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Abstract. Nowadays, ontologies play a central role in many computer science problems such as
data modelling, data exchange, integration of heterogeneous data and models or software reuse.
Yet, if many methods of ontology based conceptual data modelling have been proposed, only few
attempts have been made to ontology axioms based modelling of business rules, which make an
integral part of each conceptual data model. In this paper, we present the approach how ontology
axioms can be used for business rules implementation. Our proposal we apply for the transfor-
mation of PAL (Protege Axiom Language) constraints (ontology axioms), which is based on KIF
(Knowledge Interchange Format) and is part of KIF ontology, into OCL (Object Constraint Lan-
guage) constraints, which are part of a UML class diagram. Z language is used to formalise the
proposal and describe the transformation. The Axiom2OCL plug-in is created for automation of
the transformation and a case study is carried out.
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transformation, Z language.

1. Introduction and Problem Statement

Ontologies in nowadays are widely used for knowledge based data modelling, data ex-
change, integration of heterogeneous data and models or software reuse, since they are
suitable to represent domain knowledge. Moreover, as stated in Jarrar et al. (2003), Guar-
ino (1998), Wand et al. (1999), the semantic content expressed by the ontology can be
transformed into information system (IS) components and, thus, reduce the costs of a
conceptual modelling and assure the ontological adequacy of an IS. In most researches,
like Guarino (1998), OMG (2005), Trinkunas and Vasilecas (2009), authors concentrate
on ontology transformation into conceptual data model, like a UML class diagram or an
entity-relationship diagram. However, there is not paid enough attention to ontology ax-
ioms and their usage for the modelling and implementing business rules, which are an
integral part of each conceptual data model.
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On the other hand, although, there is a number of methods and approaches (some
of them are discussed below) for modelling and implementing business rules, it is not a
trivial problem. There is no standard technology, yet. Nowadays tools used for the de-
velopment of IS are not extended and adapted enough for modelling and implementing
business rules. For example, in MagicDraw! OCL is used for implementation of business
rules and constraints. However, there is no suitable interface to facilitate the definition
of OCL constraints. In our country (Lithuania) a well know project VeTIS? was con-
ducted to develop VeTIS tool for the definition of Business Vocabularies and Business
Rules using controlled natural language, which is a subset of English language, and for
transformation of SBVR (Semantics of Business Vocabulary and Business Rules; OMG,
2008) specifications into UML class diagrams with OCL constraints? (Nemuraite et al.,
2010). However, while almost all required Business Vocabularies definition capabilities
are available, Business Rules description tools still lack some important features. Authors
of VeTIS tool recommend you to keep rules (as well as your business processes) as simple
as possible — not only because of the immaturity of the VeTIS tool, but also for the sake
of your design models, your software and your business. Future efforts of authors are
aimed at extending VeTIS capabilities by including more types of business rules; creat-
ing a user assistant for defining them; allowing configuration of the tool; reusing existing
Business Vocabularies; and, most importantly, closer relation of the VeTIS capabilities
with software development methodologies.

PowerDesigner? is suitable for modelling structural rules (using integrity constraints,
foreign keys, domains, checks) only. There is no mechanism for defining and validating
dynamic rules.

In this paper, we propose to use domain ontology and its axioms for modelling and
implementing business rules, since both domain ontologies and conceptual models are
intended to capture knowledge about a certain subject domain. From a syntactic perspec-
tive, in both artefacts, domain knowledge is represented in a similar way, i. e. knowledge
are expressed in terms of concepts, their properties, relationships among concepts, and
rules (in ontologies — axioms), which constrain concepts and their relationships in some
manner. Moreover, ontology axioms (and ontology as a whole) are typically expressed in
a formal way using a particular language. Therefore, ontology axioms can be transformed
into a specific type of business rules automatically.

In this paper the main attention is paid to the applying the earlier proposed in Vasile-
cas et al. (2009) ontology-based method for the development of OCL constraints from
PAL constraints. The next goal of the paper is to present a formal description of the
PAL into OCL transformation using a particular formal language. The rest part of the
paper is structured as follows. Section 2 presents motivation of the research and reviews
related work on OCL and PAL. Section 3 describes the PAL into OCL transformation.
The Axiom2OCL plug-in, developed on the basis of the proposed method, and exam-
ples of the transformation of PAL constraints into the corresponding OCL constraints are
presented in Sections 4 and 5 respectively. Section 6 concludes the paper.

http://www.magicdraw.com/ .
2http: //www.magicdraw.com/files/manuals/VeTISUserGuide.pdf.
3http ./ /www . sybase.com/products/modelingdevelopment /powerdesigner.
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The previous papers of the authors were centred on the creation of the rule system not
its theory. L.e., the mapping of axioms to rules are presented and based more on empirical
knowledge. The present paper is oriented to the creation of theory of the development
rules from axioms.

2. Motivation and Related Work

Since in the rest of paper we are going to discuss a development of OCL constraints
from PAL (Protege Axiom Language) constraints, this section presents a motivation and
related work.

