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Abstract. Glaucoma is one of the most insidious eye diseases the occurrence and progression of
which a human does not feel. This article provides a brief overview of the eye nerve parameteriza-
tion methods and algorithms. Parameterization itself is an important task that provides and uniquely
defines the structure of the optic nerve disc and further can be used in disease detection or other
studies that require a parametric estimate of the eye fundus pattern. So far, planimetric completely
automated parameterization of excavation from eye fundus images has not been investigated in
detail in the scientific literature. In this article, the authors describe an automated excavation and
parameterization algorithm and make the correlation analysis of parameters obtained by both au-
tomated and interactive techniques. The obtained results are then compared with those produced
by Optical Coherence and Heidelberg Retina Tomography. Finally, the article discusses glaucoma
disease detection abilities using the estimated parameters of the eye fundus structures, obtained by
different parameterization techniques.

Keywords: automated excavation parameterization, comparison of parameterization techniques,
parameter correlation analysis, glaucoma detection, automated eye fundus structure parameterization.

1. Introduction

The appearance of the optic nerve disc (OND) has been used to evaluate the glaucoma
status since 1851, when Hermann von Helmholtz invented the ophthalmoscope and for
the first time viewed the eye fundus in the living humans (Williams et al., 2011). In
the course of time, fundus examination methods have continued to improve (Sampaolesi
et al., 2009). Since 1887 the early fundus photography has progressed to today’s digital
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stereoscopic fundus images. In the period of 1950–1960 a monocular direct ophthalmo-
scope was presented (Pearce, 2009) and now it is used for modern eye fundus assessment
in the inverse binocular ophthalmoscopy (Sampaolesi et al., 2009).

But even the modern digital stereoscopic or inverse binocular ophthalmoscopic OND
image is still assessed and interpreted subjectively. In daily work, the ophthalmologists
must determine whether the OND appearance is normal or pathological and the decision
is based only on their clinical practice (Bock et al., 2010).

Glaucoma is a progressive optic neuropathy with intraocular pressure fluctuation,
characteristic structural changes in OND reflected in the visual field (Spaeth et al., 2006).
Worldwide, apart from the cataract, it is the second leading cause of blindness (Nayak
et al., 2009), but the leading causes of irreversible blindness (O’Colmain et al., 2011).
Hence, early detection and prevention is the only way to avoid the total loss of vision.

Glaucoma diagnosis is based on the classic triad: elevated intraocular pressure, typ-
ical visual field defects, and structural changes in OND (John and Langley, 1995). But
the effect of the intraocular pressure varies from patient to patient, hence, it is difficult
to use standardized measurements for diagnosis (Guesalaga et al., 2003) and OND dam-
age precedes the visual field loss, to this end, recommended accurate and reproducible
measurements of the disc are recommended (Jayasundera et al., 2005).

The early and objective diagnosis of glaucoma is based on the OND and retinal nerve
fiber structure assessment (Morgan et al., 2005). Usually ophthalmologists estimate the
quantitative parameters of the morphology of OND such as: OND, excavation (EXC)
diameters, areas, neuroretinal rim (NRR) area and shape, and the ratios of OND, ECX,
NRR parameters (Jegelevičius et al., 2008).

Clinical decision-making is complicated by a large variation in OND size within a
population as well as among populations (Hoffmann et al., 2007), various combinations
of OND glaucomatous damage and the inter- and intra-operator variability reported by
many studies (Chrastek et al., 2005).

Recently computer-assisted interactive planimetry algorithm has been created for
more objective quantitative OND morphology description from the digital fundus pho-
toplanimetric image (Correnti et al., 2003). The observer with a computer mouse draws
the disc and excavation margins on the monitor of the computer and the software auto-
matically calculates the various OND parameters (Lamoureux et al., 2006). The main
disadvantage of this method is that it is highly subjective, time-consuming and has a
broad inter-observer variability (Xu et al., 2008). The same conclusion was drawn from
the investigation where fifteen ophthalmologists had described the optic nerve disc and
excavation on six images of the same eye fundus (Tiešis and Treigys, 2010).

In recent years, various semi-automated, laser methods that enable a rapid image ac-
quisition and measurement of OND have emerged (Sanfilippo et al., 2009). Newer tech-
nologies, such as the optical coherence tomography and confocal scanning laser oph-
thalmoscopy, have allowed for a more objective measurement of OND than interactive
methods. However, even those methods require a user’s intervention to manually define
the border of OND (or adjust to the optical coherence tomography case) leaving some
inter-observer variability (Neubauer et al., 2006).
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All the above-described technologies are an efforts of researchers to overcome the
lack of standardization, the inherent subjectivity and intra- as well as interobserver vari-
ability while evaluating the OND deformation in glaucoma (Corona et al., 2002).

An objective, standardized, and precise evaluation of the OND morphology is cru-
cial in the early diagnosis and follow-up management of glaucoma, but it still remains a
problem. The analysis of ophthalmological images is a broad and multi-disciplinary field
that is most effectively progressive when teams of scientists, engineers, and clinicians
combine their forces to develop new techniques (Harvey and Lakshminarayanan, 2010).

