
INFORMATICA, 2012, Vol. 23, No. 3, 405–425 405
© 2012 Vilnius University

On Multi-Start Algorithms for Optimization
of High School Timetables

Jonas MOCKUS, Lina PUPEIKIENĖ
Vilnius University, Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: jmockus@gmail.com

Received: May 2010; accepted: March 2011

Abstract. The paper deals with the problem of high-school time-tabling that is important in appli-
cations, but hard for solving. The algorithm is presented for timetabling based on Multi-start and
Simulated Annealing with parameters adapted using the Bayes approach. The algorithm proposed
is compared with other timetabling algorithms using the web-based software. A multi-start algo-
rithm is a simple way to provide the convergence, if the number of uniformly distributed starting
points is large. A disadvantage is slow convergence.

Therefore, the first aim of this paper is experimental comparisons of the efficiency of different
versions of multi-start algorithms in the optimization of timetables. To obtain representative results,
the algorithms should be compatible with the Lithuanian high school practice and flexible enough
for adaptation to different high schools.

The second aim is a web-based implementation of these algorithms in a way convenient for
high schools. The web-based software is important for evaluation and comparison of algorithms
by independent experts, as well, since the efficiency of algorithms depends on subjective param-
eters specific to each school, so on-line calculations are needed to obtain representative data. It is
useful for scientific cooperation and applications to different schools. In addition, the software for
evaluating of real timetables is included to compare with the results of optimization.

Keywords: timetabling, heuristics, Bayesian, Pareto, java, multi-start.

1. Introduction

1.1. Algorithms and Software

A multi-start algorithm is a way to provide the convergence if the number of uniformly
distributed starting points is large. The simplest version is just a greedy algorithm with
fixed or random starting points without any additional local optimization.

The next improvement is two algorithms of simple local search, considering only
the closest timetables in a deterministic (LD) or random (LR) way. The local search is
improved using an algorithm similar to Simulated Annealing (SA) with fixed parameters.
Permutations are limited to the closest timetables and are performed by closing the gaps
between lectures for students and teachers.

406 J. Mockus, L. Pupeikienė

In the final improvement, to provide independence from the human operator, to save
operators’ time, and to increase the efficiency of search, the initial temperature and an-
nealing rate of SA are adapted using the Bayesian Approach (BA) which optimizes ex-
pected SA results. A useful property of BA is that it filters-out random deviations in the
process (Mockus, 1989). The necessary timetabling conditions are represented as hard
constraints. Desirable conditions are included as penalty points in the general framework
of Pareto optimality.

The web-based software developed as a Java servlet is available on four synchronized
servers (last modification in March 2010). The efficiency of recent versions of Java is
close to that of the most efficient programming languages (Bull et al., 2001). The graph-
ical user interface was made close to the practice of Lithuanian schools. The software is
used by schools for timetabling. The results were applied in large and small high schools
and compared with the commercial software. The software is used by universities, too,
but for a different purpose: as a real-life example of discrete optimization, suitable for
distance graduate studies.

1.2. New Elements

This paper is about the investigation of efficiency of multi-start algorithms by the ex-
ample of Lithuanian high schools. Preliminary results, mainly regarding the local search
procedures, are in Mockus (2002), Pupeikiene and Mockus (2005, 2010). A novelty of
this paper as compared with these publications is a formal definition of the timetable
optimization problem and the results of systematic experimental investigation of dif-
ferent versions of multi-start algorithms. In addition, the new algorithm for evaluating
of real school timetables is described and possibilities of parallel computing are dis-
cussed.

An important feature is adaptation of parameters of the Simulated Annealing (SA),
using the Bayesian approach (Mockus, 1989) which optimizes the expected SA results
as a function of initial temperature and the cooling rate. This procedure eliminates the
dependence of SA results on a human operator. That is important for the objective evalu-
ation of algorithm efficiency.

The papers describe, apparently, the first web-based platform-independent school
timetabling software. Implementation of the software as a Java servlet provides possi-
bilities of application in any school with internet connection, independent of computing
environment. Any web browser works, no additional software is needed. This is important
for remote schools.

The web-based software is important for evaluation and comparison of algorithms
by independent experts, too, since the efficiency of algorithms depends on subjective
parameters specific to each school. Thus on-line calculations are needed to obtain actual
data. That is useful for scientific cooperation and for applications in different schools.
The software for evaluating real timetables is included, as well, with a view to compare
to the results of optimization.

On Multi-Start Algorithms for Optimization of High School Timetables 407

1.3. On School Timetabling

A specific feature of the school timetabling field is a great number of research papers
and wide-used commercial software. Therefore a detailed discussion of the results will
be preceded by the short references to relevant publications.

An important part of an optimization model is the graphical user interface (GUI). To
share the Lithuanian experience with some other countries and to illustrate similarities
and differences with related commercial and open software systems, a detailed descrip-
tion of GUI will follow the theoretical and algorithmic parts of the paper.

The aim is to satisfy constraints. We distinguish two types of constraints: conditions
that must be met (hard constraints) and desires that should be fulfilled as well as possible
(soft constraints). An example of a hard constraint is that a teacher or student cannot
attend more than one lesson simultaneously. Similarly, room constraints are satisfied, if
each room is used for only one lesson at a time.

An example of a soft constraint is compactness of teachers’ and students’ schedules.
We increase the compactness by eliminating gaps between lessons. Provision of free days
for teachers is another example of a soft constraint. An additional set of soft constraints
is defined by didactic reasons, for example, a desire to place “hard” subjects, such as
mathematics or physics, into the morning hours.