OCL (OMG, 2003a) is proposed as a formal language to express dynamic rules,
since UML diagrams are typically not refined enough to express those rules ex-
plicitly. While UML with OCL satisfy the requirements of expressiveness, precise-
ness and unambiguity, OCL does not have any graphical notation and thus does
not account for easily comprehensible language. The same can be sayd about all
OCL-based languages and methods, like Badawy and Richta (2002), CDM Rule-
Frame environment (Boyd, 2001) used by Oracle* (Armonas and Nemuraite, 2009).
The analysis of related work on OCL shows that it is widely used for: express-
ing constraints and/or queries (like in Bejaoui et al. (2010) OCL is used to con-
trol topological relations of objects in spatial databases; in Pardillo er al. (2010)
— for OLAP querying on conceptual multidimensional models of data warehouses;
in Choi et al. (2009) — for restricting the modeled objects in a query modelling
of XML-GL) and for the future transformation into SQL triggers or queries (Ar-
monas and Nemuraite, 2009; Siripornpanit and Leckcharoen, 2009; Heidenreich et al.,
2008) or other executable code, like Java (Hamie, 2006). Therefore, it is relevant
to develop OCL constraints and to propose methods for facilitating their develop-
ment.

2.1. Business Rules Implementation as OCL Constraints

A number of methods are proposed to develop OCL constraints. Here we review some of
them. Those methods are classified according to the used approach as follows:

o Defining from scratch — using this approach OCL constraints are defined manually.
As presented in Zacharias (2008) a large part of rule-based systems are created
without any specific development process using textual editors (33%) and simple
text editors or textual rule editors with syntax highlighting (28%). This way of
developing OCL constraints is the heaviest, since it demands high-level knowledge
of OCL. Moreover, the likelihood of errors is highest.

e Using structured English — using this approach structured English or other lan-
guages are used to define OCL constraints. In “The Semantics of Business Vo-
cabulary and Business Rules” (SBVR) OMG (2008) proposes to use logical for-

4http ://www.oracle.com/technology/software/products/database/index.html.
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mulations of rules or logical rules, which provide a formal, abstract, language-
independent syntax for capturing the semantics of a body of shared meaning. How-
ever, they do not define the basic patterns or templates for rule definitions. They just
suggest which keywords should be used in rules and how rule expressions should
look like. Cabot et al. (2010) propose an automatic transformation from UML into
SBVR specifications to facilitate interact with the business people (in their own lan-
guage) to refine and validate the information modelled in the conceptual schema.
In Kleiner ef al. (2009) the transformation of SBVR into UML class diagram is
proposed. In Raj er al. (2008) the transformation of SBVR into a set of UML di-
agrams, which includes Activity Diagram, Sequence Diagram and Class Diagram,
is proposed. However, nothing is said about OCL constraints. As was said about,
VeTIS tool uses controlled natural language and created to transform SBVR spec-
ifications into UML class diagrams with OCL constraints. However, it should be
extended as presented above.

Template based — using this approach rule templates are used to define OCL con-
straints. The Ross (1997) method proposes specific constructs for each of the rules
families. However, a big number of modelling constructs makes the language quite
complicated. In von Halle (2002) rules are expressed by rule templates, which are
combination of rule clauses. However, there is no way for their implementation. Fi-
nally, there is lack of templates for OCL definition. Nemuraite ez al. (2008) discuss
the possibilities of using UML diagrams supplemented with OCL for expressing
different types of rules. They present research fragments for possibility of generat-
ing OCL constraints from UML diagrams. A template-based approach is going to
be applied for rule implementation.

Using rule abstractions — using this approach rule abstractions, like decision tables,
decision trees, etc., are used to define OCL constraints. In Normantas et al. (2009)
decision tables are used for definition of OCL invariants. However, this approach
is under development, now. The OMG proposed standard “Production Rule Repre-
sentation” (PRR; OMG, 2009) presents the way of presenting production rules in
UML diagrams and gives possibility of applying rule abstractions for the definition
of rules.

Using domain knowledge — using this approach domain ontology with axioms can
be used for the conceptual data modelling with constraints, since ontology and a
conceptual data model have the same conceptualization, e.g., both has concepts,
relationships and rules (in ontology — axioms). The analysis of ontologies, like
SUMO?, and ontology development tools, like Protégé?, from the implementation
perspective shows that axioms are implemented using a particular language, like
PAL or SWRL. A number of authors, like Trinkunas and Vasilecas (2009) pro-
pose to generate UML class diagrams from ontologies. However, they do not pay
enough attention to rules and constraints. Milanovic et al. (2006) present a meta-
model-driven transformation approach for sharing rules between OWL/SWRL and
UML/OCL. The solution is based on the REWERSE Rule Markup Language
(R2ML), as a pivotal meta-model and the bi-directional transformations between
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OWL/SWRL and R2ML and between UML/OCL and R2ML. The main benefit
of such an approach (OWL/SWRL to R2ML and R2ML to UML/OCL) is that
UML/OCL rules can be mapped into all other rule languages (e.g., Jess, F-Logic,
and Prolog) that have mappings defined with R2ZML. The implementation is done
by using Atlas Transformation Language (ATL). However, authors present only a
little part of the mapping between OWL/SWRL and R2ML and UML/OCL. An
OWL/SWRL meta-model is not presented in the paper, also. Therefore, the pro-
posed approach should be refined in the future.

