
INFORMATICA, 2012, Vol. 23, No. 3, 443–460 443
© 2012 Vilnius University

Tightly Secure Non-Interactive Multisignatures
in the Plain Public Key Model

Haifeng QIAN1,2, Xiangxue LI1 ∗, Xinli HUANG1

1Department of Computer Science and Technology, East China Normal University
Shanghai 200241, China
2Hangzhou Key Lab of E-business and Information Security, Hangzhou Normal University
Hangzhou 310036, China
e-mail: {hfqian, xxli}@cs.ecnu.edu.cn

Received: April 2011; accepted: March 2012

Abstract. Multisignature scheme allows a group of signers to generate a compact signature on
a common document that certifies they endorsed the message. However, the existing state of the
art multisignatures often suffers from the following problems: impractical key setup assumptions,
loose security reductions and inefficient signature verification. In this paper, we propose a non-
interactive multisignature scheme with tight security reduction in the random oracle model. Our
proposed multisignatures address the above three problems by achieving: provable security in
the plain public key model; tight security reduction under the standard Computational Diffie–
Hellman (CDH) assumption and O(1) computational time for signature verification through pre-
computation. Hence, our non-interactive multisignatures are of great use in routing authentication
of networks.
Keywords: rogue key attacks, plain public key model, provable security, multisignatures, tight
security.

1. Introduction

A multisignature scheme enables multiple signers to jointly authenticate a message and
produce a digital signature of compact size on behalf of all signers. Multisignatures
provides efficient batch verification of several signatures of the same message under
different public keys. This primitive now are widely used in contract signing, authen-
tication of routes in mobile networks, distribution of a certificate authority (CA), ag-
gregation of acknowledgements in multicast (Micali et al., 2001; Bellare and Neven,
2006; Boldyreva, 2003; Kim and Tsudik, 2005; Bagherzandi et al., 2008; Bagherzandi
and Jarecki, 2008; Castelluccia et al., 2006; Lu et al., 2010), etc.

However, prior multisignatures achieve provable security at the cost of (1) imposing
complex key setup assumptions on the public key infrastructures (PKIs); (2) efficiency on
multisignature generation and verification and (3) loose security reduction which might
imply large security parameters.

*Corresponding author.

444 H. Qian et al.

For practical reasons of application, we desire that a multisignature scheme might
have the following features: (1) the resulting signature is of constant size for � signers;
(2) multisignature generation and verification (even key generation) are very fast (effi-
cient); (3) the communication overhead in multisignature generation should be as small
as possible (even reduced to a minimum); (4) trust on the trusted third party (e.g., Cer-
tificate Authority) should be reduced as less as possible. All these specific aspects are
important in the real life applications of multisignatures.

1.1. Rogue Key Attacks

The homomorphic properties of arithmetic operations involved in standard signatures
enable aggregation of signatures into multisignatures of constant size. However, these
homomorphic properties used in generating multisignatures often incur rogue key attacks
for multisignature schemes. In such an attack, the adversary chooses its public key as
a function of those of honest signers through which it can forge multi-signatures easily
(Bellare and Neven, 2006; Bagherzandi et al., 2008).

For example, rogue key attack succeeds if the verification key for multisignature has
a fixed formula as PK =

∏�
i pki (generated from the public keys of signers). In such

a scheme, the adversary may choose pka = gs · (
∏�−1

i pki)−1 for a known random s.
Then, the private key for PK = pka

∏�−1
i pki = gs is s. Finally, the adversary can easily

mount rogue key attacks (e.g., Itakura and Nakamura, 1983; Ohta and Okamoto, 1999;
Boldyreva, 2003; Lu et al., 2006; Ristenpart and Yilek, 2007) are vulnerable to such
attacks in the plain setting). Actually rogue-key attack is considered as a main menace
for discrete logarithm based multi-signature schemes.

To prevent rogue-key attacks for multisignatures, many proposals have been put for-
ward, but either at the cost of complexity and expense, or imposing unrealistic and com-
plicate key setup assumptions on the public-key infrastructure (PKI; Micali et al., 2001).
These key setup operation assumptions include dedicated key generation (DKG), knowl-
edge of Secret Key (KOSK), proof of possesion of private key (POP).

The first effort to prevent rogue key attacks (called DKG) is due to Micali et al. (2001).
However, the DKG is impractical because of expensive interactions of key generation,
complex and large public keys, and static group of signers. The second approach, KOSK
assumption needs a party to prove knowledge of its secret key, during public key regis-
tration with a certificate authority (CA). The requirement of handing over the secret keys
leads to obtaining simple constructions and proofs of security (Boldyreva, 2003; Lu et al.,
2006). However, the existing public key infrastructures (PKIs) do not require proofs of
knowledge of secret keys (Adams et al., 2005). The third one is contributed by Ristenpart
and Yilek (2007), Bagherzandi et al. (2008) and Bagherzandi and Jarecki (2008) where
users are required to provide proofs of procession of secret keys in order to prevent rogue
key attacks. Ristenpart and Yilek (2007) showed that the schemes in Boldyreva (2003),
Lu et al. (2006) by using the Key Registration (KR) model can be improved more secure
without reducing efficiency. A similar idea named the Key Verification (KV) model was
later proposed in Bagherzandi et al. (2008) and Bagherzandi and Jarecki (2008), but hav-
ing the multisignature receiver verify the POP message (together with verification of PKI

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 445

certificates), instead of the CAs during the key registration. While none are initialized in
the real life applications (Schaad, 2005).

