valid perfor-
mance measurement, one could repeatedly train and test a classifier on disjoint sets (each
set consisting of randomly drawn items from the total population), then average the scores
(i.e., cross-validate) obtained during the testing phases and derive parametric confidence
intervals by t-tests, as described by Cohen (1995). Unfortunately, the scheme is very ex-
pensive. There is a better way to use training sets. A more efficient training and testing
scheme is computer-intensive statistical method called k-fold cross validation (Weiss and
Kulikowski, 1991). It is efficient in the following sense: we want to train a learning al-
gorithm with all the available data, because its performance is expected to improve as it
encounters more items. If we train on [ items and immediately test on the same items,
however, we will not find out how our algorithm performs on items it has not seen dur-
ing training. Cross-validation allows us to train a system on almost all the items (90%
for ten-fold cross-validation), test it on all the items, and still to discover how the sys-
tem performs on unseen items. Cross-validation is a resampling technique that reminds
of another computer-intensive statistical technique, the bootstrap testing. The common
idea that underlies these techniques is to estimate the true (population) performance by
treating a sample as if it is the population and repeatedly drawing samples from it. A true
bootstrap approach, of course, involves resampling with replacement. The bootstrap pro-
cedure thus involves a lot more computation than, say, a ten-fold cross validation. Not
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only that it requires much more computation, it is also much more expensive regarding
the manual classification of the training and test sample. Bootstrapping namely requires
that the sampling is done by the replacement, and this means that once an item has been
used (classified), it is returned to the pool of all instances. There is a fair chance that the
item will not be used again, while cross-validation technique does not waste the items (no
replacement).

The k-fold cross-validation method thus assures that each point of the learning curve
(l;, e;) is statistically valid and that it truly represents the error rate for any sample of size
l;. The ro gives a confidence interval for a given sample size (r being the value from the
t-test table, o being calculated from the error rates), which assures that the estimated error
rate for that size is statistically valid, meaning that the difference between the calculated
(estimated) value and the actual value is insignificant (Brumen et al., 2004). The proba-
bility threshold for rejecting the null hypothesis (the measured error rate lies within the
confidence interval) was chosen to be p = 0.001 because the Bonferroni adjustment re-
quires that the probability of falsely rejecting the null hypothesis need to be adjusted by
the number of degrees of freedom (Cohen, 1995), i.e., measurements. The parameter k
for k-fold cross-validation was set to 10, as suggested in the literature (Cohen, 1995;
Provost et al., 1999; Weiss and Kulikowski, 1991; McLachlan et al., 2004).

Lehnert et al. (1993) introduced a variant of a cross validation, called incremental
k-fold cross-validation, which tests a classifier for a known number of iterations. If the
number of iterations is apriori unknown, we need to use the adaptive incremental k-fold
cross-validation (Lines 6 and 7 in Algorithm 1), developed by Brumen et al. (2001, 2004).
Here, the properties of the learning curve are observed and the procedure is repeated until
the loop-until conditions are met. Later, our approach was affirmed to be useful in the
works of Castillo and Gama (2006, 2009).

e Line 8

The conditions at which to stop the learning process are based on the following basic
properties of a learning curve: the error rate is decreasing and the shape of the learning
curve is concave up. We define that the learning curve starts “behaving well” when its
graph becomes monotonically decreasing and concave up for a given number of points.

The problem with real-life data and algorithms is that the learning curves are not “well
behaved”. A very important task is to detect the point where the learning curve starts
to behave well. Provost et al. (1999) define this point as the point of convergence. As
mentioned, we do not have any analytical function to observe. Thus, we need to observe
the graph of the points that are (later) used to build the analytical model of the learning
curve. The observation of the graph that depicts the learning curve is the key address of
this paper. We try to answer the question “When to stop the learning process?” In fact,
when we answer this question, we find a point of convergence of the learning curve, where
the additional learning does not contribute to the overall performance of the classification
model.

In the next few paragraphs, we briefly give the definitions for monotonically decreas-
ing (increasing) functions, and concavity of functions, all from Bronshtein ez al. (2007).
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Definition of Monotonicity. Let f be continuous on an open interval, I. The function f is
monotonically increasing (decreasing) on I if f(x;) < f(z;) (for decreasing: f(x;) >
f(ﬂfj)) for z; < Tj, Ti, Tj € 1.

Definition of Concavity. Let f be differentiable on an open interval, I. The graph of f is
concave upward on [ if f” is increasing on the interval and concave downward on [ if f~
is decreasing on the interval.