At the first stage of the project sponsored by Lithuania State Science and Studies
Foundation research group (Paunksnis et al., 2006) developed an interactive method for
the optic nerve disc and excavation parameterization. A rapid progress of information
technologies has created new opportunities to develop a fully automated, objective, stan-
dardized, precise and low-cost parameterization of OND digital images (Treigys et al.,
2008). Recently, the mentioned automated optic nerve disc parameterization, developed
by was updated with the ability to parameterize the excavation. In this article the authors
present the updated algorithm and analyse parameterization performance and compares
of the parameter sets produced by the interactive, Heidelberg Retina Tomography (HRT),
and optical coherence tomography (OCT) techniques.

To test the parameterization quality and glaucoma-norm classification, control groups
of patients were selected. 40 glaucoma (40 eyes, 6 males and 34 females, age 64 ± 9.6
years) and 32 norm (32 eyes, 12 males and 20 females, age 58.8 ± 5.7 years) patients with
normal biometric parameters of the eye participated in the study. All subjects underwent
a full ophthalmological examination, optic nerve disc colour digital fundus image, OCT
and HRT at the same visit.

2. Description of Data Sets for the Analysis

Suppose that an array of the parameters x1, x2, . . . , xk characterises a disease (or the
health state), therefore it is possible to form k-dimensional vectors X = (x1, x2, . . . , xk)
that correspond to patients. Let a set of the analysed data consist of s objects:
X1, X2, . . . , Xs, where Xi = (xi

1, xi
2, . . . , x

i
k), i = 1, . . . , s. The goal of classifica-

tion is to assign the vectors X1, X2, . . . , Xs to one of the classes C1, C2, . . . , Cd. If Xi

belongs to the class Cj (j = 1, . . . , d), Xi is called as a positive example for the class
Cj , in the opposite, Xi is called as a negative example.

In this investigation, the objects under consideration are fundi of eyes (Fig. 1). Usu-
ally ophthalmologists estimate the parameters of the morphology of the optic nerve disc,
excavation and neuroretinal rim visually. Excavation is the normally occurring depres-
sion or pit in the centre of the optic nerve disc, also called a physiologic excavation or
cup. Neuroretinal rim is the tissue between the outer edge of the excavation and the outer
margin of the optic nerve disc. They estimate the following parameters: vertical and hor-
izontal diameters of the optic nerve disc; the area of the optic nerve disc; vertical and
horizontal diameters of the excavation; area of the excavation; the area of the neuroreti-
nal rim; four optic nerve disc sectors of the neuroretinal rim; the ratio between vertical
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Fig. 1. Fundus of eye (the outer ellipse stands for the optic nerve disc approximation, inner for excavation
approximation).

diameters of the EXC and OND; the ratio between horizontal diameters of the EXC and
OND. Planimetry of the optic disc photographs allows us to estimate the morphologic
parameters more precisely.

The analysed data set consists of multidimensional vectors Xi corresponding to the
analysed fundi of eyes. 22 numerical parameters of the eye fundus have been measured.
There are four groups of parameters (optic nerve disc, excavation (cup), neuroretinal rim,
ratio between various parameters) presented in Table 1.

Table 1

Measured parameters of OND and EXC in the fundus image of the eye

No. Full name of the parameter Abbreviation

Parameters of optic nerve disc (OND)

x1 Horizontal diameter OND_HDiam

x2 Vertical diameter OND_VDiam

x3 Area OND_area

x4 Perimeter OND_P

Parameters of excavation (EXC)

x5 Horizontal diameter EXC_HDiam

x6 Vertical diameter EXC_VDiam

x7 Area EXC_area

x8 Perimeter EXC_P

Ratios between various parameters

x9 Ratio of EXC and OND horizontal diameters ratio_H

x10 Ratio of EXC and OND vertical diameters ratio_V

Parameters of neuroretinal rim (NRR)

x11 Thickness of neuroretinal rim in the direction of 1 o’clock NRR-1

x12 Thickness of neuroretinal rim in the direction of 2 o’clock NRR-2

. . . . . . . . .

x22 Thickness of neuroretinal rim in the direction of 12 o’clock NRR-12
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Glaucoma is a group of diseases of the optic nerve involving the loss of retinal gan-
glion cells in a characteristic pattern of optic neuropathy (Nayak et al., 2009). An increase
in the physiological excavation is typical of glaucoma. However, this disease can be di-
agnosed even without the parameters of excavation, just basing on the tests (increase of
intraocular pressure, glaucomatous visual field defects, analysis of the retinal nerve fibre
layer). We analysed only the cases where an excavation was detected in the photographs.

3. Parameterization of Eye Fundus Anatomic Structures

All the ophthalmic images were parameterised by two algorithms. One of the algorithms
was interactive and the other – fully automated. The eye fundus images were obtained
at the Department of Ophthalmology, Institute of Neurosciences, Lithuanian University
of Health Sciences, using the fundus camera Zeiss Visucam NM NM/FA 45◦ angle, po-
sitioning on the optic nerve disc with the resolution of 5 Mpixel images (image size
1958×2942). The common magnification quotient 0.5 and image diameter size is 7.4 mm.
The scale (mm/pixels) for the fundus camera was 0.00503.