We note that either the KR model or the KOSK assumption needs non-standard trust
on the CAs because it requires the CAs must perform specific verifications. If a CA is
corrupted then the adversary can easily forge multisignature through rogue key attacks.
On the other hand, the interaction and verification during key registration also causes
additional computational burden for the CAs. While the KV model causes additional
computational cost of the verifier (linear to the number of signers) during the verification
of a multisignature.

Obviously, it is highly interesting and desirable to provide multisignature schemes
which are secure in the plain setting where no special registration process is assumed
for public keys registration. Bellare and Neven formalized such a security model, called
the plain public key (PPK) model and presented a scheme in such a model (Bellare and
Neven, 2006), followed by Bagherzandi et al. (2008), Ma et al. (2009), Boneh et al.
(2003). In the plain (public-key) model, there is no dedicated key generation (DKG)
procedures, or well-formedness proofs accompanied to the public keys. Namely a party
can obtain a certificate on an arbitrary key.

1.2. Multisignatures in the PPK Model

Up to date there are very few multisignature schemes with provable security in the plain
public key model. The first multisignature secure in the PPK model was proposed by
Boneh et al. (2003) (for brevity BGLS), which is implied by the construction so-called
aggregate signature (Bellare et al., 2006) in the random oracle model (Bellare and Rog-
away, 1993). The main drawback of the BGLS scheme is the high cost of verification. In
fact verification of a single multisignature of the BGLS scheme requires O(�) pairings
where � is the number of signers participating in signing, that makes the BGLS scheme
extremely impractical.

Under the DL assumption Bellare and Neven (2006), provided a concrete multisig-
nature scheme (denoted BN) with rather an efficient verification in the PPK model. Fol-
lowed the idea of Bellare and Neven (2006), a lot of interactive multisignature schemes
are proposed (Bagherzandi et al., 2008; Ma et al., 2009) in the PPK model. However,
the interaction is quite expensive in many important application because communicating
even one bit of data may use significantly more power than executing one 32-bit instruc-
tion (Barr and Asanović, 2003) and also in many settings, communication is not reliable,
and so the fewer interactions, the better.

The only known non-interactive multisignature scheme with efficient verification in
the PPK model (the QX scheme) is proposed by Qian and Xu quite recently in Qian and
Xu (2010). Comparing with the BGLS scheme, the QX scheme improves verification ef-
ficiency by reducing pairing computation complexity O(�) to O(1). However, security
proof of the QX scheme is even looser than that of the BN scheme (Bellare and Neven,
2006). Intuitively, a tight security (proof) means that the scheme is almost as hard to break
as the underlying cryptographic problem to solve. Therefore, it is always welcome to find

446 H. Qian et al.

a non-interactive multisignature scheme in the PPK model with more tighter security
proof.

REMARK 1. For each scheme, we summarize the underlying cryptographic assumption;
number of rounds of the signing protocol (“1" means non-interactive); the computa-
tional complexity for each signer (Sign); the communication cost required for the signing
(Comm. Cost) ; the computational complexity for verifying a multisignature (Verify); the
size of multisignature (σ Size). For CDH-based schemes we assume the symmetric pair-
ing e: G × G −→ GT for convenient comparison. For DL-based schemes, we assume
we work over a 160-bit elliptic-curve (EC) group G

′. We assume the order of G, GT and
G

′ are equal (i.e., p = q). We denote by exp an exponentiation in group G (or G
′ and

GT) whose order is q (or p), and by mexp(t) a multi-exponentiation with t exponentiation
coefficients (e.g., mexp(2) corresponds to gk1hk2 for some g, h, k1, k2), by � the number
of signers, by l0 the length of hash value, by pr a bilinear pairing, by |G| the bit length of
the representation for elements in group G, and by |p| the bits length of p. DL stands for
Discrete Logarithm, CDH stands for Computational Diffie–Hellman. “�" and “<" means
very loose security and loose security, respectively. “≈" means close security.

1.3. Our Contributions

We present a non-interactive multisignature scheme, which operates in the plain public-
key model and is proven tightly-secure based on the standard CDH assumption in the
random oracle model. Compared with the BGLS scheme, our scheme minimize the veri-
fication cost, by reducing (�+1) pairings to four pairings through pre-computation. While
the BGLS scheme needs the signers’ public keys to be used as prefixes to the correspond-
ing message in the BGLS scheme, implying that verification of the BGLS multisignature
needs (� + 1) pairings necessarily. Our improvement in verification time is substantial
because one pairing costs about 6–20 exponentiations (Bellare and Neven, 2006). Given
� signers, the verification key is fixed (consisting of � partial verification keys that can be
derived from the public keys independently), which means that we can compute once and
for all, the verification key before signing or verification.

In particular, our scheme also enjoys a tight security proof, comparing with both the
BN scheme and the QX scheme. Then security parameters of our scheme could be smaller
than those of both the BN scheme and the QX scheme, while preserving the same security
level. Actually, our security proof shows that an adversary can at most with probability
(roughly) ε/2 break our multisignature scheme where ε is the upper bound of probabil-
ity for breaking the underlying cryptographic problem (the CDH problem). While in the
BN scheme the corresponding upper bound is roughly

√
qh · ε. Let qh = 280, qs = 240,

ε = 2−80, our scheme ensures 79 bits of security level, while the BN scheme (or the QX
scheme) ensures at most 1 bits of security level (which is of no means in practice). Com-
paring with the QX scheme, our scheme also saves the mult-exponentiation in verification
of a multisignature and achieves tight security as stated, but at the price of a little bit of
signature expansion. Our multisignatures double that of the QX’s. Detailed comparisons

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 447

Table 1

Comparison of Multisignatures in the Plain Public Key Model

Scheme Assump. Rounds Sign Comm. cost Verify σ size

BN < DL 3 1 exp |G′ | + |q| + l0 1 mexp(�+1) |G′ | + |q|

BGLS < CDH 1 1 exp |G| (� + 1) pr |G|
QX � CDH 1 1 exp |G| 2pr + mexp(�+1) |G|
Ours ≈ CDH 1 2 exp 2 |G|+1 4 pr 4 |G|

amongst our scheme, the BN scheme, the BGLS scheme and the QX scheme are depicted
in Table 1.