The maximal number of daily hours Tmax can be considered in both ways. For exam-
ple, Tmax � 24 is obviously a hard constraint. The condition Tmax � 6 is not exactly a
hard constraint since a more relaxed condition Tmax � 7 or Tmax � 8 can be accepted if
that improves the school timetable significantly.

Timetabling can be generally defined as an activity of assigning, subject to constraints,
the number of events to a limited number of time periods and locations so that desirable
objectives were satisfied as much as possible (Wren, 1996). The key goal is to find a
timetable that satisfies all the hard constraints and minimizes the violation of soft con-
straints. A survey on educational timetabling problems (Schaerf, 1999) gives an overview
of the literature.

1.4. Optimization in Commercial Software

We discuss optimization possibilities of the following three commercial timetabling sys-
tems currently used in Lithuanian high schools: “Mimosa 2008”, “aSc TimeTables 2008”,
and “Rector 2008”.

“Mimosa” (2010) is a product of the Finnish company „Mimosa Software Ltd.“ “Mi-
mosa” provides convenient GUI for manual timetabling and reports about violations of
constraints. The form is acceptable to Lithuanian schools. Optimization is limited to clos-
ing some gaps in teachers schedules. The software is popular in the basic schools. Appli-
cation in the upper classes of high schools is possible within some strict limitations by
setting individual student schedules. Long and hard manual work is needed if the school
is large.

“Rector 2008” (Smykalov, 2010) is a product of the Russian company “P.Yu. Smyka-
lov”. It is convenient for the basic school timetabling. There is no automatic optimization.

408 J. Mockus, L. Pupeikienė

Fig. 1. Testing aSc.

“aSc TimeTables 2008” (asc, 2010) is a product of the Slovak company „Applied Soft-
ware Consultants s.r.o.“ The results of experimental calculations are in the Fig. 1. They
show that the software works well in the basic schools, but not in large high schools.

They show that the software works well in the basic schools, but not in large high
schools.

The example of evaluating subjects is in the Fig. 2. A timetable that satisfies all the
necessary conditions is regarded as feasible. A feasible timetable is optimal if it mini-
mizes undesirable factors. To compare the quality of different feasible timetables we must
evaluate at least the most important undesirable factors. The difficulty is that desirability
is subjective and depends on the local conditions. That complicates direct comparisons
of the results obtained by automatic optimization with the decisions made by human op-
erators.

To compare the results of different methods for automatic optimization, we need some
procedures for evaluating undesirable factors on some common scale. In this paper, it is
done in the framework of Pareto optimality (Fudenberg and Tirole, 1983). The commer-
cial software does not support this feature, since no direct comparison of decision quality
can be made.

2. Defining the Optimization Problem

This section is meant for a formal description of objectives and constraints that are im-
plemented in the software. The formal expressions are not easy for reading, but we think
they are necessary for an exact understanding how the program works.

On Multi-Start Algorithms for Optimization of High School Timetables 409

Fig. 2. An example of evaluating subjects.

2.1. Hard Constraints

The school timetable d can be described formally as a binary four-dimensional array
representing decisions of timetable developers

d = [dm,s,r,t]M ×S×R×T , (1)

where M is a set of teachers, S is a set of students, R is a set of classrooms, and T is a
set of weekly time-slots.

For example, the decision dm,s,r,t = 1 defines a lesson of a teacher m attended by a
student s in the room r at the time t. The decision dm,s,r,t = 0 means no lesson.

Denote by A a set of timetables that satisfy the hard constraints.
The hard constraints are mandatory therefore the set A of feasible timetables is well

defined. Here is a formal definition of hard constraints:

h1(d) =
∑

s,r

dm,s,r,t � 1 for all m, t, (2)

h2(d) =
∑

m,r

dm,s,r,t � 1 for all s, t, (3)

410 J. Mockus, L. Pupeikienė

h3(d) =
∑

m,s,r∈Rj

dm,s,r,t � Rj,max for all t, j ∈ J, (4)

h4(d) =
∑

s

dm,s,r,t � Smin for all m, r, t, (5)

h5(d) =
∑

s

dm,s,r,t � Smax for all m, r, t, (6)

h6(d) =
∑

m,s,t∈Ti

dm,s,r,t � Tmax for all r, i ∈ I, (7)

where the symbol Ti denotes a set of time-slots of the ith week-day, I is a set of week-
days, J is a set of different classrooms, Tmax limits daily time-slots, Rj is a set of rooms
of type j, and Rj,max is the number of available j-rooms.

Condition (2) means no simultaneous lessons for teachers. Condition (3) denotes no
simultaneous lessons for students. Condition (4) limits the number of classrooms of type
j. Conditions (5) and (6) set the lower and upper class-size limits, and condition (7)
limits the maximal number of daily time-slots. These inequalities are written assuming
“one-to-one” teacher-subject relation: teacher ⇔ subject.

The limit Tmax of daily time-slots is an important hard constraint. However, it is
convenient to regard this as a soft constraint with a large violation penalty. The reason is
that schools may accept an extra hour if that improves the general timetable.