Concavity Test Theorem. Let f be a function whose second derivative exists on an open
interval I. If f ”(x) > O for all x in I, then the graph of f is concave upward. If f ’(x) < 0
for all z in I, then the graph of f is concave downward. If f”(z) = 0 for all z in I, then
the graph of f is a line, neither concave upward or downward. The proof to this theorem
is well known and beyond the scope of this paper.

Unfortunately, we only have a set of pairs (I;, e;), where [; is the sample size and e;
is the error rate, and not (yet) a function that would be differentiable. For this reason, we
have to modify the definition of concavity to suit our purposes. Analogously to the defi-
nition of concavity with continuous functions, we define concavity on the set of discrete
points.

Definition of Discrete Concavity. Let f be a set of ordered points (x, y) and m be the
number of points in the set. The graph of f is concave upward (Fig. 2) if
Yi—2 > Yi-1 > Yi ()

Yi—1 — Yi—2 < Yi —Yi-1 )

Ti—1 — Ti—2 T — Ti—1

for2 < i< mandx;_5 < x;—1 < z;. The graph of f is concave down (Fig. 3), if the
inequality sign in Eq. (2) is turned.

After building a classifying model using training instances and testing its performance
against a test set for a given sample size (Lines 6 and 7), we need to check whether the
conditions of discrete concavity are met (Line 8).

e Lines 9, 10 and 11

If the conditions of discrete concavity are met, the estimation steps are performed (Lines
9 and 10). In the estimation step, we estimate the error rate for the “next step” (using

ermor (%)
ermor (%)

1 s [ ' ' 2 ] 0 s [;
sample size (1) sample size (1)

Fig. 2. Concave-up graphs.
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Fig. 3. Concave-down graphs.

lnext = liy1 amount of data) and the “final step” (using ljargc amount of data). After
the estimation is made, the actual error rate, e;, the estimated error rate for the next step
énext and the estimated error rate for a large data size, ejarge are compared (Line 11). If
they are all within a limit (the “c”, provided by the operator), we can conclude that the
performance of the algorithm will not improve drastically. To formalize, we check that
the Eq. (3) holds:

MAX(|62 - 6next‘7 ‘enext - elarge'» |6i - elarge‘) <e. (3)

This equation prevents from stopping the learning process too soon caused by the local
variance, as probably first observed by Provost et al.. (1999). The parameter € depends
on the desires and needs of the data analyst. The larger the ¢, the sooner the process will
stop and the estimates will not be as accurate as the ones calculated with smaller €. The
parameter ¢ directly influences the number of iterations (the ¢ in Eq. (3). In this paper, we
address the selection process of a proper ¢ as well.

These equations enable the proactive development of the learning curve model: hereby
we answer the question “When to stop the learning process?” When the measurements
of the learning curve points are finished (based on the properties of the learning curve, of
course), the model can be calculated (fitted) from the existing points and the future per-
formance can be assessed. Equation (1) checks the basic property of the learning curve,
that is whether it is decreasing or not (for error rate). The increase of the error rate (with
the increase of the sample size) indicates anomalies in data and/or in learning algorithm
and hints that the learning curve does not behave well yet. Equation (2) checks for the
concavity of the graph of the measured points. Here again the behavior of the graph is
observed. If it is not concave up (for error rate), this indicates that the decrease is rather
sharp and that we are still in the first, steeply portion of the learning curve. Equation (3)
checks whether the performance will increase with larger sample size (i.e., the error rate
would decrease): if this is so, we can continue with measurements since the improvements
are considerable.

e Lines 12 to 14

If the conditions of discrete concavity are not met, or the criteria in Eq. (3) are not met,
the sample size is increased (Line 13) and the learning process continues, i.e., adaptive
k-fold cross-validation loops once again (Line 14).
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4. Evaluation of the Convergence Conditions

We evaluated the convergence conditions in five experiments using five data sets, Cover-
type, Adult, Letter Recognition, Breast Cancer Wisconsin (Original) and Molecular Biol-
ogy (Splice-Junction Gene Sequences), hereinafter referred to as “Forrest”, “Adult”, “Let-
ter”, “Breast Cancer” and “Genetics”, respectively, from UCI Machine Learning Reposi-
tory (Asuncion and Newman, 2010). The datasets were chosen upon the criteria that the
datasets should be public, should be of various sizes and from different domains (and of
classification type, of course).