The technique for dealing with the rogue key attack in the plain public-key model
may be of independent interest since it is quite different from those of Bellare and Neven
(2006). Instead of using a dynamic key with respective to messages (Bellare and Neven,
2006) as the verification key for the multisignatures, we use a combined key derived
from the public keys of signers, irrelevant to messages. Therefore, we can pre-compute
the verification key for any group of signers before knowing the signed messages. Such
pre-computation could be done when the certificates of public keys are verified. This
technique also reduces the communication rounds of multisignatures to optimal since our
scheme is non-interactive. The computational cost and communication cost (the amount
of data transmit in generating a single multisignature) are the same as the WMS scheme
(Lu et al., 2006) whose security holds under the KOSK assumption, but not secure in
the PPK model. Moreover, our multisignature reaches high level of security, in fact our
scheme is as secure as the Computational Diffie–Hellman (CDH) problem.

1.4. Organization

The rest of the paper is organized as follows. In Section 2 we review the definition and
security model of multisignatures. In Section 3 we present our multisignature scheme,
and Section 4 we analyze security of our multisignatures. In Section 5, we discuss some
important features on our multisignatures. Finally, in Section 6 we conclude the paper.

2. Preliminaries

We recall the basic definitions for multisignatures, then review the cryptographic com-
plexity assumption in this section.

Before proceeding, we explain the notations as follows: If s is a binary string, then
|s| denotes its length. If G is a group, then |G| denotes the bit size of its elements. If
s1, s2, . . . are strings, then s1‖s2‖ . . . denotes their concatenation. If S is a (multi)set,

then s
R←− S denotes the operation of selecting s uniformly distributed in S. We use

L = (pk1, . . . , pk�) to represent the (multi)set L = {pk1, . . . , pk�} hereafter.

448 H. Qian et al.

2.1. Definitions of Multisignatures

The definition of interactive multisignatures with � signers, each having as input its own
public and private keys as well as the public keys of the other signers in the plain public-
key model was first formalized in Bellare and Neven (2006). The signers interact via a
protocol to generate a multisignature.

In this paper, we consider a more general case, the non-interactive variant: given the
same inputs as in an interactive scheme, each signer contributes a partial signature without
interacting with each other, and the partial signatures can be “assembled" into a multisig-
nature by any one finally.

Formally, a non-interactive multisignature scheme MS = (Setup, Gen, MSign, MVf)
consists of three algorithms and one protocol; adapted from Bellare and Neven (2006):

• Setup(1λ): This is a randomized algorithm that takes as input a security parameter
λ and produces a set of global public parameters pp. (This algorithm should be run
by a trusted party and pp can also be viewed as a common reference string.)

• Gen(pp): This is a randomized algorithm that, on input the public parameters pp,
outputs (an honest) signer i’s private/public key pair (ski, pki).

• MSign is a multisignature generation protocol executed by a group of players L

who intend to sign the same message M (note that pki = pkj for some i �= j

is allowed in the plain public-key model because one can simply claim another’s
public key as its own). Each signer Pi executes this protocol on public inputs pp,
message M and private input ski, his secret key. The output of the protocol is a
multisignature denoted σ (that can be verified under the public keys of the group L).
Actually, given a partial σj (generated by Pj) for j = 1, . . . , �, any one can obtain
a multisignature σ with respect to the public keys on L if it is a non-interactive
multisignature scheme.

• MVf(pp, M, σ, L): Given L = (pk1, . . . , pk�), pp, a message M , a multisigna-
ture σ, this deterministic algorithm outputs 0 (reject) or 1 (accept).

We require a multisignature scheme to be correct, meaning that every multisignature σ

obtained from the partial signatures of legitimate signers (according to MSign) is always
accepted as valid.

Security of multisignature scheme requires that it is impossible for any adversary A to
forge a valid multisignature with respect to a new message that extends the classical se-
curity notion of digital signature scheme known as existential unforgeability under adap-
tively chosen-message attacks (Goldwasser et al., 1988). Following Bellare and Neven
(2006) and Bagherzandi et al. (2008), we assume that there is a single honest signer.

Unforgeability of multisignature in the plain public-key model allows the adversary to
corrupt all other signers (except the honest signer) and choose their public keys arbitrarily
(even to register the public key of the honest user as their own public keys), and to interact
with the honest signer in any number of concurrent signing instances before outputting
its forgery eventually.

Formally, we define the advantage of A against multisignature scheme MS as the
probability that the experiment ExpMS

uu.cma(A) in Fig. 1 outputs 1. We say the adversary

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 449

Experiment ExpMS
uu.cma(A):

1. pp ←− Setup(1λ); (pk�, sk�) ←− Gen(pp);
2. Run A(pp, pk�) as follows:

A can choose arbitrary public key for any user, possibly as a function of the honest
user’s public key pk�

To obtain a multisignature, A can invoke the execution of MSign(·, ·, ·, ·) (concur-
rently) by presenting a message M and a (multi)set L = (pk1, . . . , pkn) for any n,
as long as pk� appears at least once in L. M ←− φ where M is the set of messages
previously queried for signatures.