The first algorithm is a computer-assisted digital fundus images parameterization tool
that implements the interactive optic nerve disc and excavation parameterization, when
the demarcation line is drawn around the areas of interest with a computer mouse. The
software was developed by Biomedical Engineering Institute of Kaunas University of
Technology in the Matlab programming environment (The MathWorks Inc., 2007). Us-
ing software tools with a computer mouse on the digital fundus image an ophthalmologist
points the approximate centre of the optic nerve disc, then, with the help of template, se-
lects 12 points on the boundary of OND and excavation. The area of the disc was defined
as the area within Elschning’s ring, the excavation was defined on the basis of the con-
tour, not pallor, the rim/excavation border was taken as the level at which the slope of the
rim steepens. Then, the software approximates ellipses using the least squares algorithm
on these points and calculates 22 numerical parameters (see Table 1) using the ellipses
of the external optic nerve disc and excavation boundaries (Bourne et al., 2009). The pa-
rameters used in this study were: optic nerve disc, excavation and rim areas, EXC/OND,
and NRR/OND area ratios, vertical and horizontal EXC/OND diameter ratios.

The second algorithm, used for anatomical eye fundus structure parameterization,
was completely automated. The algorithm for optic nerve disc parameterization in de-
tail is described in the paper (Treigys et al., 2008). However, since, in this paper, the
approximation of excavation will be discussed and is dependent on the optic nerve disc
approximation result, the main steps of optic nerve disc approximation will be recalled.

As it can be seen from Fig. 1, the blood vessels divide the area of the optic nerve disc
into numerous non-homogenous regions. This effect is very undesirable and burdensome
to optic nerve disc parameterization. Even more, since the excavation lies in the area of
OND, the elimination of blood vessels in the eye fundus images is crucial. The authors
have shown that blood vessels from the area of OND can be precisely removed by closing
operation of mathematical morphology. Also, it has been estimated by experiments that a
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disc-shaped structuring element with the diameter of 14 pixels is enough in order to effi-
ciently remove the vasculature from OND. However, if such a diameter element performs
well on blood vessel removal and preserves the size and boundary of the optic nerve disc,
then it has a negative impact on the excavation structure. The size of excavation may be
of order of the blood vessel size and such a structuring element just eliminates the exca-
vation by removing edge gradient information. Thus, the size of the structuring element
should be properly selected in order to detect the excavation. For the proper diameter
selection as well as for other parameters, discussed later in this paper, a discrete Bayes
optimization method will be introduced.

Further, with a view to find the boundaries of the optic nerve disc, the authors in-
troduced a Canny edge detection algorithm. This algorithm depends on two parameters:
low and high threshold levels τ1 and τ2. The authors used the Otsu clusterization method
to calculate those parameters. However, calculated parameters are scaled because of the
presence of noise after the application of the morphological closing operation. These two
parameters are of utmost importance, since if they are wrongly selected, the boundary of
an object will not be found or it could become discontinuous and further may be treated
as noise. Next, an approximate optic nerve disc position is found by applying the iterative
circular Hough transform. Finally, the elliptical parameters describing OND were found
by the least squares method. The least squares algorithm calculates minor and major axes,
inclination angle and centre coordinates of an ellipse.

3.1. Approximation of Excavation

Firstly, the area containing an excavation must be cropped from the eye fundus image.
The cropping is very important, since the pixels intensity change of excavation and optic
nerve disc itself in most cases does not introduce high gradient values. Thus, if a lower
pixel intensity values, representing retina together with optic nerve disc and excavation
pixel intensities, were fetched to the threshold selection method, then the information on
the excavation boundary will be lost. This would happen because the gradient between
the retina and optic nerve disc changes more rapidly. On the other hand, then the excava-
tion with respect to other eye fundus structures is quite small, if the location of excavation
is not precise enough, the boundary of a structure may be interpreted as a noise or some
blood vessel formation. Hence, with a view to specify the region of interest (ROI), we use
the major axis of the optic nerve disc ellipse found by an automated algorithm. The centre
of ROI becomes the ellipse centre. This region of interest then is cropped from the green
channel of the initial eye fundus image. Next, a constrained Bayes method, described in
Section 4 is initialized for discrete parameter estimation. The Bayes algorithm is set to
300 times to estimate three different parameter values. The parameters to be optimized
are the structuring element diameter and two Canny algorithm threshold levels. These
three parameters are constrained. The threshold levels are constrained by the maximum
pixel intensity level and the structuring element diameter by a minor axis. Then, with
the set of parameters proposed by the Bayes method, the region of interest area is pro-
cessed, as described in Section 3, i.e., the algorithm computes the morphological closing,
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Canny edge detection, iterative Hough transform, and elliptical least squares fitting to the
gathered excavation boundary points.

Next, the error of elliptical approximation and the circle-shape preservation is esti-
mated and consequently, the result is returned back to the Bayes optimization algorithm
to calculate the new estimates of diameter and two threshold levels. The error measure-
ment function was calculated as follows:

∑N
i=1(

(xc −xi)
a2 + (yc −yi)

b2 − 1)2P 2

4NSπ
. (1)

Here xc and yc coordinates define the centre of ellipsis; xi and yi are boundary point
coordinates that describe the excavation; P and S are a perimeter and an area, respec-
tively, of a convex hull defined by the boundary points; N is the number of boundary
points.

In such a way the procedure is repeated 300 times. The minimum value of the error
function denotes the best elliptical approximation of the excavation within the area of the
optic nerve disc.