We have used the See5 classification algorithm by Quinlan (2011). The reason
we chose this algorithm is that it is freely available for time limited testing and be-
cause it is an improved version of the most popular classification algorithm C4.5.
C4.5 builds decision trees from a set of training data in the same way as its prede-
cessor ID3 (developed by Quinlan too), using the concept of information entropy. The
training data is a set S = s1,S89,...,5, of already classified samples. Each sample
8; = X1,%2,...,%m i a vector where x; represent attributes or features of the sam-
ple. The training data is augmented with a vector C' = ¢y, cq, ..., c, Where ¢; repre-
sent the class to which each sample belongs. At each node of the tree, C4.5 chooses
one attribute of the data that most effectively splits its set of samples into subsets en-
riched in one class or the other. Its criterion is the normalized information gain (dif-
ference in entropy) that results from choosing an attribute for splitting the data. The
attribute with the highest normalized information gain is chosen to make the decision.
The C4.5 algorithm then recurses on the smaller sublists (Quinlan, 1993; Kotsiantis,
2007). See5 offers a number of improvements on C4.5, including speed, memory usage,
and smaller decision trees. Additionally, it has cross-validation built-in Quinlan (2011).
Experimental increments of learning set sizes (I;) were defined by a sampling sched-
ule S, = (100,200,...,1000,2000,...,10,000,20,000,...,100,000,200,000,...).
The sampling schedule we used is based on efficient progressive adaptive sampling, de-
veloped by Provost ef al. (1999).

We have built a prototype and implemented a method of the adaptive incremental
approach as described earlier; for details see Brumen et al. (2004). In all the experiments
we were using the power law

y=a+b-z° 4

to model the learning curve. For calculation of the parameters a,b and ¢ for power
law function, we used Matlab’s LSQNONLIN function from the Optimization Toolbox,
which is based on the Chi-Squared test. In each step we fitted the parameters to the power
law based on the measured performance, i.e., based on a set of measurements (I;, e;).
When the parameters were calculated, we were able to estimate the future performance
of the learning algorithm based on any future sample size; in our case we used it to cal-
culate the expected error rate at the next sample size of the sampling algorithm and the
final sample size.
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Table 1

List of conditions for detection of convergence

Condition ~ Equation name Equation for condition
name
Cl Eq. (D) Yi—2 > Yi-1 > Yi
Yi—1—Yi—2 Yi—Yi—1
c2 Eq. ) Tj_1—Ti—2 < Ti—Ti—1
C3 Eq.3)le =1 MAX (le; — 511ext|, ‘enext - elarge‘v |ei - elargel) <1
C4 Eq.3)le=2 MAX (le; — enext|7 ‘enext - elarge‘v |6'L - elargel) <2
(6] Eq.-3)le =3 MAX (le; — encxt|7 ‘encxt - elarge‘v |ei - 61arge|) <3
Co6 EQ- (3) le=14 MAX (lez - enext|7 ‘enext - elargc‘: |ei - elargc') <4
7 Eq.(DAEQ ()  yi—o >yi1 >y A A2t Bibind
C8 Eq. (1) AEq. (2) MAX(|ei*enext|: ‘encxt*elarge‘v |ei*elarge|)
AEq () le=1 <LAyi—2 A > yi1 >y A Fmi=2 < S
(Y Eq (1) A Eq (2) MAX(|ei_eneXt|v ‘enext _elarge‘v |ei_elarge|)
NEG()le=2  <2Ayiz >yio1 >y A SiE < HihEL
C10 Eq. (1) AEq. (2) MAX(|ei*enext|: ‘enext*elarge" |ei*elarge|)
NEg()le=3  <3Ayig >yi1 >y N LR o MiThiL
Cl11 Eq (1) A Eq (2) MAX(|ei_eneXt|v ‘enext _elarge‘v |ei_elarge|)
NEq.()le=4  <4Ayiz >yi1 >y A SEE < Bl

In this section, however, we analyze and evaluate the convergence conditions of
the Eqgs. (1), (2), and (3), the latter for different ¢, and a selected combination thereof.
The conditions are presented in the Table 1.

To evaluate each condition, we measured the differences between the estimated error
rate and the measured error rate in the step ¢, where each of the conditions first evaluated
to true. We calculated the differences between the estimations and the real (measured)
values. We made an estimation of error rate in the next step (¢ + 1) and of error rate in the
final step (i), because Eq. (3) so requires.

Please note that the differences between the estimated and the actual values can only
be calculated post festum, after the learning process (i.e., building a classifier for a given
sample size) has completed, not a priori at the learning time. Thus, this analysis and the
comparison of the conditions can not be performed prior or while the learning process is
running, but only after it has completed for a given sample size.