2.2. Why PAL Constraints?

As a target language we choose PAL, which is used for writing strong logical constraints
in Protege’® ontologies. The analysis of existing domain ontologies with axioms, which
can be used for the development of conceptual data models with constraints, shows that
KIF (Knowledge Interchange Format), which is used as a basis for PAL, is the most
popular for the description of ontologies. For example, SUMO® uses SUO-KIF’ SUMO
language, a part of Protege ontologies*, use KIF or PAL for expressing axioms.

Though, nowardays Ontology Web Language (OWL; OMG 2005) with SWRL (the
Semantic Web Rule Language; O’Connor, 2010), which is an OWL-based rule langue
developed to express rules in terms of OWL concepts, become one of the most popular
languages for expressing domain ontologies (Horrocks et al., 2004; Milanovic et al.,
2006; Sirin and Tao, 2009). Therefore, another unsolved question is transforming KIF
based ontologies with axioms into OWL/SWRL ontologies. In this paper authors are not
discussing this problem.

2.3. Choosing a Formal Language to Specify the PAL to OCL Transformation

Formal specifications of systems have been a focus of software engineering research for
many years and applied in a wide variety of settings. Their industrial use is still limited
because of limitation of a graphical notation, understandability, lack of a tool support,
and the cost of a specification. The specification language must first be learned, and then
experienced before its using. Advantages of the usage of formal languages are formal-
ity, preciseness, reducing the likelihood of errors, exploration of design choices, and the
quality of documentation.

We are going to use a particular state-based language (it characterises the admissi-
ble system states at some arbitrary snapshot) for the definition of the transformation of
PAL constraints into OCL constraints, since it is necessary to define components of PAL
constraints (or source state), components of OCL constraints (or target state) and their
mapping. Z, VDM and B are the known and widely used state-based languages. There-
fore, we have to choose among them.

Shttp://protege.stanford.edu.
Shttp://www.ontologyportal.org/.
"http://suo.ieee.org/SUO/KIF/suo-kif.html.
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A number of authors discuss the differences and similarities, advantages and disad-
vantages of these languages. Especially there is popular comparison of Z with VDM
(Hayes et al., 1994; Spivey, 1988; Fensel, 1995). However, we can see that all these
languages are suitable for the definition of different states of a system. Therefore, con-
sidering our knowledge of Z, we choose it for the definition of the transformation of
ontology axioms into OCL constraints. Moreover, Z has been accepted as the ISO stan-
dard in 2002 (ISO, 2002). However, we are not discounting the possibility of using other
formal language for the specification of the proposed transformation.

3. Transforming PAL Constraints into OCL Constraints

Based on the related work and our own experience (Vasilecas et al., 2009), in this section
we present transformation of ontology axioms into OCL constraints. The description of
the method of the transformation of ontology axioms into business rules, which is applied
in this paper, is presented in Vasilecas et al. (2009). Here we present only the transforma-
tion of ontology axioms, presented in PAL, into OCL constraints.

In this section the definition of elements of a UML class diagram and Protégé ontology
are presented to ensure the completeness of the transformation.

3.1. Definition of a Protégé Ontology Using Z

According to Knublauch (2006), a ProtégéOntology schema is defined using Z from the
smallest parts in the following way. First, the definition of a slot, presenting property of
a class, in the StandardSlot schema (Fig. 1) is proposed. Syntactically, a slot has a name,
a given type and documentation, which consists of a set of characters. A set Name is
defined to present the names for all classes and the names of all slots. A set PType denotes
all possible types in Protégé ontology. They are any, Boolean, float, instance, integer,
string and symbol. Symbol is an enumerated list of slot values, like red, blue, green.
Instance is a type of a slot, whose value is the instance of a class. A partial function

[Name, PType]
PType ::= any | boolean | float | instance | integer | string | symbol

— StandardSlot
slotname: Name

slotvaluetype: PType
docum: P (z x CHAR)

slotstate: slotname  slotvaluetype

slot = dom slotstate

Fig. 1. The StandardSlot schema defined in Z.
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StandardClassDecl
slot: ¥ StandardSlot
role == concrete | abstract
docum: P (z x CHAR)

Fig. 2. The StandardClassDecl schema defined in Z.

[ProtégéClassName]
StandardClass

(protégéclasse: ProtégéClassName - StandardClassDecl

Fig. 3. The StandardClass schema defined in Z.

— Inheritance
directsuperclasses: ¥ ProtégéClassName

directsubclasses: ProtégéClassName < ProtégéClassName
dom directsubclasses = directsuperclasses

rang directsubclasses = directsubclasses

id ProtégéClassName N directsubclasses” = @

Fig. 4. The Inheritance schema defined in Z.

slotstate is declared to map slots to their types. A constraint presented in the bottom part
of the schema denotes that the number of slots equals to the domain® of slotstate.

The main component of Protégé ontology is a Protégé class, which is an abstract
representation of a concept in an application domain. A Protégé class has slots. A class
is defined in a StandardClassDecl schema, which consists of: a finite set of slots, a role,
which is an abstract or a concrete, and documentation, which is a description of a class
(Fig. 2).

