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Abstract. Regarding the complexity of actual software systems, including web portals, it is be-
coming more and more difficult to develop software systems such that their real usage will satisfy
their intended usage. To tackle this problem, we can compare the a priori assumptions about how
the system should be used with the actual user behavior in order to decide how the system could be
improved. For this aim, we propose to employ the same formalism to express the intended usage,
the web portal model and the real usage extracted from system usage traces by data mining algo-
rithms. Inspired from BioCham, we propose to use temporal logic and Kripke structure as such a
common formalism.
Keywords: intended usage, real usage, web portal model, linear temporal logic, pattern mining.

1. Introduction

Regarding the complexity of actual software systems, including web portals, there is a
huge gap between how developers want the software system to be used and how it is used
in practice. The functionalities that a software should provide is usually well studied
but there are only the building blocks of the whole system. Requirement specifications
typically contain both functional requirements (what does a system) and non-functional
requirements (characteristics that a software system must exhibit while performing its
task). Both kinds of requirements need to be taken in account when designing a software
system.

As a result, it is not uncommon that software systems suffer from quality problems
that prevent or inhibit their use, e.g., difficulty to find the right information, poor nav-
igation or inappropriate display of information. End-users have their own perspectives,
goals, experience and skills, and it is very difficult, if not impossible, to fully guess the
users’ expectations at the moment that the software system is designed. However, fre-
quently these assumptions hold only partly and are defined only partially. However, it is
not easy to make these assumptions because of great variety of users. First, they have dif-
ferent preferences and features including background knowledge, reasoning styles, and
experience. Second, their needs and goals are different. The web portal visitors seek to
accomplish tasks (doers), to get information (viewers) or relaxation (readers) (Zeldman,
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2001). Third, the type and amount of information the users are interested in strongly dif-
fer. Therefore, one must be capable to compare the a priori assumptions with the actual
user behavior in order to decide how the system should be improved. An a posteriori
evaluation of the difference between the intended and the real usage of a software system
is a critical issue for providing the user with the best software system use experience.

In this article, we focus on web portal. In general, a web portal is a web site which is
an entry point to other websites. It provides users with a single point of access to infor-
mation and services (e.g., e-mail and news). We consider the subclass of web portals and
discuss only the problems related to the specification and design of corporative portals.
A corporate portal, also known as an enterprise portal, enables the collecting, sharing,
and dissemination of information throughout the intranet, extranet and Internet. It can be
thought of as a framework for integrating people, information and processes across orga-
nizational boundaries. The corporate portal design process should start with determining
and understanding users. All design decisions directly depend on the audience the portal
intends to serve. However, assumptions about how the system should be used are usually
not formulated in an explicit way.

To allow automatic reasoning and verification on the indented and real usage, one
needs to represent the system in a formal way. A formal representation of the real system
called “Model” can be used to reproduce the possible real usages of the system. From the
real system, usage traces can be obtained. Intended usage must be defined formally as a
sub-set of the possible usages. The question to be answered from these three elements,
i.e., web portal model, real usage and intended usage, is: do the real usages satisfy the
intended usages providing the web portal model? To tackle this problem, we consider as
a promising approach to employ the same formalism to express the intended usage, the
web portal model and the frequent real usage patterns extracted from the system usage
traces by data mining algorithms. This allows to automate the verification whether the
frequent real usage patterns satisfy the intended usage in the web portal model. Inspired
from BioCham (Chabrier-Rivier et al., 2004, 2005; Calzone et al., 2005a, 2005b), we
propose to use temporal logic and Kripke structure as such a common formalism. This
article extends the work of Besson et al. (2010) providing a new insight of the proposed
method as well as a new language to express the model and the intended usage.

The paper is organized as following. Section 2 presents BioCham that inspired our
work. Then, in Section 3, we present a state-of-the-art on testing and verifying web por-
tals using model checking as well as the linear Temporal Logic and Kripke structure
formalisms that are employed along this article. Section 4 presents our method for mod-
eling a web portal. The model to define intended usage is presented in Section 5. Section 6
presents how real usages are extracted. Afterwards, we describe how intended and real
usage are compared (see Section 7). Finally, we briefly conclude the work in Section 8.

2. Getting Inspired of BioCham

Biocham (Biochemical Abstract Machine; Chabrier-Rivier et al., 2004, 2005; Calzone
et al., 2005a, 2005b) is a formal environment for modeling biological networks. It pro-
vides (1) a rule-based language for modeling biochemical systems with patterns and



Comparing Real and Intended System Usages: A Case for Web Portal 193

constraints, (2) a simple simulator of the rule-based model, (3) a query language based
on CTL (Computation Tree Logic) and (4) an interface to the NuSMV symbolic model
checker for automatically evaluating CTL queries.