If the multisignature scheme uses hash functions that are treated as random oracles,
A can submit strings and obtain their corresponding hash values.

3. Eventually, A outputs an alleged multisignature σ� on a message M� with respect to
L� = (pk1, . . . , pk�). If

MVf(pp, M�, σ�, L�) = 1

and

(pk� ∈ L�)∧ M� /∈ M = 1

then return 1, otherwise 0.

Fig. 1. Experiment for security definition.

(t, qs, qh, �, ε)-breaks multisignature scheme MS, if it in time t, after qs signature queries
or qs invocations of MSign(·, ·, ·), and optionally qh queries to the hash functions (if any)
that are treated as random oracles, has an advantage at least ε in forging a multisignature
co-signed by � signers, namely

Pr[ExpMS
uu.cma(A) = 1] > ε.

If there is no such adversary that (t, qs, qh, �, ε)-breaks multisignature scheme MS, we
say the multisignature scheme is (t, qs, qh, �, ε)-secure.

2.2. Cryptographic Complexity Assumption

Let G and GT be two (multiplicative) cyclic groups of prime order p where the group
action on G and GT can be computed efficiently, g be a generator of G, e: G × G −→ GT

be an efficiently computable map (i.e., pairing) with the following properties:

• bilinear: for all (u, v) ∈ G × G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
• non-degenerate: e(g, g) �= 1.

For specific applications, we recommend the asymmetric setting, namely G1 �= G2 for
bilinear maps (i.e., e: G1 × G2 −→ GT), that allows for short signatures without side-
effect. Our scheme is also adaptable for such a setting. For more details, refer to Boneh
et al. (2001), Galbraith et al. (2008).

We define the computational Diffie–Hellman problem (with pairings) as follow.

450 H. Qian et al.

DEFINITION 1. Given (g, ga, h) ∈ G × G × G for some random a←−Zp and random
h←−G, find ha ∈ G.

Define the success probability of an algorithm A solving the CDH problem as

Advcdh
A

def= Pr
[
ha ←− A(g, ga, h): g

R←−G, a
R←−Zp, h

R←−G
]
.

The probability is taken over the uniform random choice of g from G, of a from Zp,
of h from G, and the coin tosses of A. We say the algorithm A (t, ε)-solves the CDH
problem if A runs in time at most t and Advcdh

A is at least ε. We say the CDH problem is
(t, ε)-intractable if there is no algorithm A that can (t, ε)-solve it.

3. Our Construction

Our scheme uses a Waters-like signature (e.g., σ = (sk ·H(m)r, gr)) scheme to construct
multisignatures, however this scheme is different from the WMS multisignature scheme
in Lu et al. (2006) since security of our scheme is proved in the plain public key model
(with random oracles) while the WMS multisignature (whose security is proved in the
KOSK model) must impose additional requirement on the traditional PKIs to ensure se-
curity (e.g., it requires the CAs and users to perform specific protocols to get public key
certificated).

Note that security of multisignatures in the KOSK model relies on the trust of the CAs.
While security of multisignatures in the plain public key model does not. Therefore, our
scheme reduces the trust of the third party (e.g., CA) because even a malicious CA can’t
do any harm to the honest users in our system.

Our scheme consists of the following algorithms (or protocols):

Setup(1λ): On input a security parameter λ, select global public parameters pp =
(G, GT , p, g, e, H, Hm), where Hm: {0, 1}∗ −→ G, H: G −→ G and
Hb: {0, 1}∗ −→ {0, 1} are secure hash functions (viewed as random oracles here).
This algorithm may be run by a trust party.

Gen(pp): On input pp, an honest user i selects random xi←−Zp, then sets its pri-
vate/public key pair (ski, pki) as where

ski = H(pki)xi , pki = gxi .

MSign(pp, ski, M): On input pp, message M , user i (i = 1, . . . , �) executes the follow-
ing:

1. Pick a random bit bi = Hb(ski‖M) and a random r
R←−Zp and compute

si ←− ski · Hm(M ‖bi)r and ti ←− gr.

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 451

2. Broadcast σi = (si, ti, bi) as the partial signature for message M (which is a
standard signature already).

Given partial signatures σ1, . . . , σ�, any one can compute the multisignature for
group L′ = (pk1, . . . , pk�) as follows:

1. Set L0 = (pki1 , . . . , pkik
), where bic = 0 for c = 1, . . . , k and L1 =

(pkj1 , . . . , pkjn), where bjd
= 0 for d = 1, . . . , n (� = n + k).

2. Compute

σ0 =
k⊗

c=1

σic =
(k∏

c=1

sic ,
k∏

c=1

tic

)

and

σ1 =
n⊗

d=1

σjd
=

(n∏
d=1

sjd
,

n∏
d=1

tjd

)
.

3. Output σ = (σ0, σ1) (and as well as L = (L0, L1), M) as the multisignature.

MVf(pp, M, σ, L): Given pp, L = (L0, L1), message M , and an alleged multisignature
σ = (σ0, σ1) where σ0 = (s0, t0), σ1 = (s1, t1), a verifier accepts the multisigna-
ture if both

e(s0, g) = e
(
Hm(M ‖0), t0

)
·

∏
pki ∈L0

Ai,

and

e(s1, g) = e
(
Hm(M ‖1), t1

)
·

∏
pki ∈L1

Ai,

where Ai = e(H(pki), pki) and rejects otherwise.