Names of Protégé classes should be unique in the enclosing name space. Therefore,
the set of Protégé classes is defined as a partial function from PClassName to Standard-
ClassDecl (Fig. 3).

In Protégé, generalization is used to express a taxonomic relationship between classes.
Therefore, two variables, directsupeclasses and directsubclasses, are defined to express
relationships between classes involved in generalizations (Fig. 4). The variable direct-
superclasses is defined as a finite state of ProtégéClassName denoting all superclasses.
The variable directsubclasses is defined as a relation between values of type Protégé-
ClassName. Its domain is the set of superclasses and its range’ is the set of subclasses.
A class cannot be a superclass of itself or any of its ancestors.

81n the Z notation (Bowen, 2003), the domain of a relation R: T" < U is the set of all elements in T which
are related to at least one element in U by R.

9In the Z notation (Bowen, 2003), the range of R is the set of all elements in U which are related to at least
one element in 7" by R.
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AssociationSlot
slotname: Name

slotmaxcard: P N
slotmincard: P N
attachedclass: StandardClass

Fig. 5. The AssociationSlot schema defined in Z.

— AssocStandardClass ——
StandardClass

asl, as2: AssociationSlot

asl.slotname # as2.slotname

Fig. 6. The AssocStandardClass schema defined in Z.

[PALPredicate, PALFunction)

— PALStatement
palconstrange : ¥ StandardClass

var : palconstrange

predicate : PALPredicate | predicate : varl x ... X varn — var
[ PALPFunction |f:varl x ... X varn — var

PALPredicate N PALFunction= @

Fig. 7. The PALStatement schema defined in Z.

In Protégé, a standard allowable relationship between classes is a binary relation-
ship. Therefore, we discuss only binary relationships. In Protégé, binary relationships are
presented by slots, which type is an instance. Such a slot, an association slot, defines
a binary relationship between a class, to which it belongs, and a class, which is indicated
as an attached class. Syntactically, each association slot has a name, which denotes the
name of an association, an instance type, which denotes a class, to which a given class
is associated, slotrmaxcard, which denotes a maximum cardinality of a slot, slotmincard,
which denotes minimum cardinality of a slot. An AssociationSlot schema presents the
components of an association slot (Fig. 5). A slot cardinality maps to the whole infinite
non-negative integer set, which is represented as N in Z.

An AssocStandardClass schema presents a Protégé class, which has an association
slot (Fig. 6). A Protégé class can have several association slots; however, their names
should differ.

Now, we are going to define axioms. In Protégé, axioms are implemented by PAL
constraints. Syntactically, a PAL constraint consists of a name, a description, a range,
which is a local or a global variable that appear in a constraint, and a PAL statement
(Fig. 8). A PAL statement (Fig. 7) is composed of a set of embedded predicates and func-
tional expressions that involve variables ranging over a set of values (over a range), and
that ultimately return true or false on each particular instantiation of variables. Therefore,
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— PALConstDecl
palconstname: Name

docum: p (z x CHAR)

palconstrange : ¥ StandardClass

palstatement : F (PALStatement x PALStatement)

Vpalstl, palst2, palst3 : PALStatement | palst] : F (palst2 % palst3) A
palstl # palst2 A palst] # palst2 A palst2 # palst3

Fig. 8. The PALConstDecl schema defined in Z.

[PALConstName]

PALConst
’(palconst : PALConstName - PALConstDecl

Fig. 9. The PALConst schema defined in Z.

we define two sets, PALPredicate, from which the predicates for PAL statements can be
taken, and PALFunction, which denotes PAL functions. For more about predicates and
functions you can find in Crubézy (2005).

As was described in Vasilecas et al. (2009), axioms and consequently PAL constraints
are of the form state or condition-state. A state axiom clearly defines a state in which
a domain should be. A condition-state axiom defines an admissible state of a domain
under the defined condition. Therefore, as presented in Fig. 8, a PAL statement can have
two parts (condition and state), which are also statements. However, it is important to
note that if a PAL statement consists of other PAL statements, which are predicates or
functions, these statements are not equal. E.g., there is no reflexive relationship between
PAL statements.

Names of PAL constraints should be unique in the enclosing name space. There-
fore, the set of PAL constraints is defined as a partial function from PALConstName to
PALConstDecl (Fig. 9).

3.2. Definition of a UML Class Diagram Using Z

We apply the definition of a UML class diagram using Z from Kim and Carrington (1999).
Since it varies little from the original definition, we present it in Annex 1.

3.3. Definition of an OCL Constraint Using Z

Syntactically, an OCL constraint has a context, an expression type, a name, which is
unique for all constraints, and an expression (OMG, 2003a). Therefore, we are going to
analyse these components.

OCL is a strongly typed language (OMG, 2003a). A type is assigned to every OCL
expression and typing rules determine in which ways well-formed expressions can be
constructed.
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Type
Type
WEQ|t;,...,t, EType ANtEType AN : t; X -+ X t,—t

Fig. 10. The Type schema defined in Z.

DataSignature —
Typey € Type
<

QyEQ

Fig. 11. The DataSignature schema defined in Z.