4. Classification Methods

In this investigation, the system “Orange” (Demsar et al., 2004) is used for experiments.
Classification methods were used: Naïve Bayes (John and Langley, 1995), classification
trees (Breiman et al., 1984), support vector machine and the kNN classifiers (Dunham,
2003), and C4.5 (Quinlan, 1993).

The Naive Bayes classifier (John and Langley, 1995) is based on the Bayes probability
rule and the two assumptions: parameters are relatively independent of one another and,
second, there are no hidden or invisible parameters that influence the process of class
assignment.

Suppose that each record Xi of the training data set consists of j independent discrete
parameters xi1, xi2, . . . , xij . Then the probability that the observed record of discrete
parameters Xi belongs to class Cl, is calculated by the formula:

P (Cl|Xi) =
P (Cl)·P (Xi|Cl)

P (Xi)
. (2)

An a priori probability of the class appearance P (Cl) is calculated from the train-
ing set. Based on the assumption that the parameters are independent of one an-
other and by using the data from the training set, we can calculate a conditional
probability P (Xi|Cl) =

∏n
j=1 P (xij |Cl). Moreover, in (2), the probability provided in

the denominator does not depend on the class. This fact means that it does not influence
the maximum likelihood solution (3). Such a scheme guarantees that every record Xi is
assigned to the class that has the highest conditional probability.

C = argmax
Cl

P (Cl|Xi) = argmax
Cl

P (Cl)·P (Xi|Cl). (3)
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If the training records incorporate the continuous parameters, then an assumption is
made that, for each class Cl, those continuous parameters are distributed according to
the normal Gaussian distribution Φl(xij) = N(xij , μlj , σlj). Here parameters μlj and
σlj are calculated on the training set of the lth class for the jth parameter. Then the
conditional probability can be expressed as P (Xi|Cl) =

∏n
j=1 Φl(xij). However, this

transition is not always correct. In such cases, continuous parameters are forced to take
a discrete form. The main advantage of the Naïve Bayes classifier is that it is simple
and fast, and, in most cases, if the parameters are independent form one another, the
classification accuracy is satisfactory. In other cases, this classifier gives poor results (Liu,
2006).

Using a classification tree technique, a tree is constructed to model the classification
process. Classification tree methods are a good choice when the data mining task is the
classification or prediction of outcomes and the goal is to generate rules that can be easily
understood and explained. Once the tree has been formed, it is applied to each item in the
data set and results in the classification for that item. Classification tree describes a struc-
ture wherein the leaves represent classifications and branches represent conjunctions of
features that lead to those classifications. A classification tree can be learned by splitting
the source set into subsets, based on an attribute value test. This process is repeated on
each derived subset in a recursive manner. The recursion is completed when splitting is
either non-feasible, or a singular classification can be applied to each element of the de-
rived subset (Breiman et al., 1984). C4.5 is an algorithm used to generate a decision tree
developed by Ross Qiunlan (1993). It was used to classification tree construction. This
algorithm handles both, a discrete and a continuous value, prunes the tree after creation,
and is able to handle the attributes with different costs.

The k nearest neighbours (kNN) technique assumes that the entire training set in-
cludes not only the data in the set, but also the desired classification for each item. The
training data become a model. When a classification is to be made for a new item, its
distance, usually Euclidian, to each item in the training set must be determined. Only the
k closest entries in the training set are considered further. The new item is then placed in
the class that contains most items from this set of the k closest items. The kNN technique
is extremely sensitive to the value of k (Dunham, 2003).

The support vector machine classifier (SVM) is the classification method that exe-
cutes the classifier training steps and may be used in the regression analysis tasks as well.
When the SVM method is applied to the classification task, the method creates a hyper-
plane that allows attributing the data points to two classes (Cristiani and Shawe-Taylor,
2003). Assuming that the training set is comprised of Xi objects and each of these ob-
jects corresponds to the class Cl, then the initial data are paired as (Xi, Cl), i = 1, . . . m.
Here m represents the count of training set objects, Xi ∈ R

n and Cl = {−1, 1}. Af-
terwards, the simplest support vector machine classifier creates a hyper-plane according
to the equation (W ·XT ) + b = 0, W ∈ R

n, b ∈ R that corresponds to the objec-
tive function f(x) = sign((W ·XT ) + b). Here W = (w1, w2, . . . , wn) as well as
X = (x1, x2, . . . , xn) are row vectors, and W ·XT =

∑n
i=1 wixi is a product of row

vectors.
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Fig. 2. Scheme of support vector machine classifier.

After the hyper plane has been created, the training set objects are divided into two
classes such that the distance between the closest elements, belonging to different classes,
and the hyper-plane boundary is maximal (Bernataviciene, 2008). Figure 2 shows the
class separation by the SVM.

Figure 2 illustrates the hyper-plane that is marked as straight line and samples of
two classes. Rounded and diamond samples belongs to different classes. It is worth-
while noticing that the created hyper-plane is appertained to the subset of the train-
ing set that consists of the so-called support vectors. To represent the s hyper-plane
in a suitable way, the proposed algorithm calculates minW,b

1
2 ‖W ‖2 with respect to

Cl((W ·(Xi)T ) + b) � 1, i = 1, . . . m. Then, the maximum distance between different
class boundaries is γ = 2

‖W ‖ . The issues related to the support vector machine method
application to visualize data are discussed in the paper (Kurasova, 2009).