The decision array dm,s,r,t is for timetable developers. Students select subjects
v = v(m), they do not select teachers m(v) of these subjects. Under the teacher ⇔
subject assumption, the decision array (1) can be directly transformed into the following
decision array:

dv = dv
v,s,r,t, v ∈ V, s ∈ S, r ∈ R, t ∈ T, (8)

where v = v(m) denotes a subject of the teacher m and V is a set of subjects.
Now we define some hard constraints specific to the upper classes of high schools.
Denote by c = c(v) students’ reward for selecting an optional subject v. Denote by

V1 ⊂ V a set of optional subjects, by V2 ⊂ V a set of mutually exclusive optional
subjects, and by V3 ⊂ V a set of mandatory subjects. Denote a decision array of the
student s as ds

v,s, where ds
v,s = 1, if the student s selects the subject v, otherwise ds

v,s = 0.
Then the condition that a timetable should be based on students’ decisions can be

defined by the following hard constraint:

ds
v,s =

∑

r,t

dv,s,r,t for all v, s (9)

or

h7(d) = ds
v,s −

∑

r,t

dv,s,r,t = 0 for all v, s. (10)

On Multi-Start Algorithms for Optimization of High School Timetables 411

A set of hard constraints is defined by the demand for students of upper classes to earn
specific rewards:

h8(d) =
∑

v∈V1,r,t

dv,sc(v) = C1 for all s, (11)

h9(d) =
∑

v∈V2,r,t

dv,sc(v) = C2 for all s, (12)

h10(d) =
∑

v∈V3,r,t

dv,sc(v) = C3 for all s. (13)

Here C1 is the sum of rewards a student needs to obtain by selecting a subset of optional
subjects, C2 is the reward for selecting one of the optional mutually-exclusive subjects,
and C3 is the sum of rewards for mandatory subjects. Expressions (11)–(13) define hard
constraints for all students to obtain the prescribed rewards. The attribution of rewards to
subjects is presented in the form of a table, an example of which is in Fig. 2.

The numbers of weekly working days and teaching hours are defined by initial data
and remain unchanged during optimization. We considered only individual teachers and
students so far.

We must assign teachers to subjects and students to subject-groups for school appli-
cations. Assigning teachers to subjects is straightforward, if a subject is assigned to no
more than one teacher. We assume that at present.

The mapping g = g(v) defines a subject-group (a group of students) that select an
optional subject v. Using the subject-groups g and subjects v instead of teachers m and
students s, we can transform the original decision array (1) into the group decision array
as follows:

dg = dg
v,g,r,t, v ∈ V, g ∈ G, r ∈ R, t ∈ T. (14)

Here G is a set of groups.

2.2. Soft Constraints

We use the theory of the Pareto optimum (Fudenberg and Tirole, 1983) to balance con-
flicting desires represented by soft constraints.

Compactness of the timetable is a desirable property. The compactness can be im-
proved by reducing the number of gaps between lessons.

∑

i∈I

∑

g,r,t∈Ti

∣∣dg
v,g,r,t+1 − dg

v,g,r,t

∣∣ = B(v, d) for a subject v, (15)

∑

i∈I

∑

v,r,t∈Ti

∣∣dg
v,g,r,t+1 − dg

v,g,r,t

∣∣ = C(g, d) for a group g, (16)

where I is a set of week-days.

412 J. Mockus, L. Pupeikienė

The numbers of gaps B(v, d) and C(g, d) in timetables d are defined for subject-
groups g and subjects v assuming that the names of teachers and students are irrelevant.
Then the total number of gaps in the timetable d can be expressed in such a way:

B(d) =
∑

v

B(v, d), (17)

C(d) =
∑

g

C(g, d). (18)

Another indicator of timetable d compactness is the number of free week-days for teach-
ers:

W (v, i, d) =
∑

g,r,t∈Ti

dg
v,g,r,t, i ∈ I. (19)

The week-day W (v, i, d) is a free week-day for the subject v if the indicator W (v, i, d) =
0, otherwise, it is a working week-day. Denote as Iv

w(v,d) a set of working week-days for
the subject v in the timetable d. A set of working days in the timetable d for the teacher
m is a union of working week-days for a set of subjects V (m) delivered by the teacher
m.

Iw(m,d) =
⋃

v∈V (m)

Iv
w(v,d). (20)

Compactness is improved by reducing the number of working week-days in the timetable
d for all the teachers Iw.

Iw(d) =
∑

m∈M

Iw(m,d). (21)

In the upper classes of high schools subject-groups are different from the traditional
classes. The traditional classes can be regarded as social groups. A subject-group in-
volves students from different classes united by a set of selected subjects. The simplest
subject-group is an individual student. In Lithuanian schools the smallest subject-group is
five students, otherwise, the subject is closed. The subject-groups are split, if the number
of students exceeds the class-room limits, 30 students, as usual.

Note that splitting may change the composition of groups while closing the gaps be-
tween the lessons of students. For example, if there are two groups for the same subject,
then a gap of some first group student can be closed by transferring this student into the
second group. That is not convenient for teachers.

However, stabilization of subject-groups requires additional resources. Thus, the
subject-group stability is a soft constraint that depends on the policies of a local school.

Formally the desire to stabilize the group sizes can be expressed as the total number
of group-size changes δ(d,) in the timetable d. Denote by L = L1 ∪ L2 a set of parallel

On Multi-Start Algorithms for Optimization of High School Timetables 413

subject-groups, where L1 is the first group and L2 is the second group. Introduce a group
indicator

l(s, t) = 0, if s ∈ L1 at a time t,
= 1, if s ∈ L2 at a time t.