The scheme is correct because both

e(s0, g) = e

((∏
pki ∈L0

H(pki)xi

)
· Hm

(
M ‖0

)r
, g

)

= e
(
Hm

(
M ‖0

)r
, g

)
·

∏
pki ∈L0

e
(
H(pki), gxi

)

= e
(
Hm(M ‖0), t0

)
·

∏
pki ∈L0

e
(
H(pki), pki

)

= e
(
Hm(M ‖0), t0

)
·

∏
pki ∈L0

Ai,

452 H. Qian et al.

and

e(s1, g) = e

((∏
pki ∈L1

H(pki)xi

)
· Hm(M ‖1)r, g

)

= e
(
Hm(M ‖1)r, g

)
·

∏
pki ∈L1

e
(
H(pki), gxi

)

= e
(
Hm(M ‖1), t1

)
·

∏
pki ∈L1

e
(
H(pki), pki

)

= e
(
Hm(M ‖1), t1

)
·

∏
pki ∈L1

Ai

hold.

REMARK 2. In our scheme, we divide the group of signers L into two sub groups
(L0, L1) that indicates the random bit used by each group of signers. While in verifica-
tion of a multisignature, it seems to compute Ai = e(H(pki), pki) necessary which needs
one pairing computation. While this computation is once for all and can be finished when
checking the validity of the public key certificates of signers. Therefore this computation
of pairing can be saved through pre-computation before performing multisignature veri-
fication since Ai is independent from the content of messages. Comparing with those in
the plain public key model (Bellare and Neven, 2006; Bagherzandi et al., 2008), our mul-
tisignature scheme is one of the most efficient scheme in verification since our scheme
achieves O(1)-verification (respective to pairing computations) through precomputation.
Surely, by using such a technique, our multisignatures can be verified online.

REMARK 3. As in many applications, signers might not know who (included L) are go-
ing to sign the message M , it is also interesting to find a proper multisignature scheme
that can be applied to this situation. Our scheme achieve such a useful feature indeed.
Therefore, it security only prevents forgery on a new message (Lu et al., 2006; Ris-
tenpart and Yilek, 2007), not a pair of message/signers as those in Bellare and Neven
(2006), However, it can be realized if we replace the message ‘M ′ by ‘M ‖L′ as note by
Bagherzandi et al. (2008).

4. Security of Our Multisignatures

In this section we first explain the techniques of our proof and then present our proof in
the random oracle model for the construction.

4.1. Our Proof Technique

Our construction results in a tight security reduction by using the approaches from Katz
and Wang (2003). In the following proof we assume that the adversary attacks the first
signer with pk1 without loss of generosity.

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 453

In the construction of our scheme, each signer participating in the multisigning pro-
tocol MSign(pp, ski, M) only generates a signature related to a fixed bit b (determined
by the secret key sk and the message M) if he/she is given a message M . Thus we
should simulates such a multi-signing oracle to respond the queries, namely we only re-
spond with a partial signature σ1 with b = 1 − β for message M where β is determined
when the adversary queries the random oracle Hm(· ‖M). However, for the random ora-
cle Hm(·), we must answer the queries for both Hm(0‖M) and Hm(1‖M). Therefore,
we provide perfect simulations for all the oracles.

Finally, when an adversary outputs a forgery that with a multisignature σ = (σ0, σ1)
for L0 and L1, then either pk1 ∈ L0 or pk1 ∈ L1 must hold. Without loss of generosity
we assume that pk1 ∈ Lb′ for b′ ∈ {0, 1}. Thus we can conclude that either b′ = β or
b′ = 1 − β and each case happens with the same probability 1

2 since β is perfectly hidden
from the adversary (not determined by any previous queried information) as stated in Katz
and Wang (2003). If b′ = β, we will show that one can extract ha for given the forgery
and (g, ga, h), solving the Computational Diffie–Hellman problem, otherwise not.

4.2. Security

We state the result of security for our multisignature scheme in the following theorem.

Theorem 1. If there is an algorithm A in the random oracle model that (t, qs, qh, �, ε)-
breaks our scheme, then there is an algorithm B that (t′, ε′)-solves the CDH problem,
where

t′ = t + O(2qh + 2qs + 2� + 1) · Te,

and

ε′ =
ε

2
.

Te is the running-time of exponentiation in G, qh and qs are the bound of two hash queries
to Hm, H and signature queries, respectively.

Proof. The strategy of our proof is to construct algorithm B that solves the computational
Diffie–Hellman problem, by utilizing algorithm A which (t, qs, qh, �, ε)-breaks our mul-
tisignature scheme where qh = qH + qHm is the total number of hash queries.

Suppose B is given (g, ga, h) ∈ G×G×G for random numbers a←−Zp, h←−G, and
asked to find ha. Without loss of generality, assume user 1 is the honest signer. B simu-
lates the random oracles Hm(·) and H(·), the signature oracle OMSign(pp, pk�, M, L) for

providing user 1’s partial signatures valid under the public key pk� def= pk1 = gx1 def= ga

with x1
def= a unknown to B.

Setup. B gives A the public key pk� = ga and other public parameters (G, GT , e, Hm(·),
g, H(·)).