5. Results of a Parameter Correlation Analysis

As already mentioned, the testing set consists of 72 fundus images that were param-
eterized by the automated and interactive algorithms. Besides the standard eye fundus
examining technique, during which a planar photograph of the eye fundus was taken, all
the investigative persons were additionally examined by the Optical Coherence Tomog-
raphy and Heidelberg Retina Tomography. It is important to note that the tomography
investigation results are formed according to the 3D laser scan of an object, i.e., optic
nerve disc, excavation, and neuroretinal rim measurements are calculated according to
stereometric parameters from the 3D laser scan. This technique substantially differs from
the planimetric eye fundus image analysis and object parameterization by interactive and
automated algorithms, since it does not give the object’s depth evaluation. Moreover,
these techniques are measuring a different set of eye fundus parameters. Thus, further
this section will be organized as follows: in the first part of this section, a correlation
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Table 2

Correlation of OCT and HRT parameters (all cases)

OCT OCT OCT OCT OCT (EXC_area/

(OND_area) (EXC_area) (ratio_V) (ratio_H) OND_area ratio)

HRT (OND_area) 0.718 0.548 0.312 0.289 0.335

HRT (EXC_area) 0.656 0.829 0.669 0.716 0.752

HRT (ratio_V) 0.422 0.522 0.398 0.602 0.526

HRT (ratio_H) 0.566 0.772 0.748 0.743 0.790

HRT (EXC_area/

OND_area ratio) 0.446 0.718 0.672 0.752 0.761

Table 3

Correlation of OCT and HRT parameters (glaucoma case)

OCT OCT OCT OCT OCT (EXC_area/

(OND_area) (EXC_area) (ratio_V) (ratio_H) OND_area ratio)

HRT (OND_area) 0.726 0.581 0.306 0.258 0.333

HRT (EXC_area) 0.647 0.803 0.652 0.694 0.721

HRT (ratio_V) 0.484 0.691 0.625 0.781 0.740

HRT (ratio_H) 0.510 0.748 0.789 0.801 0.809

HRT (EXC_area/

OND_area ratio) 0.385 0.646 0.629 0.729 0.711

Table 4

Correlation of OCT and HRT parameters (normal case)

OCT OCT OCT OCT OCT (EXC_area/

(OND_area) (EXC_area) (ratio_V) (ratio_H) OND_area ratio)

HRT (OND_area) 0.705 0.516 0.357 0.364 0.367

HRT (EXC_area) 0.675 0.807 0.517 0.735 0.701

HRT (ratio_V) 0.392 0.424 0.168 0.470 0.353

HRT (ratio_H) 0.654 0.702 0.477 0.496 0.572

HRT (EXC_area/

OND_area ratio) 0.536 0.779 0.521 0.756 0.720

analysis between planimetric and stereometric parameters will be provided; in the second
part, the classification results according to the parameters from planimetric algorithms
that describe the optic nerve disc, excavation, and neuroretinal rim will be discussed.

The results provided in Tables 2, 3, and 4 shows a correlation between the parameters
of the optic nerve disc and excavation that were measured by OCT and HRT scans of the
same eye of an investigative person.
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The results provided in Tables 2, 3, and 4 show that, despite the new technological
achievements and different device implementations that are capable to perform a laser
scan of a human eye fundus and to calculate the optic nerve disc and excavation param-
eters, there is rather a strong correlation between the measured parameters by different
techniques. Weak correlation is between ratio_V parameters of different techniques in
norm case. This fact implies that even if the newest technological achievements are used
for the human examination, the task of eye fundus structures evaluation is extremely dif-
ficult and leads to different results. Moreover, tomograph scan result shows that the cor-
relation between anatomical structure parameters of different tomography means, used
for eye fundus scanning, is neither better nor worse no matter there is a disease or not,
except the parameter ratio_V and ratio_H.

For the second part of the correlation analysis, an ophthalmologist has visually in-
spected the optic nerve disc and excavation approximation results obtained by the au-
tomated algorithm. It was concluded that there were 9 wrong parameterization cases of
OND structure and 16 wrong parameterization cases of EXC structure respectively out of
72 eye fundus images.

Further, Tables 5, 6, and 7 show the parameter correlation results in case the parame-
ters are calculated from planimetric eye fundus images by the interactive and automated
algorithms for eye fundus anatomical structures parameterization. Besides, the same per-
sons the same eye images were parameterized.