The differences are presented in Tables 2 and 3. Smallest difference is emphasized.
Where the corresponding condition did not evaluate to true, the table has an empty cell,
meaning the convergence was not detected.

The comparison of the conditions based on the difference between the estimated final
and the measured final error rate has shown that the best condition is C9 (Egs. (1), (2)
and (3) with e = 2%) followed by C8 (Eq. (3) with ¢ = 2%) and C10. However, the
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Table 2

Differences between the estimated and the measured error rate in the final step

Cl1 C2 Cc3 C4 (6] C6 C7 C8 c9 Cl10 Cl11

Adult 243 866 039 033 034 027 238 036 039 0.39 0.27

Letter 349  39.69 349

Covtype 13.27 5.67 155 154 154 154 3.27 04 328 3.28

Breast-Cancer 0.61 0.51 041 031 061 061 051 0.7 051 0.51 0.51

Genetics 7.09 3.84 042 042 311 348 384 042 042 042 348

Average 538 11.67 418 411 48 494 269 049 043 115 1.88
Table 3

Differences between the estimated and the measured error rate in the next step

Cl Cc2 C3 Cc4 C5 C6 Cc7 C8 Cc9 Cil0 Ci11
Adult 1.16 144 038 047 010 155 177 081 0.15 0.15 1.55
Letter 3.76 1591 3.76
Covtype 0.52 429 251 098 098 098 273 035 273 2.73
Breast-Cancer 2.12 025 010 025 025 212 025 039 025 025 0.25
Genetics 10.83 198 111 111 195 221 198 111 111 111 221
Average 3.68 4.77 1.02 070 082 171 210 077 047 1.06 1.69

condition C8 has failed at the Covtype (Forrest) dataset. The best condition C9 has an
average difference, across all the datasets, between the estimated and the measured final
error rate of 0.43%. The second best average difference (0.49%) is C8, but this condition
has failed to discover the convergence for Covtype dataset.

The comparison of the conditions based on the difference between the estimated and
the measured next error rate has shown that the best condition is C9, followed by C4 and
C8, as can be seen in Fig. 4 (please note the logarithmic scale of Y axis).

The best condition C9 has an average difference, across all the datasets, between the
estimated and the measured next error rate of 0.47%. The second best average difference
(0.70%) is produced at the condition C4, followed by C8 (0.77%).

To double check whether C9 is the best condition, we also check the ranks of the
conditions. We do so since the average differences can be skewed when one condition
is performing particularly badly with a single dataset (e.g., C2 with Letter dataset) while
performing well on others. Rank one (the first) is assigned to the smallest difference
between the estimated and the actual value (values in bold in Table 2) and the comparison
of the conditions based on the difference between the estimated final and the measured
final error rate has shown that the best condition is C9 (Egs. (1), (2), and (3) with e = 2%)
followed by C8 (Eq. (3) with e = 2%) and C10. However, the condition C8 has failed
at the Covtype (Forrest) dataset. The best condition C9 has an average difference, across
all the datasets, between the estimated and the measured final error rate of 0.43%. The
second best average difference (0.49%) is C8, but this condition has failed to discover the
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Fig. 4. Average differences between estimated and measured error rate at different conditions.

Table 4

Ranking of the conditions on “final error rate”

C1 c2 C3 C4 G5 Co C7 C8 Cc9 Cl0 Ci11

Adult 10 11 6 3 4 1 9 5 6 6 1
Letter 11 11 11 11 11 11 11 11 11 11 11
Covtype 6 5 10 7 7 7 2 11 1 3 3
Breast-Cancer 8 3 2 1 8 8 3 11 3 3 3
Genetics 11 9 1 1 6 7 9 1 1 1

Average with Letter 9.2 7.8 6 4.6 72 6.8 6.8 7.8 44 4.8 5
Average w/o Letter 875 7 4.75 3 6.25 575 575 7 275 325 35

convergence for Covtype dataset (Table 3).

If two differences are the same, they get assigned the same rank, and the next dif-
ference gets assigned rank +2. Where the convergence was not detected, the condition
gets assigned rank no. 11 (out of 11 conditions). With Letter dataset, the convergence did
not occur, see Brumen (2004). Thus, also the conditions that discovered the convergence
(that actually did not occur) get assigned rank 11. Ranking of the conditions on “final”
and “next” error rate are presented in Tables 4 and 5, respectively, with presented average
rank including and excluding the Letter dataset. Average of the average rank is presented
in Table 6.