(22)

Then the group-change indicator

δ(d, s, t) = |l(t, s) − l(t + 1, s)|. (23)

The total number of group-changes in the timetable d:

δ(d) =
∑

s∈L,t

δ(d, s, t). (24)

We represent different soft constraints as different objectives fj(d), j = 1, . . . , 6, for
example:

f1(d) = B(d), (25)

f2(d) = C(d), (26)

f3(d) = Iw(d), (27)

f4(d) = δ(d), (28)

f5(d) = Tmax. (29)

Formally Tmax represents hard constraint (7). However, we include it to a set of soft
constraints because by exceeding this constraint we can improve the general timetable.

Didactic constraints, such as a desirability of higher proportion of difficult subjects
early and higher proportions of easy subjects later, are not mandatory in Lithuanian
schools. Thus they create an additional set of soft constraints. The difficulty of subjects
is defined by the ’Priority’ column (bottom table in Fig. 1). Denote by ρ(d) the number
of reverse priorities where the easy subjects are scheduled before the difficult ones. Then
we can write the soft constraint as follows:

f6(d) = ρ(d). (30)

2.3. Pareto Optimum

Timetables are defined by the decisions d. Feasible timetables (a set A) are defined by
a set of hard constraints (2)–(7), (10), and (11)–(13). A set of desirable timetables (a
subset of A) is not well-defined, since desires to minimize different objectives (25)–(30)
are contradicting. A theoretical framework for balancing contradicting objectives (in our
case, the soft constraints) is presented by the Pareto optimum (Fudenberg and Tirole,

414 J. Mockus, L. Pupeikienė

1983). The feasible timetable d∗ ∈ A belongs to the Pareto-optimal set D∗ if there are no
other timetables d′ ∈ A such that:

fj(d) � fi(d∗) for all j = 1, . . . , 6, (31)

fj(d) < fi(d∗) for at least one j. (32)

The simplest way to obtain the Pareto-optimal timetable is by minimizing the weighted
sum

d(c) = arg min
d∈A

F (c, d), (33)

F (c, d) =
∑

j

cjfj(d), (34)

c = (c1, . . . , c6), cj > 0.

The set A can be defined by conditions (2)–(7), (10), and (11)–(13):

h1(d) � 1, (35)

h2(d) � 1, (36)

h3(d) � Rj,max, j ∈ J, (37)

h4(d) � Smax, (38)

h5(d) � Smin, (39)

h6(d) � Tmax. (40)

h7(d) = 0, (41)

h8(d) = C1, (42)

h9(d) = C2, (43)

h10(d) = C3. (44)

The proof in Fudenberg and Tirole (1983) shows that d(c) is Pareto-optimal d(c) ∈ D∗.
The multipliers cj show the importance of various objectives reflecting the subjective
local interests. Thus, the weights cj should be defined by the end user himself. The task
of timetabling software is to present a user-friendly way to do that.

3. Optimization Method

3.1. Simple Multi-Start Algorithm (MC)

The initial timetable is defined using greedy heuristics: the algorithm starts by fixing the
most favorable timetable for the first teacher in the list and by attaching the corresponding
subject groups. Then the time-slots are defined according to teachers’ preferences while
keeping the hard constraints. The timetables of other teachers are defined in a similar way

On Multi-Start Algorithms for Optimization of High School Timetables 415

Fig. 3. The average and standard deviation of the best results in 100 sessions of MC.

assuming that the timetables of the previous teachers are fixed. Thus, the best timetable
is provided for the first teacher. The timetable of the last teacher is just what remains
after timetabling all the others. Therefore, an important part of the greedy algorithm is to
define the sequence of teachers.

In this paper, we apply greedy heuristics by a multi-start algorithm when the sequence
of teachers is defined randomly with equal probabilities, as usual. Therefore, we refer to
the simplest version of multi-start as the Monte-Carlo algorithm (MC).

Figure 3 shows how the average and standard deviation of the best results depend
on the number of MC samples (randomly generated initial timetables). The results were
obtained using 100 MC sessions (repeating 100 samples of MC 100 times). Experiments
of 100 sessions was performed to estimate the standard deviation.

In the sequel, the results of only single multi-start sessions of 100 samples will be
shown. The single-session experiments limits the computing time. The calculation results
are just for illustration, since the aim of this paper is to provide a web-based software for
on-line optimization of school timetables under specific local conditions. This is another
reason justifying the short experiments.

3.2. Adapting to Local Conditions

The basic way to adapt to local conditions is to set importance parameters.
An additional way is implementation of a single-session algorithm with a fixed se-

quence of teachers. This algorithm is for the preferential treatment of teachers according
to their importance. The first teacher is getting the best timetable, the last one gets what
remains.

3.3. Defining Neighborhood

In the following versions of the multi-start algorithm, some local optimization is per-
formed in the neighborhood of initial timetables. In continuous optimization problems,

416 J. Mockus, L. Pupeikienė

distances are well defined. So are the neighborhood and local optimum. However, when
determining the neighborhood in the discrete set A of feasible timetables d, many dif-
ferent definitions can be used. Here the intuitive understanding of a distance is not very
helpful. We define as neighbors those timetables that can be reached using some sequence
of operations. This definition differs from the traditional one which describes neighbors
in terms of distances. In contrast, we define neighbors as a set of achievable timetables.
This definition is not so clear, but seems natural in school timetabling and, possibly, in
some other problems of combinatorial optimization.

The definition is important, since the local search is performed in the neighborhood
of the given point. In this paper, we search for better timetables by subsequent closing
of gaps for students and teachers. We keep all the hard constraints during the search. In
this case, the neighbors of a timetable d′ are all timetables d′ ′ that can be reached from
d′ by a sequence of closing gap operations. We close only the nearest gaps, because it is
time-consuming to test all the hard constraints while closing gaps in the distant time-slots.
That simplifies the calculations and limits the neighborhood.