The results shown in Tables 5, 6, and 7 indicate that the optic nerve disc parameters as
well as the excavation parameters, calculated by the interactive and automated algorithms
do have a strong correlate. In most cases, the correlation is similar to that presented in
Tables 2, 3, and 4. The correlation between the parameters that are gathered by means
of tomography and image analysis was not calculated, since the image analysis algo-
rithms are evaluating the parameters of the optic nerve head and excavation without any
depth information about the anatomical structure. Moreover, the interactive algorithm is
as much interactive as it calculates an elliptical cone by the least squares from 12 points
that were put on the eye fundus image by an ophthalmologist with a view to describe the
optic nerve disc as well as excavation. Regarding this fact a conclusion on planimetric

Table 5

Correlation of interactive and automated algorithm results (all cases)

Interact Interact Interact Interact Interact

(OND_area) (EXC_area) (ratio_V) (ratio_H) (EXC_area/

OND_area ratio)

Auto (OND_area) 0.583 0.470 0.275 0.261 0.287

Auto (EXC_area) 0.610 0.813 0.651 0.660 0.716

Auto (ratio_V) 0.396 0.689 0.629 0.648 0.683

Auto (ratio_H) 0.372 0.629 0.554 0.616 0.624

Auto (EXC_area/

OND_area ratio) 0.422 0.746 0.673 0.691 0.743
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Table 6

Correlation of interactive and automated algorithm results (glaucoma case)

Interact Interact Interact Interact Interact

(OND_area) (EXC_area) (ratio_V) (ratio_H) (EXC_area/

OND_area ratio)

Auto (OND_area) 0.539 0.528 0.353 0.327 0.355

Auto (EXC_area) 0.659 0.796 0.586 0.593 0.638

Auto (ratio_V) 0.433 0.658 0.521 0.549 0.584

Auto (ratio_H) 0.391 0.605 0.493 0.549 0.561

Auto (EXC_area/

OND_area ratio) 0.478 0.712 0.585 0.609 0.650

Table 7

Correlation of interactive and automated algorithm results (normal case)

Interact Interact Interact Interact Interact

(OND_area) (EXC_area) (ratio_V) (ratio_H) (EXC_area/

OND_area ratio)

Auto (OND_area) 0.676 0.317 0.062 0.119 0.101

Auto (EXC_area) 0.465 0.788 0.634 0.685 0.755

Auto (ratio_V) 0.330 0.701 0.619 0.663 0.706

Auto (ratio_H) 0.308 0.637 0.548 0.621 0.640

Auto (EXC_area/

OND_area ratio) 0.276 0.755 0.691 0.713 0.798

and stereometric eye fundus structure parameterization technique can be drawn. That is,
in the stereometric case, the correlation between parameters shows that, regardless of the
technique used for eye fundus examination, the interpretation of structures is quite dif-
ferent, since the parameter estimates do not match even if the depth of the structure is
known. In the planimetric case, the parameter correlation analysis shows the same result.
However, if we think about the correlation result in respect of the automated and interac-
tive optic nerve disc and excavation parameter estimation, then the parameter correlation
analysis proves that the automated algorithm recognizes and parameterizes eye fundus
structures in a similar manner as the ophthalmologist does.

The third part of the optic nerve disk and excavation parameters analysis covered the
classification task. The parameters collected by different means, i.e., interactive algo-
rithm, automated algorithm, OCT, and HRT, were introduced to four classifiers that are
freely available in the open source packet Orange (Curk et al., 2005). At the beginning,
all the 22 parameters were fed to the classifiers. The cross-validation learning rule was
tested on 10 folds. Table 7 presents the classification results by the interactive algorithm
data and Table 8 the classification of the automated algorithm data. Table 9 presents the
confusion matrices produced by the best classifiers. In addition, a linear classifier was
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Table 8

Classification results of all the 22 parameters found by interactive algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.5607 0.3750 0.7812 0.5979

kNN 0.5857 0.6750 0.4688 0.6104

SVM 0.7250 0.7500 0.6875 0.7708

Naive Bayes 0.6839 0.6750 0.6875 0.7542

Classification Tree 0.5732 0.6000 0.5312 0.5906

Table 9

Classification results of all the 22 parameters found by automated algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.6089 0.7250 0.4688 0.6156

kNN 0.5982 0.6500 0.5313 0.6385

SVM 0.5821 0.8500 0.2500 0.5708

Naïve Bayes 0.6661 0.6500 0.6875 0.7271

Classification Tree 0.5161 0.5500 0.4688 0.5156

Table 10

Confusion matrices obtained by SVM and Naïve Bayes classifiers

Interactive algorithm Automated algorithm

Glaucoma Normal Glaucoma Normal

Glaucoma 26 14 40 26 14 40

Normal 11 21 32 15 17 32

Count 37 35 72 41 31 72

used in support vector machine algorithm. Here and further in the article bold values
denotes the best classifier.

As it can be seen from Tables 8 and 9 the classification accuracy is better when the
parameters computed by the interactive algorithm were used. Besides, confusion matrices
presented in Table 10, confirm that a correct class assignment is better with the parameters
produced by the interactive algorithm for the normal case. However, the glaucoma class
identification remains the same with the parameters produced by both methods.

For the second experiment, parameters that described the neuroretinal rim were ex-
cluded. The experiment was accomplished only with the first ten parameters that describe
the optic nerve disc and excavation. The same cross validation conditions, as mentioned
above, were applied.