An important problem in biology is to model bio-molecular interaction maps, e.g.,
protein-protein and protein-DNA interaction networks. In the literature, information of
two natures can be found about these maps: local interactions of the involved biologi-
cal elements and global behaviour of the interaction map. Examples of local interactions
are (1) if protein P1 and protein P2 are present then they can form a new complex named
P1-P2 and (2) protein P1 can be degraded (disappear). They represent some kind of transi-
tions between states that describe the presence or absence of the proteins (more precisely,
the quantity of the proteins). Global behaviour describes the possible evolutions of the
whole system. For example, some states are reachable while others not, some properties
are invariant, e.g., the presence of the protein P1, or the presence of a cycle.

In this context, biologists seek to be able to express their knowledge in terms of both
local interactions and global behaviour, and then to check if they are compatible, i.e., if
the local interactions lead to the known global behaviour. If it is not the case, then some
of the local interactions can be erroneous and/or some others can be missing. The goal
here is to be able to iteratively remove/add some local interactions and thereby enrich the
model, in order to converge toward a model that exhibits the needed global behaviour.

In Biocham, the local interactions are defined by the means of a Kripke structure
(see Section 3) that models the presence or absence of the different biochemical com-
pounds over time and are represented as rules. Rules in Biocham are asynchronous in
the sense that only one reaction rule is applied at a time. That Kripke structure is a non-
deterministic transition system where the temporal evolution of the system is modeled
by the succession of the transition steps (local transitions or rules), and the different pos-
sible behaviors of the system are obtained by the non-deterministic choice of reactions.
Biocham supports the use of CTL (Computation Tree Logic) as a query language for
querying the temporal properties of models (see Section 3). The known global behaviours
of the biochemical interaction maps are then expressed in the form of CTL formulas. The
state-of-the-art symbolic model checker NuSMV is used to verify whether the CTL for-
mulas are verified on the Kripke structure, i.e., if the provided local transitions lead to the
expected behaviour. Figure 1 presents the BioCham tool.

This work strongly inspired our work, especially for its ability to combine known and
expected knowledge, to encompass a system model, local interactions or actions and a
global behavior, and finally to consider time as the main dimension.

3. Testing and Verifying Web Portals Using Model Checking

Verification and testing of web portals has received significant attention in recent years
(Alalfi et al., 2007; Di Sciascio et al., 2005; Han and Hofmeister, 2006). Web portals
include web pages with different kinds of information such as texts, images, and forms.
Web pages can be static or dynamic. Dynamic pages are the ones that change in an au-
tomatic way. Dynamic pages can change every time they are loaded and they can change
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Fig. 1. Biochemical Abstract Machine – BIOCHAM.

their content based on what user does, i.e., clicking on some text or image. Researchers
are still trying to find effective ways to model and test web portals. In Alalfi et al. (2007),
methods are described and proposed to gather and process different properties related to
the structure of web portals, navigation, behavior and content. Web applications develop-
ment involves a number of new languages, programming and technologies models, that
are used to implement different applications having high quality requirements. Web ap-
plications are sophisticated interactive programs with components that are integrated in
novel ways. Modeling, analyzing and testing these applications present a number of new
challenges to researchers.

Model checking (Clarke et al., 1999) is a formal verification technique. It has been
shown to be especially useful for verifying properties, and identifying bugs related to
process schedules. Model checking is a formal technique for automatically verifying cor-
rectness properties of finite-state systems. Model checking for web portals starts with a
model described by the user, and discovers whether or not properties used by the user are
valid.

Temporal logic is one of the symbolic system to perform model checking. Temporal
logic extends propositional logic that describes the states, with operators for reasoning
over time and non-determinism. Temporal logic is dedicated to express time constraints
or properties of a system (Pnueli, 1992; Dixon et al., 2007; Zhou, 1987; Rossi et al.,
2004; Emerson, 1996). In this article, we will consider LTL (Linear Temporal Logic)
as a convenient formalism to express dynamic properties of our system, especially for
intended usage and real usage.

Several temporal operators are introduced in LTL w.r.t. propositional logic: X φ means
φ is true at the next transition, G φ means φ is always true, F φ means φ finally true, and
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φ U ψ means φ is always true until ψ becomes true. A LTL formula is true if every path
of the Kripke structure, starting from a starting node, satisfies the LTL formula.

LTL formulas can be can be verified on a Kripke Structure which can be represented
as a finite-state automaton. Such an automaton is defined with a set of discrete variables
(Boolean, enumeration, bounded integer [a . . . b]). An instantiation of all the variables
defines a state in the automaton. Transitions between the states (variable instantiations)
are also defined. The semantics of the Kripke structure is given by the set of its paths, i.e.,
the set of infinite sequences of states of the Kripke structure from the start node.

Interestingly, with such a formalism (LTL and kripke structure), we can both define
and reason on a web portal model defined as a Kripke structure, and on the intended usage
and real usages defined as LTL formulas.

Several verification tools have been developed for system analysis based on different
formal models with respect to the web portal specifications. Specifications are expressed
in a logical formalism. In Di Sciascio et al. (2005), a mathematical model of a web
application partitioning the usual Kripke structure into links, pages and actions has been
proposed. Verification is performed using the Symbolic Model Verifier (SMV). In another
approach (Stotts et al., 1998), an automaton is presented to describe the structure of the
links in a hypertext and a branching temporal logic HTL is proposed to describe the
sequence of transitions between states in the automaton.