Types are associated with a set of operations, which are functions over values of the
type. The semantics of types and operations is defined by a mapping that assigns each
type a domain and each operation a function. The meaning of the type stays the same as
in the previous section (e.g., all possible types in UML). The syntax of operations (w) is
presented in Fig. 10.

An operation (w) is described by defining its name, the parameter types (t1 X - - - X t,),
and the result type (f). An example of operations are arithmetic operations +, —, _, /,
etc. for integers and real numbers, division (div) and modulo (mod) of integers, sign
manipulation ( —, abs), conversion of Real values to Integer values (floor, round), and
comparison operations (<, >, <, >).

A data signature over an object model consists of types used in this model, a type
hierarchy (<) over types and operations over types (Fig. 11).

The type hierarchy is defined for all types like (for more see (OMG, 2003a)):

e <is(a)t < t—reflexive, (b) t/ < ¢t/ < t = ¢’ < t — transitive, and

©t"<t't <t=t=1t-asymmetric.

e [nteger < Real, etc.

OCL itself is an expression language (OMG, 2003a). The definition of expressions
is based upon the data signature (Fig. 11), which contains the initial set of syntactic ele-
ments upon which the expression syntax is built. For each expression the set of variables
(Var), which are indexed by a type t, is also defined. An expression can be understood
as a function on some variables of a specific type (Fig. 12). The details about possible
functions can be seen in OMG (2003a) and not presented here, since we need to define
the structure of an OCL constraint only. Some functions can be defined by users, using
previously defined operations on variables.

An OCL expression is always written in some syntactical context. The UML model
(in our case a UML class diagram) itself provides the most general kind of context.
The context can be a particular class, an attribute, a method or other element of a UML
class diagram.

An expression type (exprtype) is a possible type of an OCL expression. It can be
a stereotype (invariant, precondition or postcondition), an initial value, which is used to
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Expression
DataSignature
Var, € Var | t € Typey

Expr, € Expr |t € Typeyy N Expr — F (Var) — P (Qu(Var))

Fig. 12. The Expression schema defined in Z.

OCLConstraint
Context € UMLClassDiagram

name: ¥ Name | name » OCLConstraint
exprtype ::=inv | pre | post | init | derive

expression: P (Expression)

Fig. 13. The OCLConstraint schema defined in Z.

represent the initial value in an OCL expression, and derived value, which is used to
represent a derivation rule. An invariant is an expression with Boolean result type and
a set of (explicitly or implicitly declared) free variables. These variables are declared
by a context. A system state is called valid with respect to an invariant if the invariant
evaluates to true.

Pre- and postconditions are used to define the system state before the execution of
an operation and the system state that results from the operation execution. Parameters
(variables) used in pre- and postconditions are declared by a context.

The keyword self can be used to denote variables from the context.

An example of an expression is self.numberOfEmployees > 50, where numberOf
Employees is an attribute (a variable) and 50 is a possible value of this attribute (a vari-
able).

Finally, an OCL constraint defined in Z is presented in Fig. 13.

3.4. Definition of the Transformation of PAL Constraints into OCL Constraints Using Z

Since the definition of Protégé ontology with PAL constraints and a UML class diagram
with OCL constraints is prepared, we can define the transformation of PAL constraints
into OCL constraints.

A PALtoOCL schema (Fig. 14) defines the transformation of PAL constraints into
OCL constraints. The PALConst and OCLConstraint schemas are included to the
PALtoOCL schema, since their variables are used to define the transformation. A name
of a PAL constraint is transformed into the corresponding name of an OCL constraint.
A range of a PAL constraint is transformed into the corresponding context of an OCL
constraint. A PAL statement is transformed into the corresponding OCL expression.

It is difficult to define a type of an OCL expression. The analysis of PAL shows that all
PAL statements correspond to OCL invariants. Therefore, an expression type is equated
to invariant during the transformation of PAL constraints into OCL constraints.
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— PALtoOCL
PALConst

OCLConstraint
palconstname + name
palconstrange - context
palstatement + expression

exprtype == inv

Fig. 14. The PALtoOCL schema defined in Z.

Table 1

Mapping Protégé ontology element to UML class diagram elements

Elements of Protégé ontology Elements of UML class diagram
Protégé ontology UML class diagram
“Thing” Class
Class Class
Slot Attribute
Documentation Comment
Value types: Data types:
Any Not defined
Boolean Boolean
Glass Relationship with appropriate class
Float Float
Instance Relationship with appropriate class
Integer Int
String Char
Symbol Enumeration
Required Multiplicity: 1
Minimum Multiplicity:
Maximum Multiplicity:
Default values Default value
Is-a relation Generalization
(directed-binary-relation)
PAL constraint OCL constraint

For more details about mapping of the Protégé ontology to a UML class diagram can
be seen in Knublauch (2006) and in Table 1.
The main steps of the proposed transformation are presented in Fig. 16.
An example of the mapping of a PAL constraint to an OCL constraint follows:
e This part of a PAL statement defines that a value of a slot start_date of the
class Employee should be less than a value of a slot end_date of the same class.
(< ( 'start_date’ ?Employee) (’end_date’ ?Employee)))
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| MagicDraw UML 15.5
P Fle ¥iew Layout Diagrams Options | Tools | Analyze Teamwork Window Help

iDpEass oo ) |
ERRREBEE S

Integrations

Axiom20CL Ctrl+Shift-+E

|

Fig. 15. The Axiom2OCL plug-in.

e The presented PAL constraint corresponds to an OCL constraint. ?Employee is
transformed into the context of an OCL constraint. All slots of the PAL statement
are transformed into the corresponding attributes in the OCL constraint. For exam-
ple, “end_date*is transformed into “self.end_date”.
context Employee inv:
self.end_date > self.start_date

Table 1 presents the mapping of Protégé ontology UML class diagram. It is used as a
basis to define the mapping of PAL constraints to OCL constraints. Note that Table 1 is
not the final version of the mapping Protégé ontology to UML class diagram.