The comparison of the conditions has shown that by using both criteria the condition
C9 has lowest average rank, followed by C4, C10 and C3.

The average ranks of different conditions are presented in Fig. 5.

The average difference and the average ranking have both shown that the condition
C9 is best performing. Furthermore, only the C9 discovers the convergence where it hap-
pens and overcomes the problem of local variance of error rate. Other conditions fail at
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Table 5

Ranking of the conditions on “next error rate”, sorted
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Cl C3 4 C5 C6 C7 C8 c9 Cl10 CI11
Adult 7 8 4 5 1 9 11 6 2 2 9
Letter 11 11 11 11 11 11 11 11 11 11 11
Covtype 2 10 6 3 3 3 7 11 1 7 7
Breast-Cancer 10 2 2 2 10 2 9 2 2 2
Genetics 11 7 1 6 9 7 1 1 1 9
Average with Letter 8.2 7.6 4.6 44 4.6 84 7.6 7.6 34 46 7.6
Average w/o Letter 75 675 3 275 3 775 675 675 15 3 6.75
Table 6

Average ranking of the conditions on both tests, sorted

c9 C4 Clo C3 C5 cl1  C7 Co6 C2 C8 Cl1
Average with Letter 3.9 4.5 4.7 5.3 5.9 6.3 7.2 7.6 7.7 7.7 8.7
Average w/o Letter ~ 2.12 287 312 387 462 512 625 675 687 687 812

rank

condition #

Fig. 5. Average ranks across conditions.

T
-ﬁnal error rate
-| I next error rate | B
HAverage

solving either of the problem of local variance or at discovering the convergence. Thus,
we propose the condition C9 (Egs. (1), (2), and (3) with e = 2%) as optimal for ending
the learning process and detecting the convergence; this condition answers the question
“When to stop measuring the learning curve points?” best.
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5. Conclusion

In this paper we presented a solution to the question “When to stop the learning process?”
By using the developed equations, we can find the point of convergence of the learning
curve. At this point the additional learning does not contribute to the overall performance
of the classification model any more. We developed a set of equations that need to be
checked after the learning process using a given number of data items in the learning
set has finished. If the conditions are not satisfied, the algorithm has a potential to learn
more. The developed solution has proven to be working properly: the learning process is
not subjected to local variance and the convergence is detected where it actually occurred.

The contribution of this work can be incorporated into the algorithms building classi-
fication models. The user could get an indication whether any additional data is needed
to improve the performance, or contrary, no more data is needed since the model is per-
forming adequately well.

There are many areas for future investigation. For example, one can consider (1) other
aspects of the learning curve beyond the concavity and the decrease of the error rate,
(2) other factors of the learning process, such as algorithm’s run time or associated costs,
or (3) other cases of learning, not only classification. Another interesting area of the
investigation is human learning, where our model can be — in principle — applied to the
individuals in the learning process. Here, the individuals and their knowledge could be
evaluated and the convergence of the learning process could be detected — a point where
additional learning would not yield any considerable improvement.
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Mokymosi proceso sustabdymo Kriterijai

Bostjan BRUMEN, Marko HOLBL, Katja HAREJ PULKO, Tatjana WELZER,
Marjan HERICKO, Matjaz B. JURIC, Hannu JAAKKOLA

Priziirimo mokymosi santykis tarp turimu duomeny ir klasifikavimo kokybés néra pakanka-
mai gerai suprantamas. Kiek duomeny naudoti, arba, kada sustabdyti mokymosi procesa, yra svar-
biausi klausimai. Siame straipsnyje, pristatome metoda, leidZiantj preliminariai vertinti i§gautu
Ziniy kokybe ir rezultaty tiksluma. Atsakymas i pagrindinius klausimus yra randamas aptinkant pa-
grindini konvergavimo taska. T.y. kai klasifikavimo kokybé nebegeréja nors ir pridedant papildomy
mokymosi duomenuy. Kad nustatyti mokymosi proceso baigties momenta mes sukiiréme keleta
lyg€iu kurios paremtos pagrindiniais mokymosi proceso principais. Sukurtas sprendimas buvo
vertinamas naudojant realaus pasaulio duomenis. Eksperimento rezultatai parodo, kad sprendimas
yra gerai parengtas: mokymosi procesas sustojimo kriterijai néra priklausomas nuo lokalios disper-
sijos ir konvergencija yra aptinkama ten kur ir i$ tikruyju turéty bti.