The results presented in Tables 11, 12, and 13 imply the same conclusion, that the
classifier accuracy is better when the parameters found by the interactive algorithm were
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Table 11

Classification results of the first 10 parameters found by interactive algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.6429 0.5500 0.7500 0.6708

kNN 0.5571 0.6000 0.5000 0.5813

SVM 0.7411 0.7750 0.6875 0.7646

Naive Bayes 0.6714 0.6500 0.6875 0.6792

Classification Tree 0.6143 0.5750 0.6562 0.6188

Table 12

Classification results of the first 10 parameters found by automated algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.5679 0.7750 0.3125 0.5406

kNN 0.6018 0.6500 0.5313 0.7083

SVM 0.6804 0.8500 0.4688 0.7354

Naïve Bayes 0.6268 0.7000 0.5313 0.6104

Classification Tree 0.5696 0.6500 0.4688 0.5687

Table 13

Confusion matrices obtained by the SVM classifier

Interactive algorithm Automated algorithm

Glaucoma Norma Glaucoma Normal

Glaucoma 28 12 40 30 10 40

Normal 9 23 32 10 22 32

Count 37 35 72 40 32 72

used for classification. However, the parameters obtained by the automated algorithm suit
better for glaucoma detection, since 30 correct glaucoma cases were identified from 40,
while the parameters from the interactive algorithm were able to describe 28 glaucoma
cases out of the same 40 cases.

Further, the parameters produced by stereometric eye fundus structure parameteri-
zation techniques, were analysed and the classification performance was investigated as
well. However, the parameters set produced by Heidelberg retina and Optical Coherence
Tomographs are not quite coincident. Moreover, these parameter sets also are not coin-
cident with ones obtained by the automated and interactive methods as well. Thus, with
a view to check the classification results of parameters that were obtained by the stere-
ometric eye fundus structure parameterization technique, a set of coincident parameters
was calculated. Parameters that were fed to the classifiers were: optic nerve disk area,
excavation area, the ratio of vertical optic nerve disc and excavation, the ratio of hori-
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Table 14

Classification results of five derived parameters found by the interactive algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.6018 0.5250 0.6875 0.6844

kNN 0.7214 0.7250 0.7188 0.7875

SVM 0.7482 0.8000 0.6875 0.7604

Naive Bayes 0.6768 0.7000 0.6562 0.7188

Classification Tree 0.7393 0.8000 0.6562 0.7615

Table 15

Classification results of five derived parameters found by the automated algorithm

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.6661 0.9500 0.3125 0.5958

kNN 0.4679 0.5250 0.4062 0.5625

SVM 0.6429 0.8250 0.4062 0.6063

Naïve Bayes 0.6518 0.8250 0.4375 0.6667

Classification Tree 0.5839 0.6250 0.5312 0.5906

Table 16

Confusion matrices obtained by the SVM and C4.5 classifiers, respectively

Interactive algorithm Automated algorithm

Glaucoma Normal Glaucoma Normal

Glaucoma 28 12 40 38 2 40

Normal 11 21 32 10 22 32

Count 39 33 72 48 24 72

zontal optic nerve disc and excavation, and the ratio of excavation-optic nerve disc area
ratio. Tables 14 and 15 illustrate the classification results of five parameters obtained by
the interactive and automated algorithms, respectively. Table 16 shows the best classi-
fier confusion matrices. The same cross-validation conditions were applied as mentioned
above.

Tables 17 and 18 illustrate the classification results of the five parameters obtained by
the HRT and OCT tomographs, respectively. Table 18 shows the best classifier confusion
matrices.

The results provided in Tables 14 and 15 indicate that the classification accuracy of
the parameters, obtained by the interactive algorithm, outperforms the classification ac-
curacy when used the parameter set found by automated algorithm. However, the same
trend, as presented in Table 13 is seen. Table 16 shows that the parameters found by the
automated algorithm suit better for glaucoma detection, since 38 correct glaucoma cases



350 D. Buteikienė et al.

Table 17

Classification results of five derived parameters obtained by HRT

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.7500 0.7500 0.7500 0.7417

kNN 0.7482 0.8000 0.6875 0.7896

SVM 0.7250 0.8000 0.6250 0.7937

Naive Bayes 0.7607 0.7500 0.7812 0.7875

Classification Tree 0.6786 0.8000 0.5312 0.7208

Table 18

Classification results of five derived parameters obtained by OCT

Classifier accuracy Sensitivity Specificity Area under curve

C4.5 0.6339 0.3750 0.9688 0.6708

kNN 0.5946 0.7000 0.4688 0.6833

SVM 0.6125 0.7250 0.4688 0.7208

Naïve Bayes 0.6375 0.5250 0.7812 0.7271

Classification Tree 0.5911 0.6500 0.5312 0.5312

Table 19

Confusion matrices obtained Naïve Bayes classifiers respectively

HRT OCT

Glaucoma Norma Glaucoma Norma

Glaucoma 30 10 40 21 19 40

Norma 8 24 32 7 25 32

Count 38 34 72 28 44 72

were identified from 40, while the parameters from the interactive algorithm were able to
describe only 28 glaucoma cases out of the same 40 cases.

Further, in Tables 17 and 18, the glaucoma-norm classification results obtained by
tomography techniques are presented. It can be seen, that the parameters produced by
the Heidelberg Retina tomograph better describe the glaucoma when compared to those
produced by Optical Coherence tomograph. The results obtained from HRT parameters
are quite similar to those obtained by the interactive algorithm. Figure 3 shows the clas-
sification tree of the Heidelberg Retina tomograph parameters.

Figure 3 shows that with the view to gather more information about glaucoma predic-
tion there are four most significant parameters produced by HRT. That is ratio of EXC
area and OND area, ratio of EXC and OND vertical and horizontal diameters and EXC
area as well. According to these parameter values Classification tree method can predict
state of patient health within bounds starting from 66% to 100%.
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Fig. 3. Classification tree, based on optic nerve disc and excavation parameters, from the Heidelberg Retina
tomograph.