Therefore, we obtain just a locally optimal timetable d∗(d′) that depends on the initial
point d′. This is the Local Deterministic (LD) algorithm.

The local search can be randomized by selecting a current candidate (a student or a
teacher) for gap closing with some probability x0. By closing gaps for randomly selected
students and teachers we modify the search sequences. This is the Local Randomized
(LR) algorithm.

LR improves the search, but does not provide a convergence to the global optimum,
since the neighborhood remains limited to the “achievable” timetables.

3.4. Simulated Annealing

A way to provide the global convergence is to apply Simulated Annealing (Abramson,
1991; Pedroso et al., 2004; Pupeikiene and Mockus, 2005; Mockus, 2002; Aarts and
Laarhoven, 1987; Zhang et al., 2010) with a proper selection of SA parameters such
as the “initial temperature” x1 and “cooling rate” x2. It is well-known that unbounded
neighborhood is needed to provide the global convergence (Aarts and Laarhoven, 1987).
However, we deliberately restrict the neighborhood to speed-up the calculations. It means
that by applying SA we obtain an additional improvement, but not the global convergence.
In the case of limited neighborhood, the global convergence is provided by the multi-start
algorithm, because then any timetable can be reached with some probability. We achieve
a further improvement of the algorithm by automatic optimization of the SA parameters
x = (x1, x2), using the Bayesian approach (Mockus, 1989).

Now we shall describe in detail a version of SA which is used in this paper. Denote

δn = F
(
c, dn+1

)
− F

(
c, dn

)
. (45)

Here. dn is a current timetable, dn+1 is a new timetable generated by the closing gap
operation. Define the probability

pn = e
−δn

x1/ ln(1+x2n) , if δn > 0, (46)

On Multi-Start Algorithms for Optimization of High School Timetables 417

pn = 1, if δn < 0, (47)

where the parameter x1 is the initial temperature, and the parameter x2 defines the cooling
rate. The SA algorithm means:

go to new timetable dn+1 with probability pn. (48)

To apply SA to a specific problem, one must specify the parameters x1 and x2. The choice
can have a significant impact on the efficiency of the algorithm. For example, Fig. 5 shows
that the efficiency of SA is a multi-modal function of the cooling rate x2. This function is
stochastic because the results depend on random samples. Thus, the methods of stochastic
global optimization are needed to maximize the efficiency of SA.

3.5. Optimization of Parameters

Using this timetabling model we need to adapt three heuristic parameters x =
(x0, x1, x2). The LR parameter x0 was fixed for all the examples of this paper. The
traditional way to adapt SA parameters x1, x2 to a given problem is by experimental
calculations. This is a long time manual job. Figure 5 illustrates the manual adaptation
of SA parameters. The improvement of the initial timetable of 11,000 penalty points was
obtained after 1000 SA iterations at the parameters x2 = 9 and 10 � X1 � 100. The
automatic adaptation using BA is illustrated in Fig. 6. Here almost twice as good improve-
ment of 20,000 penalty points was reached after 500 BA iterations. Figure 4 illustrates
how BA manages SA parameters during the first 7 iterations. The complete data of BA
optimization are in the file ‘Analysis_BA.xml’ included in the archive of final results
‘tvark.zip’ which can be downloaded ending the optimization.

Therefore, in this paper, we apply regular optimization techniques to adapt SA pa-
rameters. That is not an easy task, since we have to optimize a multi-modal function
with a considerable noise (Mockus, 2000; Dzemyda and Sakalauskas, 2011). The stan-
dard methods of stochastic approximation (Kushner and Yin, 2003) are for local opti-
mization. The Bayesian approach (Mockus, 2000) is designed for global optimization
of functions with noise. It works by generating a sequence of pairs xn

1 , xn
2 . The next

duple xn+1
1 , xn+1

2 is generated by minimizing the expected deviation from the global
minimum. The expected deviation from the global minimum is calculated using some
multi-dimensional extension of the Wiener process. The algorithm stops after N itera-
tions. The result xN

1 , xN
2 is considered as the optimal parameter for similar timetabling

Fig. 4. Illustration of several iterations of BA in search of the best SA parameters.

418 J. Mockus, L. Pupeikienė

Fig. 5. The best results of Simulated Annealing by 100 samples.

problems. For different timetabling problems, optimization of the parameters is repeated.
In the experimental setup, designed for comparison of manual and automatic adaptation
of these parameters, we fixed the value of x0 = 0.5, for simplicity. Optimized values of
x∗ = (x∗

1, x
∗
2) are obtained using the data of some specific school. However, to limit the

computing time, the values of x∗ = (x∗
1, x

∗
2) can be used in similar schools as the initial

approximation.
The Bayesian Approach (BA) is defined by fixing a prior distribution P on a

set of functions f(x) and by minimizing the Bayesian risk function R(x) (DeGroot,
1970; Mockus, 1989). The risk function describes the average deviation from the global
minimum. The distribution P is regarded as a stochastic model of f(x), x ∈ Rm where
f(x) might be a deterministic or stochastic function BA is a convenient tool to opti-
mize continuous parameters of various heuristic techniques. This procedure is called the
Bayesian Heuristic Approach (BHA, Mockus, 1989) and is used in this paper to optimize
SA parameters.