4. Axiom20OCL - The Plug-in for Transforming PAL Constraints into OCL
Constraints

The prototype of the Axiom2OCL plug-in is created to implement the proposed method
of the transforming PAL constraints into OCL constraints and to support our statement
that ontology axioms could be used for the development of business rules. The plug-in is
developed according to the proposed the PALtoOCL schema.

The plug-in can be attached to MagicDraw UML 15.5'° or Protégé 3.0 (or other ver-
sion). Figure 15 presents the Axiom2OCL plug-in attached to MagicDraw UML 15.51°.

Figure 16 presents the main steps of the developed Axiom2OCL plug-in, which is
based on the PALtoOCL schema. In this prototype the user should denote the input file, in
which PAL constraints are stored, and may denote the output file, where OCL constraints
will be stored. If user does not denote the output file, the plug-in creates a default output
file. After the denoting the input and output files, all PAL constrains from the input file
are automatically transformed into OCL constraints.

The plug-in is created in the Java development environment.

Ohttps: //www.magicdraw.com/ .
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User Axiom20CL

Run Axiom20CL

;_1 Ask to denote the input file )

| Denote the input file «——

cancel the l the input file
transformation ¥ is not denoted
the input file S S
is denoted Ask to define or denote the |
— output file ]

the output file is not the output file is
dencted or defined denoted or defined
Create the output file |

Read the input file )

|

it _~FindaPAL 2 PAL constraint is found

< constraint in the
The name of a PAL constraint (PAL-

name) transform to the name of
the corresponding OCL constraint

No-one PAL constrai
is found

5:& {he message to
‘ the user that ‘

é "

The documentation of a PAL

constraint (PAL-description)
transform to the documentation of
the corresponding OCL constraint |

range) transform to the context of

The rang of a PAL constraint (PAL-
the corresponding OCL constraint |

In the case of the

concition-state axioms, 17

a state is transformed 3

ito then part of the OCL
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follows after a
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“_of the PAL constraint

A R, R B —
A state of a PAL constraint transformto | A condition of a PAL constraint (=>) |
the st of the corr di f—l transform to the condition (if) of the
OCL constraint ] corresponding OCL constraint

Fig. 16. The main steps of Axiom2OCL.

5. An Example of Transforming a PAL Constraint into an OCL Constraint

An example of the transformation of PAL constraint, restricting that the Employee end

date should be after the start date, into the corresponding OCL constraint, represented as

follows:

e A PAL constraint:

($3APAL-NAME "editor-employees-salary-constraint”)
($3APAL-RANGE " (defrange ?editor :FRAME Editor)\ n(defrange
?employee :FRAME Employee responsible_for)”)
($3APAL-STATEMENT ” (forall ?editor (forall ?employee\ n (=>
(and \ n (responsible_for ?editor ?employee)\ n (own-slot-
not-null salary ?editor) \ n (own-slot-not-null salary ?em-
ployee)) \ n (> (salary ?editor) (salary ?employee)))))”))
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Editor -responsible_for Employee
{if (self responsible_for-=notEmpty() | 0.* [ {self end_date=self date_hired,
and self salary -= notEmpty() self salary=self Manager Supervision Relation salary }
and self employee salary -= notEmpty() b————p+———————— -
then (self salary==elf responsible_for salary)} |-current_job_title : String [0..1]
|-date_hired : String [0..1]
|-zalary : double [0..1]
|-end_date : String [0..1]

Fig. 17. The part of a newspaper class diagram.

e A corresponding OCL constraint:
context Editor inv editor-employees-salary-constraint:
IF (self.responsible_for->notEmpty () AND self.salary ->
notEmpty () AND self.employee.salary -> notEmpty())
THEN (self.salary>self.responsible_for.salary) endif

The corresponding OCL constraint is attached to the part of a newspaper class diagram
(Fig. 17), which is generated from the newspaper ontology using UMLBackend plug-in
(Knublauch, 2006).

Conducting an experiment, 10 PAL constraints were transformed into OCL con-
straints. At this moment the prototype is suitable for the development of OCL invariants
(a class of dynamic constraints) from PAL constraints only, since in Protégé there is no
difference between constraints and derivation axioms. Therefore, specific keywords for
PAL constraints or other approach should be used for the development of other OCL
constraints, e.g., not invariants.

In the future the proposed method and prototype should be refined and adapted for the
transformation of more complex constraints, like derivation axioms to derivation rules.