454 H. Qian et al.

Hm(M ‖b)-Queries. B responds to queries to random oracle Hm(·) as follows: If there
is a tuple (M, β, r, r′, Hm(M ‖0), Hm(M ‖1)) already in the Hm-list which is ini-
tially empty, return Hm(M ‖b); otherwise, execute the following.

1. Choose two random numbers r, r′ ←−Zp, a random bit β←− {0, 1};
2. Set Hm(M ‖β) = gr and Hm(M ‖1 − β) = h · gr′

;
3. Add (M, β, r, r′, Hm(M ‖0), Hm(M ‖1)) to the Hm-list;
4. Return Hm(M ‖b).

H(X)-Queries. B initializes an H-list which only has (pk�, h · gk, k) for k
R←− Zp, by

setting H(pk�) = h · gk and then executes as follows: If (X, H(X), k) has been

defined, return H(X); otherwise choose k
R←− Zp, return H(X) = gk and add

(X, H(X), k) to the H-list.

Note that if the argument of the query cannot be parsed as X ∈ G, B simply returns
a random element of G, while preserving consistency if the same query has been
asked before.

OMSign(pp, pk�, M)-Queries. B proceeds as follows:

1. Find (M, β, r, r′, Hm(M ‖0), Hm(M ‖1)) in the Hm-list (where Hm(M ‖β)=
gr and Hm(M ‖1 − β) = h · gr′

).
Without loss of generosity, we assume that A has asked the corresponding
hash values; otherwise B just acts as if it is responding to the hash queries to
Hm(·).

2. Randomly choose α from Zp and compute

s1 = (ga)k−r′ (
hgr′)α

=
gak

gar′

(
hgr′)α

=
(hgk)a

(hgr′)a
·
(
hgr′)α

=
(
hgk

)a ·
(
hgr′)α−a

=
(
hgk

)x1
(
hgr′)α−x1

= H(pk1)x1Hm(M ‖1 − β)α−x1

= H(pk1)x1Hm(M ‖1 − β)γ ,

t1 = gγ = gα
(
gx1

)−1 = gα
(
ga

)−1
,

b1 = 1 − β,

where γ = α − a = α − x1.
3. Output σ1 = (s1, t1, b1).

Note that σ1 = (s1, t1, b1) is valid because γ is random (due to the randomness
of α).

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 455

Output ha. Eventually A outputs a multisignature forgery σ = (σ0, σ1) where σ0 =
(s0, t0) and σ1 = (s1, t1), on message M� with respect to L0 = (pki1 , . . . , pkik

)
where bic = 0 for c = 1, . . . , k and L1 = (pkj1 , . . . , pkjn) where bjd

= 0 for
d = 1, . . . , n (� = n + k). Since it is a valid forgery we know M� /∈ M (the set
of previously queried messages for partial signatures from user 1). Then, it follows
that for some γ0, γ1 ∈ Zp,

s0 =
(k∏

c=1

H(pkic)
xic

)
· Hm

(
M�‖0

)γ0

, t0 = gγ0
,

and

s1 =
(n∏

d=1

H(pkjd
)xjd

)
· Hm

(
M�‖1

)γ1

, t1 = gγ1
.

Then, B executes the following to compute ha:

1. Find (M�, β, r�, r′, Hm(M�‖0), Hm(M�‖1)) in the Hm-list,
2. Let Lβ = (pk1, pkf2 , . . . , pkfw) where w ∈ [1, �] (and pkf1 = pk1).
3. If pk1 /∈ Lβ , abort; otherwise perform additional queries H(pkfi) for

i = 1, . . . , w, making sure that H(pkfi) (for i = 2, . . . , w) are defined.
4. Let Δ be the number of public keys {pkfi } such that

pkfi = pk1

for i = 1, . . . , w.
5. Compute and output

ha =
((

sβ
)

·
(
tβ

)−r�

·
∏

pkfi
∈Lβ ∧pkfi

�=pk1

pk
−kfi

fi
·
(
ga

)−k1Δ
)Δ−1

.

(1)

This is correct because

(
sβ

)
·
(
tβ

)−r�

·
(∏

pkfi
∈Lβ ∧pkfi

�=pk1

pk
kfi

fi

)−1

·
(
ga

)−k1Δ

=
(
sβ

)
·
(
g−r�)γβ

·
(∏

pkfi
∈Lβ ∧pkfi

�=pk1

(
gkfi

)xfi

)−1

·
(
ga

)−k1Δ

=
(
sβ

)
·Hm

(
M�‖β

)−γβ
(∏

pkfi
∈Lβ ∧pkfi

�=pk1

H(pkfi)
xfi

)−1

·
(
ga

)−k1Δ

=
∏

pkfi
=pk1

H(pkfi)
xfi ·

(
ga

)−k1Δ

456 H. Qian et al.

=
((

hgk1
)x1

)Δ ·
(
gx1

)−k1Δ

= haΔ, (2)

where H(pkfi) = gkfi for pkfi �= pk1 and x1 = a.

In the simulation, B perfectly simulates the random oracle Hm(·), OMSign(·, ·, ·).
Therefore, A’s view is identical to that in the real world with random oracles. However,
when the adversary A finally outputs the valid forgery, B can succeed in outputting ha

solving the Diffie–Hellman problem with probability 1
2 . This is true because the proba-

bility of pk1 ∈ Lβ is 1
2 since β is perfectly hidden from A as stated in Katz and Wang

(2003).
Therefore, B succeeds in solving the CDH problem (i.e., outputting ha) with proba-

bility

εB =
εA
2

. (3)

Finally, for the running-time of B, we take into account the running-time t of A, the
exponentiations on hash queries A made, and the linear number of exponentiations in
each signing query and 2� + 1 exponentiation on extracting ha. This takes time at most
t + O(2qh + 2qs + 2� + 1) · Te, where Te is running-time of exponentiation and qh, qs

are the number of hash queries to Hm and signature queries OMSign(·, ·, ·), respectively.