Figure 6 illustrates the efficiency of automatic adaptation of parameters using BA. In
this example improvement almost doubled: from 11,000 penalty points, using the manual
adaptation of SA parameters (Fig. 5), to 20,000, using automatic optimization by BA
(Fig. 6). Figure 7 shows how the average BA optimization time depends on BA and SA
iterations for a small school. For large schools with a complete set of options the time is
longer. Therefore, a multi-processor version of the software is under development. Each
processor generates a random initial timetable and performs a local optimization. The
results of different processors are compared and the best timetable selected.

Another way to increase the efficiency of search is the improvement of single-session
optimization using the BA algorithm with unrestricted neighborhood. Both ways are sub-
jects of future investigations. By the existing software, we can limit the optimization time
by applying the best SA parameters defined using BA in similar cases as the first approx-
imation. Figure 8 shows the difference of the average BA results between the large and
small schools. In the small school (the lower line denoted as BA-2), the average improve-
ment was almost two times less. This is natural, because timetabling in large schools is

On Multi-Start Algorithms for Optimization of High School Timetables 419

Fig. 6. The best results of Bayesian approach by 100 samples.

Fig. 7. CPU time of Bayesian approach.

more difficult. Comparison of Fig. 6 with Fig. 8 illustrates the difference between the best
and average results obtained through 100 samples of a single multi-start session.

3.6. Final Multi-Start Algorithm

SA and BA improve the search significantly but do not provide a convergence to the
global optimum, since the neighborhood remains limited to the “achievable” timetables.
The global convergence can be provided by a multi-start algorithm because then any
timetable can be achieved with some probability. The results of a single multi-start session
of 100 samples (starting timetables) are in Figs. 5, 6.

Note that all these parameters are defined by 100 samples of a single multi-start ses-
sion. The results of other multi-start session did not differ significantly. The statistical
analysis of many multi-start sessions requires too much time using the present imple-
mentation. Therefore, the multi-processor implementation of the multi-start algorithm is
under development where the number of processors will match the number of multi-start

420 J. Mockus, L. Pupeikienė

Fig. 8. The average results of Bayesian approach, comparing two schools.

iterations. In addition, a version with unbounded neighborhood is regarded as an impor-
tant future task that presents an alternative way to achieve the global convergence.

Figure 5 shows that the best result 11,000 of 100 samples, using manually adapted
SA parameters, was obtained at the cooling rate x2 = 9 and the number of iterations
being 1,000. Using the automatic adaptation by BA, a similar result has been achieved
after 100 BA iterations. However, the most important feature of BA is that it saves time
of a human operator. For example, a human operator, using 100 BA iterations and 10,000
SA iterations (Fig. 6), was able to obtain the improvement of 20,000 in about five times
less time as compared with the improvement of 11,000 obtained by 1000 SA iterations
by means of manual adaptation of the parameter x2 (Fig. 5).

These and the following experimental results serve as an illustration. We consider
the web-based software as a tool for future collaboration including the comparison with
other timetable optimization models. The web-based software is developed in the form
of a Java servlet which provides the most convenient means for repeating all calculations
independently by any interested person. Any browser can be used for that.

4. Input Data

We express the soft constraints by conditions (25)–(30). The hard constraints can be rep-
resented by conditions (2)–(7), (10), and (11)–(13).

4.1. Initial and Optimized Timetables

Initial timetables are generated automatically by generating timetables for teachers and
students in some prearranged order trying to favor their requests and keep the hard con-
straints. The usual result is a feasible timetable with a number of penalty points, mainly
for exceeding the time limit Tmax.

On Multi-Start Algorithms for Optimization of High School Timetables 421

5. Evaluation of Algorithms

The efficiency of different versions of the multi-start algorithm can be estimated as the
difference of penalty points between the optimized and initial timetables. The problem
is that this difference depends on the evaluation of importance of different factors that
reflects the opinion of a particular school. Therefore, we use the same values of impor-
tance parameters for most of the examples. These values were defined after consulting
administrations of a large and a small school.

Most of these parameters are intended for soft constraints. Two parameters play a
double role. The parameter “Exceeding the hour limit = 2000” allows exceeding 7 hours,
if that improves the timetable significantly. The parameter “mixing students in the group
= 5” prevents mixing students of different grades.

By comparing the average improvements of timetables shown in Figs. 3, 5, and 6 we
estimate contributions of the three multi-start versions as follows:

5,800 penalty points for MC (standard deviation 2,900), 11,000 points for SA with
fixed parameters, and 20,000 points for BA with SA parameters optimized using the
Bayesian approach. Note that to achieve the improvement of 20,000 points using BA
took about five times less human operators’ time, at the expense of longer computing
time. All that indicates two ways of improvement:

(i) To increase the efficiency of MC by multi-processor implementation, preferably
using different processors for different starting points. An advantage is a very high
efficiency. A disadvantage is that hundreds of processors should be used to achieve
this result.

(ii) Providing the global convergence of BA with unrestricted neighborhoods.

We meet an additional difficulty while comparing the optimization results with the
real timetables, since real timetables are for the whole school, and we optimize just for
two upper classes. The connecting element is teachers that work in both the upper and
lower classes. Their “gaps” in the upper classes can be closed by the corresponding lec-
tures in the lower classes.

Thus, only the bounds of real timetable evaluation can be calculated. We obtain the
upper bound equal to 178,830 penalty points for the real timetable by setting the teacher
gap penalty to 300 for both the real and optimized timetables. To obtain the lower bound
for the real timetable, we set this penalty to zero, and the result is 9,330. The average re-
sults of MC algorithms of 23,035 penalty points are between the lower and upper bounds.