When comparing the classification accuracy of both the stereometric and planimetric
eye fundus structure parameters estimation the best result is achieved when used pa-
rameter set found by HRT, second according to the classification accuracy is when used
interactive algorithm parameter set, the third classification accuracy is produced by the
automated algorithm parameter set, and the poorest is optical coherence tomography pa-
rameter set produced for glaucoma detection.

6. Conclusions

In this paper, the authors have presented a new algorithm for excavation detection and ap-
proximation by an elliptic curve. The presented algorithm uses the Bayes optimization al-
gorithm for parameter estimation. The achieved results were compared to those obtained
by an interactive algorithm where an ophthalmologist has described the optic nerve disc
and excavation interactively by marking the boundary of the excavation and the optic
nerve disc with the mouse on the screen. Next, the parameters of the same investigative
persons of such advanced techniques as Optical Coherence Tomography and Heidelberg
Retina Tomography were compared as well. Finally, the parameters were fetched to clas-
sifiers to grasp whether the explicit classification of norm-glaucoma can be made subject
to those parameters.

We have concluded that the automated algorithm made 9 mistakes in optical disc
parameterization and produced 16 incorrect measurements of the excavation out of 72
images, respectively. The mistakes were made because of the weak anatomical structures
pixel intensity gradient change in eye fundus images.

The parameter correlation analysis proves that the automated algorithm recognizes
and parameterizes eye fundus structures in a similar manner as an ophthalmologist does.
The computed correlation between interactive and automated algorithm excavation pa-
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rameter is found to be strong. In a similar manner, the results show that the new tech-
nological achievements and different algorithm realization that are capable to perform a
laser scan of a human eye fundus and to calculate the optic nerve disc and excavation
parameters also produces the strong parameter correlation result. For both planar and
stereometric techniques correlation is strong and reaches 0.8.

In addition, the norm-galucoma classification accuracy was inspected. The classifi-
cation accuracy is better when the parameters gathered from the interactive algorithm
were used. Confusion matrices confirm that a correct class assignment is better with the
parameters produced by the interactive algorithm for the norm case (21 patients of 32).
However, the glaucoma class identification remains the same with the parameters pro-
duced by both methods (26 out of 40). When the parameters of the neuroretinal rim were
excluded, the classifier accuracy was better when the parameters, found by the interactive
algorithm, were used for the classification. Furthermore, the parameters, obtained by an
automated algorithm, suit better for glaucoma detection, since 30 correct glaucoma cases
were identified from 40, while the parameter set from the interactive algorithm were able
to describe 28 glaucoma cases out of the same 40. Heidelberg Retina Tomography better
describe the glaucoma as compared to Optical Coherence Tomography, 30 cases and 21
true positive out of 40 cases, respectively. However, the accomplished investigation re-
veals that the parameter sets produced by different techniques does not able to describe
the glaucoma disease.

When comparing classification accuracy by the different parameter sets the perfor-
mance queue may be formed. According to the norm-glaucoma classification accuracy
the bets is Heidelberg Retina tomography technique, the second is interactive algorithm,
the third is automated algorithm, and the fourth is Optical Cohenrence tomography tech-
nique for the eye fundus structure parameter estimation.
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Interaktyvi ↪u ir automatini ↪u regos nervo disko ir ekskavacijos
parametrizavimo metod ↪u vertinimas

Dovilė BUTEIKIENĖ, Alvydas PAUNKSNIS, Valerijus BARZDŽIUKAS,
Jolita BERNATAVIČIENĖ, Virginijus MARCINKEVIČIUS, Povilas TREIGYS

Glaukoma yra viena iš klastingiausi ↪u aki ↪u lig ↪u, kurios atsiradimo ir progresavimo žmogus ne-
jaučia. Šiame straipsnyje trumpai apžvelgiami akies nervo disko parametrizavimo būdai ir algorit-
mai. Parametrizavimas leidžia vienareikšmiškai nusakyti akies nervo disko struktūr ↪a, ir vėliau nau-
doti tiriant lig ↪u atpažinimo uždavinius ar atliekant kitus tyrimus, kuriems reikalinga parametrinė
akies dugne esanči ↪u struktūr ↪u išraiška. Iki šiol planimetrinis visiškai automatinis ekskavacijos
parametrizavimo uždavinys mokslinėje literatūroje nebuvo išsamiai nagrinėtas. Šiame straipsnyje
autoriai aprašo automatin↪i ekskavacijos parametrizavimo algoritm ↪a bei atlieka tiek automatiniu
būdu, tiek interaktyviu būdu gaut ↪u parametr ↪u koreliacij ↪u analiz ↪e. Pristatomi rezultatai yra ly-
ginami su optinės koherentinės ir Heidelbergo tomografijos metu gautais akies dugno struktūr ↪u
parametriniais ↪iverčiais. Taip pat straipsnyje aptariamas sveikas-glaukoma klasifikavimo rezultatas
atsižvelgiant ↪i minėt ↪u technologij ↪u pagalba gautus akies dugno anatomini ↪u struktūr ↪u parametrus.