5. Interesting Feature and Application

An interesting feature of our multisignatures is that our scheme achieves the round opti-
mality of communication. Namely, the generation of multisignatures is non-interactive,
this feature is also very useful for applications in some special networks. In Bellare and
Neven’s multisignature scheme (Bellare and Neven, 2006) and those of Bagherzandi et
al. (2008), Ma et al. (2009), the multisignature generation requires a network to be a com-
plete graph where any two nodes of the network are bidirectionally connected (messages
can be sent in either direction). In fact, assuming the signers are connected to each other
via point-to-point links over which they can send messages actually is necessary when
multisignature generation needs more than one round of interaction.

On the contrary, our schemes can work on the networks with incomplete graphs be-
cause the way we generate multisignatures ‘non-interactively’. Thus, our scheme does
not need to assume that the signers are connected to each other via point-to-point links
bidirectionally.

Consider the following scenario described in Fig. 2, suppose there are five signers
over the network and each can only send messages to other signers according to the
arrows’ direction with A −→ C, B ←→ C, D −→ C, F −→ C, F ←→ G and
E −→ D. Our question is how A, B, C, D, E, F and G can generate a multisignature
over such a network. Obviously, those multisignature schemes with multiple rounds of

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 457

Fig. 2. Network with incomplete graph.

communication can’t generate a multisignature over such a network, because after some
signers send their messages, they can’t get back the responses from the receivers which
leads to the failures of executing the interactive protocols. However, by using our scheme
the multisignature can be finally output by C (could be a sink in a network) since all
the information can finally flow to C over such a network and there are no needs for the
information to flow back because our schemes are a non-interactive one.

5.1. Additional Related Work

The BGLS scheme was originally proposed for the purpose of aggregate signatures
(Boneh et al., 2003), and was later shown Bellare et al. (2006) to yield a secure multisig-
nature scheme. However, the BGLS scheme is extremely inefficient in multisignature ver-
ification. In principle, sequential aggregate signatures (Lysyanskaya et al., 2004; Neven,
2008) can be used to construct multisignatures as well. However, this approach has draw-
backs such as interactive signing (signers cannot contribute their partial signatures in-
dependently) and expensive verification time. Other aggregate signatures impose special
strong assumption on time synchronization (Gentry and Ramzan, 2006; Ahn et al., 2010)
and strong registration operational assumption for multisignatures as well.

6. Conclusion

Multisignature is an ad hoc signature scheme that is of great use in secure routings. In this
paper, we presented an efficient and tightly-secure non-interactive multisignature scheme
in the plain public key model. Our scheme reduces the trust assumption on the third party
and achieves optimal rounds of communication simultaneously. This scheme, to our best
knowledge is the first construction which achieves tight security reduction (to the CDH
problem) without interactions in the plain public key model. Furthermore, our scheme
only needs O(1) (pairings) in verification through pre-computation. We believe it is one
of the most practical schemes currently available in many realistic application scenarios.

458 H. Qian et al.

Since our scheme works in the random oracle model, it is more interesting to design a
non-interactive scheme without random oracles in the plain public key model with tight
reduction. We leave it as an open problem.

Acknowledgements. The authors would like to thank anonymous referees for their help-
ful suggestions on improving the paper. Besides, This work has been supported by the
National Natural Science Foundation of China, Grant numbers 61172085, 11061130539,
61103221, 61271118, 61272536 and 61021004.

References

Adams, C., Farrell, S., Kause, T., Monen, T. (2005). Internet x.509 Public Key Infrastructure Certificate Man-
agement Protocol (cmp).

Ahn, J. H., Green, M., Hohenberger, S. (2010). Synchronized aggregate signatures: new definitions, construc-
tions and applications. In: ACM Conference on Computer and Communications Security (CCS’10), pp. 473–
484.

Bagherzandi, A., Jarecki, S. (2008). Multisignatures using proofs of secret key possession, as secure as the
Diffie–Hellman problem. In: Proceedings of the 6th International Conference on Security and Cryptography
for Networks (SCN’08), pp. 218–235.

Bagherzandi, A., Cheon, J., Jarecki, S. (2008). Multisignatures secure under the discrete logarithm assumption
and a generalized forking lemma. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS’08), pp. 449–458.

Barr, K., Asanović, K. (2006). Energy-aware lossless data compression. ACM Transactions Computer Systems,
24, 250–291.

Bellare, M., Neven, G. (2006) Multisignatures in the plain public-key model and a general forking lemma. In:
ACM Conference on Computer and Communications Security (CCS’06), pp. 390–399.

Bellare, M., Rogaway, P. (1993). Random oracles are practical: a paradigm for designing efficient protocols. In:
ACM Conference on Computer and Communications Security (CCS’03), pp. 62–73.

Bellare, M., Namprempre, C., Neven, G. (2006). Unrestricted aggregate signatures. In: ICALP’07. Springer,
Berlin, pp. 9–13.

Boldyreva, A. (2003). Threshold signature, multisignature and blind signature schemes based on the gap–Diffe–
Hellman-group signature scheme. In: Public Key Cryptograpy-PKC 2003. Springer, Berlin, pp. 31–46.