6. Web-Based Software for Optimization and Evaluation of timetables

Four servers (last modification in March 2010) are running simultaneously, for reliability:
http://soften.ktu.lt:8080/,
http://optimum2.mii.lt:8080/,
http://pilis.if.ktu.lt:8090/,
http://kopustas.elen.ktu.lt:8080/.

422 J. Mockus, L. Pupeikienė

Following the local practice, input/output is performed using Excel xml files.
A sample of input data for optimization is on the web-site http://soften.

ktu.lt/ mockus/, part “Software Systems”, folder “Servlet” file ‘optimal-1.xml’.
A sample for evaluation of the real timetable is ‘real-1.xml’. They are samples of a large
school with a complete set of options. Smaller schools with limited options are repre-
sented by another sample: ‘optimal-2.xml’.

To apply the software, the school administrator uploads the initial data and starts the
optimization according to the specifications of a particular school.

The software is implemented as the Java servlet. It means that all the calculations are
performed by servers, using one of the following five versions.

1. ‘TvarkaLT/EN-rnd’
This version starts a session of a multi-start procedure from a randomly generated
initial timetable and ignores hard constraint (6) and soft constraints (28), (30). Per-
mutations are made by closing teachers’ gaps. Three possibilities to finish the ses-
sion can be selected by the menu: Local Random (LR), Simulated Annealing (SA),
Global Bayesian (BA). LR optimizes by closing the gaps for teachers selected with
some probability x0. SA is Simulated Annealing with the fixed parameters x1 and
x2. BA is Simulated Annealing with the parameters x1 and x2 optimized using the
Bayesian approach.

2. ‘TvarkaLT/EN-fix’
The only difference from the previous version is that it starts from the fixed initial
timetable. This is a single-session algorithm to provide a possibility of preferential
treatment of important teachers by fixing their sequence.

3. ‘TvarkaLT/EN-rnd-up’
This version starts from a random timetable and includes an additional possibility
to finish the optimization by “Local” (LD). The timetable is optimized in three
stages: in the first stage, the optimization is performed by closing student gaps, in
the second stage, the optimization is achieved by closing teacher gaps, and it is
completed by repeating the first stage.
The hard (2)–(7) and soft (25)–(30) constraints are involved. The group-stability
is evaluated in the form of the soft constraint (28). Mixing the subject-groups is
limited to different classes of the same grade by the penalty parameter “mixing
students”, didactic preferences are controlled by the penalty parameter “didactic”.

4. ‘TvarkaMC’
The algorithm selects the best randomly generated timetables without additional
optimization. It includes hard constraints (2)–(7) and soft constraints (25)–(30).
This is the simplest version of the multi-start algorithm.
A sample ‘optimal-1.xml’ of the input data for these four versions is on the web,
for example
http://soften.ktu.lt/ mockus/servlet/contservlet.html.
Frequently the evaluation (in terms of penalty points) of the existing school sched-
ules is desirable. It can be performed by means of the evaluation software.

On Multi-Start Algorithms for Optimization of High School Timetables 423

5. ‘real’
This algorithm is to evaluate the real schedules. A sample ‘real-1.xml’ of the real
school schedule is on the web, too. Special interests of a particular school can be
represented by selecting penalty points for various soft constraint violations.
For a preliminary inspection of the results, the optimized timetables are presented
on the screen in a simplified form. The help files are provided on-line for different
stages of optimization and evaluation. For example, help 1 is about making an
initial data file, help 2 is on initial settings of school parameters, help 3 illustrates
choosing the optimization algorithm, help 4 shows how to set the optimization
parameters, and help 5 illustrates the results of optimization.

Complete information on the initial and optimized timetables for all the school and
for individual teachers and students can be downloaded as a ‘zip’ archive. In addition, the
archive provides some additional information about the optimization process, see Fig. 4.

The authors think that the web-based implementation is an important part of
timetabling investigations because no statistical data collected while considering some
set of the selected examples, can replace on-line calculations. The main reason is that the
function to be optimized reflects the subjective opinions of potential users which are not
willing to disclose these opinions, as usual.

7. Conclusions

1. The experimental calculations, using the examples of large and small high schools,
show that the optimized timetables are better as compared with the existing timeta-
bles formed with the help of popular commercial software.

2. The contributions to the improvement of the initial timetable, achieved by different
versions of a multi-start algorithm are as follows: MC: 5,800, SA (manual adapta-
tion): 11,000, BA (automatic adaptation): 20,000.

3. Application of BA saves the human operators’ time at the expense of longer com-
puting time. 4. These results indicate different ways to a further improvement of
the optimization efficiency:

(a) multi-processor implementation of multi-start algorithms,
(b) unbinding the neighborhood for global convergence of the single start BA.

5. To provide entirely automatic timetabling, the optimization should be able to in-
clude all the classes, not only the upper ones; this possibility is limited now by an
increased computing time.

6. The automatic optimization of SA parameters using BA, proposed in this paper,
significantly improves the efficiency of SA.

7. The web-based implementation is an important part of school timetabling for two
reasons:

(a) implementation of software as the Java servlet establishes conditions for its
application in any school with the internet connection, independently of the
computing environment,

424 J. Mockus, L. Pupeikienė

(b) the function to be optimized reflects the subjective opinions of potential users
which are not willing to disclose these opinions, as usual. Thus, the statistical
data collected while considering some set of the selected examples cannot
replace on-line calculations.

8. The paper describes apparently the first web-based platform-independent imple-
mentation of the software as a Java servlet.