The proposed transformation of PAL constraints into OCL constraints is applied in
the High Technology Development Program Project “Business Rules Solutions for In-
formation Systems Development (VeTIS)”!! for extending MagicDraw tool to generate
OCL constraints from PAL constraints.

6. Conclusions

The analysis of the related works in the field of knowledge-based information systems
development using the domain ontology shows that business rules are presented in the
ontology by axioms and defined using ontology concepts. However, those axioms are not
used for the development of business rules, mostly. Yet OCL is widely used for expressing
constraints and/or queries, there is no graphical notation facilitating their development.

The comparative analysis of approaches used for definition of OCL constraints shows
that domain knowledge presented by ontology can be used here. Therefore, the authors
of this paper propose the transformation of ontology axioms, presented in PAL, into OCL
constraints. The proposed transformation is defined by Z notation.

11http: //www.verslotaisykles.1lt/VeTIS/.
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A created plug-in Axiom2OCL and was used to carried out the experiment show that
the proposed transformation is suitable for automatic generation of OCL invariants and
can be extended for the generation of derivation constraints.

ANNEX 1. Definition of a UML Class Diagram Using Z

In UML, a class is a type that has objects as its instances (OMG, 2003b). Syntactically,
a class has a name, attributes and operations and participates in inheritance hierarchies.
Attributes have names and types. Operations have names and parameters. Each parameter
of an operation has a name and a given type. Kim and Carrington (1999) define two
given sets, ClassName and Name, from which the names of all classes and the names of
all attributes, operations and operation parameters can be drawn, respectively. Type is a
meta-type that is portioned into all possible types in UML. A ClassDecl schema denotes
the components of a class: a finite set of attributes and operations (Fig. 18). A partial
function attrstate is used to map attributes to their types. A partial function opsigs is used
to map operations to their parameters and also to map each parameter to its type.

Class names should be unique in the enclosing name space. Thus, the set of classes is
defined as a partial function from ClassName to ClassDecl (Fig. 19).

In UML relationships between classes are represented as associations. Associations
can be: common association, aggregation and composition. In most cases, binary asso-
ciations are used in a class diagram. Moreover, aggregation and composition are always
binary relationships. Therefore, only binary associations are presented here. Syntactically
a binary association is represented as a link between two classes with an association name
and two association ends. Each association end has a role name, cardinality and a class to
which the association end is attached. For aggregation and composition, an aggregation
indicator, is added to one of the association ends.

[ClassName, Name, Type]
— ClassDecl

attribute: ¥ Name

operation: F Name

attrstate: Name -+ Type

opsigs: Name + (Name + Type)

attribute = dom attrstate

operation = dom opsigs

Fig. 18. The ClassDecl schema defined in Z (Kim and Carrington, 1999).

UMLClass
liclasses: ClassName -+ ClassDecl

Fig. 19. The UMLClass schema defined in Z (Kim and Carrington, 1999).
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assockind ::= none | aggregate | composite
— AssociationEnd

rolename: Name

cardinality: P N

attachedclass: ClassName

aggregation: assockind

cardinality # {0}

Fig. 20. The AssociationEnd schema defined in Z (Kim and Carrington, 1999).

— UMLAssociation
associations: P (Name x (AssociationEnd x AssociationEnd))

Vn: Name; el, e2: AssociationEnd | (n, (el, e2)) € associations e
el.rolename # e2.rolename + n
el.aggregation € {aggregate, composite} = e2.aggregation = none
el.aggregation = composite = el .multiplicity = {1}
Vnl, n2: Name; el, €2, e3, e4: AssociationEnd | {el, e2} # {e3, e4} A
{(nl, (el, e2)), (n2, (e3, e4))} S associations e
{el.attachedclass, e2.attachedclass} = {e3.attachedclass, e4.attachedclass} =

nl #n2

Fig. 21. The UMLAssociation schema defined in Z (Kim and Carrington, 1999).

An AssociationEnd schema denotes the components of an association end: a role
name, cardinality and an attached class (Fig. 20). A cardinality in UML denotes the num-
ber of allowable instances that may be associated with a single instance of the class at-
tached to its opposite association end. A cardinality is a sequence of non-negative integer
intervals in the format lower-bound . .. upper-bound, where the upper bound can be un-
limited (denoted by star symbol *). A variable cardinality is a set of non-negative integer
values. When cardinality comprises the star symbol *, it maps to the whole infinite non-
negative integer set, which is represented as N in Z. The variable aggregation denotes
whether or not the attached class is an aggregate. This variable can take the values none,
aggregate, or composite. The constraint in the predicate part states that cardinality cannot
have the value zero for both its lower and upper bounds.

An association can appear more than once in a class diagram and a binary association
has exactly two association ends. The set of binary associations is defined as a power set
of tuples of Name and a pair of AssociationEnd.ei is a composite or aggregate.

Figure 21 presents the UMLAssociation schema defined in Z.

The constraints for the UMLAssociation schema state that:

e an association name must be different from both role names and each role name
also must be different;

o for aggregation and composition, there should be an aggregate or a composite end
and the other end and should have the aggregation value of none;



386 D. Kalibatiene, O. Vasilecas

— AssocClassDecl
ClassDecl
el, e2: AssociationEnd

el.rolename # e2.rolename
el.aggregation = none
e2.aggregation = none

Fig. 22. The AssocClassDecl schema defined in Z (Kim and Carrington, 1999).