Boneh, D., B.Lynn, Shacham, H. (2001). Short signatures from the Weil pairing. In: Advances in Cryptology-
Asiacrypt’01, LNCS, Vol. 2248. Springer, Berlin, pp. 514–532.

Boneh, D., Gentry, C., Lynn, B., Shacham, H. (2003). Aggregate and verifiably encrypted signatures. In: EU-
ROCRYPT’03, pp. 416–432.

Castelluccia, C., Jarecki, S., Kim, J., Tsudik, G. (2006). Secure acknowledgment aggregation and multisigna-
tures with limited robustness. Computer Network, 50, 1639–1652.

Galbraith, S., Paterson, K., Smart, N. (2008). Pairings for cryptographers. Discrete Applied Mathematics, 156,
3113–3121.

Goldwasser, S., Micali, S., Rivest, R. (1988). A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal of Computing, 17, 281–308.

Gentry, C., Ramzan, Z. (2006). Identity-based aggregate signatures. In: PKC’06, pp. 257–273.
Itakura, K., Nakamura, K. (1983). A public key cryptosystem suitable for digital multisignatures. NEC Research

& Development, 71, 1–8.
Katz, J., Wang, N. (2003). Efficiency improvements for signature schemes with tight security reductions. In:

Proc. 10th ACM Conf. Computer and Communications Security, pp. 155–164.
Kim, J., Tsudik, G. (2005). Srdp: securing route discovery in dsr. MobiQuitous, 247–260.
Lu, R., Lin, X., Shen, X. (2010). Spring: a social-based privacy-preserving packet forwarding protocol for

vehicular delay tolerant networks. In: Proc. IEEE INFOCOM’10, pp. 14–19.
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B. (2006). Sequential aggregate signatures and multisig-

natures without random oracles. In: EUROCRYPT’06, pp. 465–485.

Tightly Secure Non-Interactive Multisignatures in the Plain Public Key Model 459

Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H. (2004). Sequential aggregate signatures from trapdoor
permutations. In: EUROCRYPT’04, pp. 74–90.

Micali, S., Ohta, K., Reyzin, L. (2001). Accountable-subgroup multisignatures: extended abstract. In: ACM
Conference on Computer and Communications Security 2001, pp. 245–254.

Ma, C., Weng, J., Li, Y., Deng, R. (2010). Efficient discrete logarithm based multi-signature scheme in the plain
public key model. Design, Codes and Cryptography, 54, 121–133.

Neven, G. (2008). Efficient sequential aggregate signed data. In: EUROCRYPT’08, pp. 52–69.
Ohta, K., Okamoto, R. (1999). Multisignature schemes secure against active insider attacks. In: IEICE Trans-

actions on Fundamentals, E82-A, pp. 21–31.
Qian, H., Xu, S. (2010). Non-interactive multisignatures in the plain public-key model with efficient verification.

Information Processing Letters, 111, 82–89.
Ristenpart, T., Yilek, S. (2007) The power of proofs-of-possession: securing multiparty signatures against

rogue-key attacks. In: EUROCRYPT’06, pp. 228–245.
Schaad, J. (2005). Internet x.509 Public Key Infrastructure Certificate Request Message Format.

H.F. Qian was awarded a BS degree and a master degree (on algebraic geometry) in
Mathematic Department from East China Normal University, China, in 2000 and 2003,
respectively, and received the PhD degree in the Department of Computer Science and
Engineering, Shanghai Jiao Tong University in 2006. He is currently an associate profes-
sor of the Computer Science and Technology Department in East China Normal Univer-
sity, Shanghai. His main research interests include network security, cryptography and
algebraic geometry.

X. X. Li received the BS degree in mathematics from Nanjing Normal University, Nan-
jing, China, in 1997, the MS degree in mathematics from Nanjing University, Nanjing, in
2000, and the PhD degree in computer science and engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2006. He is currently an associate professor in the School
of Information, East China Normal University, Shanghai. He is also with the State Key
Laboratory of Integrated Service Networks, Xidian University, Xi’an, China. His current
research interests include lightweight cryptography, applied cryptography, coding theory,
disaster recovery, and information security. Dr. Li is involved in several program com-
mittees of international conferences.

X. L. Huang received his PhD in computer science from Shanghai Jiao Tong University,
Shanghai, China in 2007. He is now an associate professor with the Department of Com-
puter Science and Technology in East China Normal University. He is a member of the
IEEE and the ACM. He also serves as a paper reviewer of multiple international journals
and academic conferences. Currently, his research interests mainly focus on large-scale
distributed systems, peer-to-peer computing and network security.

460 H. Qian et al.

Viešojo rakto modelio visiškai saugūs neinteraktyvūs bendrieji parašai

Haifeng QIAN, Xiangxue LI, Xinli HUANG

Bendrojo parašo schema ↪igalina grup ↪e pasirašanči ↪u asmen ↪u sukurti bendr ↪a paraš ↪a viename
dokumente. Tačiau šiuo metu bendrieji parašai turi tokius trūkumus: nepraktiškos rakt ↪u derinimo
prielaidos, sumažėj ↪es saugumas ir neefektyvus parašo tikrinimas. Straipsnyje pasiūlytas bendrasis
parašas neturi paminėt ↪u trūkum ↪u: jis užtikrina visišk ↪a rakto saugum ↪a, išsaugo standartinio Diffie–
Hellman’o metodo privalumus ir garantuoja parašo patikrinimo minimal ↪u laik ↪a O(1).