9. The existing commercial and open software facilitates manual timetabling by pro-
viding realistic school models by limited or no regular optimization.

10. Different timetabling optimization algorithms have been proposed and investigated
in many publications using the simplified high school models. In this work, an at-
tempt is made to develop and apply regular optimization techniques in timetabling
models which are entirely compatible with Lithuanian high schools.

Acknowledgments. The work was supported by the Lithuanian State Science and Studies
Foundation.

References

Aarts, E, Laarhoven. P.V. (1987). Simulated Annealing: Theory and Applications. Reidel, Dordrecht.
Abramson, D. (1991). Constructing school timetables using simulated annealing: Sequential and parallel algo-

rithms. Management Science, 37, 98–113.
ASC (2010). Timetables ASC. http://www.asctimetables.com/.
Bull, J.M., Smith, L.A., Pottage, L., Freeman, R. (2001). Benchmarking Java against C and Fortran for scien-

tific applications. In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande, Palo Alto,
California, pp. 97–105.

DeGroot, M. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
Dzemyda, G., Sakalauskas, L. (2011). Large-scale data analysis using heuristic methods. Informatica, 22, 1–10.
Fudenberg, D., Tirole, J. (1983). Game Theory. MIT Press, Boston.
Kushner, H.J., Yin, G.G. (2003). Stochastic Approximation Algorithms and Applications, 2nd edn. Springer,

New York.
Mimosa (2010). MIMOSA Scheduling Software. http://www.mimosasoftware.com/.
Mockus, J. (1989). Bayesian Approach to Global Optimization. Kluwer Academic, Dordrecht.
Mockus, J. (2000). A Set of Examples of Global and Discrete Optimization: Application of Bayesian Heuristic

Approach. Kluwer Academic, Dordrecht.
Mockus, J. (2002). Bayesian heuristic approach to global optimization and examples. Journal of Global Opti-

mization, 22, 191–203.
Pedroso, J.P., Moreira, N., Reis, R. (2004). A web-based system for multi-agent interactive timetabling. In:

ICKEDS’04: International Conference on Knowledge Engineering and Decision Support, Porto, Portugal,
pp. 1–6.

Pupeikiene, L., Mockus, J. (2005). School schedule optimization program. Information Technology and Control,
34, 161–170.

Pupeikiene, L., Mockus, J. (2010). School Scheduling Optimization, Investigation and Applications. Lambert
Academic, Saarbrcken.

Schaerf, A. (1999). A survey of automated timetabling. Journal of Operational Research Society, 13, 87–127.
Smykalov, P. (2010). School Timetabling: Rector. http://www.rector.spb.ru/uk/index.html.
Wren, A. (1996). Scheduling, timetabling and rostering – a special relationship? In: Practice and Theory of

Automated Timetabling, Lecture Notes in Computer Science, Vol. 1153. Berlin, Springer, pp. 46–75.
Zhang, D., Liu, Y., M’Hallah, R., Leung, S.C. (2010). A simulated annealing with a new neighborhood structure

based algorithm for high school timetabling problems. European Journal of Operational Research, 203,
550–558.

On Multi-Start Algorithms for Optimization of High School Timetables 425

J. Mockus graduated Kaunas University of Technology, Lithuania, in 1952. He got his
doctor habilitus degree at the Institute of Computers and Automation, Latvia, in 1967.
He is a principal researcher of System Analysis Department, Vilnius University, Institute
of Mathematics and Informatics and professor of Kaunas University of Technology. His
research interests include global and discrete optimization.

L. Pupeikienė graduated Kaunas University of Technology, Lithuania, in 2004. She got
her PhD degree at the Institute of Mathematics and Informatics, in 2009. She is an associ-
ated professor of Department of Information Technologies at Vilnius Gedimino Technical
University. Her research interests include discrete optimization and scheduling.

Apie „multi-start“ algoritmus vidurini ↪u mokykl ↪u tvarkaraščiams
optimizuoti

Jonas MOCKUS, Lina PUPEIKIENĖ

Straipsnis nagrinėja svarb ↪u tačiau sudėting ↪a vidurini ↪u mokykl ↪u tvarkarašči ↪u optimizavimo už-
davin↪i. Pateikiamas „multi-start“ (daugelio pradini ↪u tašk ↪u) algoritmas naudojant „modeliuojam ↪a
atkaitinim ↪a“ (SA), kurio parametrai adaptuojami naudojant Bayes’o požiūr↪i. Šis algoritmas lygina-
mas su kitais tvarkarašči ↪u optimizavimo algoritmais. Siūlomas algoritmas užtikrina konvergavim ↪a
didinant pradini ↪u tašk ↪u skaiči ↪u, tačiau konverguoja lėtai. Todėl pirmasis straipsnio tikslas yra
eksperimentiškai palyginti ↪ivairius šio algoritmo variantus. Antrasis tikslas yra jo ↪igyvendinimas in-
terneto aplinkoje taip, kad būt ↪u patogu naudoti mokyklose. Tai duoda galimyb ↪e nepriklausomiems
ekspertams atlikti algoritmo bandymus, patikrinant jo efektyvim ↪a konkrečioje mokykloje. Ši gali-
mybė svarbi todėl, kad algoritmo efektyvumas priklauso nuo mokyklos s ↪alyg ↪u ir jas apibrėžianči ↪u
parametr ↪u. Optimizavimo programos papildytos programine ↪iranga esam ↪u tvarkarašči ↪u ↪ivertinimui.