— AssocClassDecl
ClassDecl
el, e2: AssociationEnd

el.rolename # e2.rolename
el.aggregation = none
e2.aggregation = none

Fig. 23. The AssocClassDecl schema defined in Z (Kim and Carrington, 1999).

— UMLAssocClass

assocClasses: ClassName - AssocClassDecl

Ve: ClassName; ac: AssocClassDecl | ¢ = ac € assocClasses ®
¢ & {ac.el.attachedclass, ac.e2.attachedclass}

ac.attribute N {ac.el.rolename, ac.e2.rolename} = @

Fig. 24. The UMLAssocClass schema defined in Z (Kim and Carrington, 1999).

e for composition, the multiplicity of the composite end must equal one;
e all associations must have a unique combination of name and associated classes.
Thus, if attached classes are the same, their association names should be different.

Association classes are similar to associations except that they have class-like prop-
erties in terms of attributes and operations. That is, association classes have properties of
both classes and associations. The AssocClassDecl schema (Fig. 22) inherits ClassDecl
and includes two association ends. The constraints define that the two role names must
be different and the aggregation value of both association ends is none.

The set of association classes is declared as a partial function from ClassName to
AssocClassDecl (Fig. 23).

The constraints describe well-formed rules for association classes (Fig. 15): an asso-
ciation class cannot be defined between itself and something else and; the role names and
the attribute names do not overlap.

In UML generalization is the taxonomic relationship between objects, in which ob-
jects of the superclass have general information and objects of the subclasses have more
specific information (OMG, 2003b). Two variables, superclasses and subclasses are de-
clared to express relationships between classes involved in generalizations and constraints
on them (Fig. 24). The variable superclasses is defined as a finite state of ClassName de-
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— UMLGeneralization
superclasses: ¥ ClassName

subclasses: ClassName < ClassName

dom subclasses = superclasses
rang subclasses = subclasses

id ClassName N subclasses” = @

Fig. 25. The UMLGeneralization schema in Z (Kim and Carrington, 1999).

— UMLClassDiagram
UMLClass

UMLAssociation
UMLAssocClass
UMLGeneralization

dom (assocClasses) N dom (classes) = @
Vn; Name; el, e2; AssociationEnd | (n, (el, e2)) € associations ®
{el.attachedclass, e2.attachedclass} S dom (classes) U dom (assocClasses)

el.rolename & classes (e2.attachedclass).attribute
e2.rolename €& classes (el.attachedclass).attribute}

Vn: dom (assocClasses); el, e2: AssociationEnd |
el = assocClasses(n).el \ e2 = assocClasses(n).e2 ®
{el.attachedclass, e2.attachedclass} S dom (classes) U dom (assocClasses)

el.rolename & classes (e2.attachedclass).attribute

e2.rolename & classes (el .attachedclass).attribute}

dom (subclasses) U rang (subclasses) € dom (classes) U dom (assocClasses)

Fig. 26. The UMLClassDiagram schema defined in Z (Kim and Carrington, 1999).

noting all superclasses. The variable subclasses is defined as a relation between values of
type ClassName. Its domain is the set of superclasses and its range is the set of subclasses.
A class cannot be a superclass of itself (reflexive inheritance) or any of its ancestors.
Finally, a UML class diagram is a collection of classes including classes in general-
izations and association classes, and associations between these classes (Fig. 25).

The constraints describe that:

classes and association classes are disjoint;

classes that are involved in associations or association classes should be classes in
the diagram;

for an association or an association class, the role name at an association end should
be different from the attribute names of the class attached to the other end;

classes involved in generalizations should be classes in the diagram.
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Ontologijos aksiomu taikymas OCL ribojimams gauti iS PAL
ribojimu
Diana KALIBATIENE, Olegas VASILECAS

Pastaruoju metu informaciniy sistemuy srityje ontologijos naudojamos tokioms problemoms,
kaip duomenuy modeliavimas, apsikeitimas duomenimis, heterogeniniy duomeny ir modeliy in-
tegravimas arba pakartotinas programinés irangos naudojimas, spresti. TaCiau, nors ir pasiilyta
ontologijomis grindZziamy koncepcinio duomeny modeliavimo metodu, S$ia diena nepakanka-
mai démesio skiriama ontologijos aksiomomis grindZiamam verslo taisykliu modeliavimui.
Siame straipsnyje autoriai parodo, kaip ontologijos aksiomas galima panaudoti verslo taisykliy
igyvendinimui. Savo pasiiilyma autoriai taiko PAL (Protege Axiom Language), kuri yra KIF
(Knowledge Interchange Format) dalis, ribojimu (PAL kalba aprasytu ontologijos aksiomu) trans-
formacijai i OCL (Object Constraint Language) ribojimus, kurie yra UML klasus dalis. Sitlomas
budas apraSytas formalia Z kalba ir igyvendintas kaip Axiom2OCL iskiepis, kuris naudojamas
transformacijos automatizavimui. Atliktas eksperimentas parodé pasitilyto metodo veiksminguma.