Haydar et al. (2004) present an approach to formally model web applications for
the purpose of verification and validation using model checking. They use the dynamic
approach by executing the application under test (navigation and form filling), and ob-
serving the external behavior of the application.

Kung et al. (2000) propose a model that extends traditional test models, such as data
flow graph and finite state machines to web applications for capturing their test-related
artifacts. Based on the test model proposed in the paper, test cases for validating web ap-
plications can be derived automatically. Finite-state machines were employed for testing
web applications modeling subsystems of the web applications (Andrews et al., 2005).

A model for the verification of properties of web portals is presented in Flores et al.
(2008). In this work, a website is defined as a collection of web pages which are semanti-
cally connected in some way. Flores et al. (2008) present the logic that is used to specify
properties of the websites, and illustrate the kinds of properties that can be specified and
verified using model-checking. It is shown how to verify properties of a web application
that are specified using Linear Temporal Logic (Manna and Pnueli, 1992), and how to
apply model-checking in order to check the properties of the studied system in practice.
The relation between the proposed model and Kripke structure is established, what makes
possible to apply the model-checking technique to web applications. The most important
issue in such relation is the definition of the labeling function of the Kripke structure.

Navigation on a web application can be defined as the possible sequences of web
pages that a user visit during her/his session. Navigation models are useful for clarifying
requirements and specifying users’ behavior. Many web applications now incorporate
adaptive navigation, where the next page also depends on user type and on which pages
she/he has visited before. A formal approach that uses Statecharts is presented to for-
mally model adaptive navigation (Han and Hofmeister, 2006). This method can help to
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understand how important properties of a navigation model are verified using existing
model-checking tools.

4. Web Portal Model

We now propose a formal grammar to define a web portal model. Let us remind that a
formal grammar G is a 4-tuple G = (N, Σ, P, S) where N is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols that is disjoint from N, P is a finite set
of production rules and S is the starting point of the grammar. We define the grammar
Gwpu = (N, Σ, P, S) to model a web portal where:

• N = { Start, States, State, VariableValue, Instantiation, Value, Transistions, Tran-
sition, StateName }

• Σ = { NL, @, =, ⇒, ; , :, 0 . . . 9, a. . . Z, true, false } where NL denotes the new
line

• S = Start
• P =

Start → States NL Transitions
States → State NL State | State
State → StateName : VariableValue
VariableValue → Instantiation; VariableValue | Instantiation
Instantiation → @[a–Z] + = Value
Value → true | false | [0–9]+ + | [a–Z]+

Transitions → Transition NL Transition | Transition
Transition → StateName ⇒ StateName | StateName ⇒
StateName : VariableValue
StateName → S[1–9][0–9]*

A sentence of Gwpu:

• “S1: @document = P1; @Goal = G” means that S1 is a state such that the variable
@document is equal to “P1” and the goal “G” is true. Thereby we state that the
user has the goal “G” when she/he arrives to the page “P1”.

• “S2: @document = P2; @category = C1” means that S2 is a state such that the
variable @document is equal to “P2” and the current page’s category is “C1”.

• “S1 → S2: @userIslogged = true” means that the user can go from state S1 to state
S2 if the variable @userIslogged is equal to true, i.e., if the user is logged in.

A web portal model defined with the grammar Gwpu can be automatically transformed
into a Kripke structure.

5. Intended Usage

In addition to traditional LTL formulas on Kripke structure that defines the web portal
model, we introduce variables in the LTL formulas in order to be able to express certain
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constraints, such as, e.g., “at least one goal is reached”, without writing a complicated
LTL formula as “F(@Goal1 = true ∧ F @Goal = false) ∨ F(@Goal2 = true ∧ F @Goal2
= false) ∨ F(@Goal3 = true ∧ F @Goal3 = false) ∨ . . . ”. These variables that we add in
the LTL constraint will be replaced by a set of discrete variables of the Kripke structure.
Such variable replacement must be effectuated so that each LTL constraint variable is re-
placed by a different variable of the Kripke structure. We define a LTL formula with vari-
ables to be true if (1) the formula is true for all the possible replacements of the variables
or (2) the formula is true for at least one of the possible replacements of the variables.
To distinct these two types of formulas we add two operators: “Vall” and “Vone”. We
place these operators in front of the LTL formulas containing variables in order to state,
respectively, that “all the instantiations must be true” (Vall) or “at least one instantiation
must be true” (Vone). Consider, for example, a web portal model defined by a Kripke
structure that contains three variables @Goal1, @Goal2 and @Goal3, and the intended
usage expressed by the constraint “at least one goal is reached”. This can we written by
the following LTL formula with variables: “Vone {@Goal1, @Goal2, @Goal3} F (Goal
= true ∧ F (Goal = true))”. After the step of LTL formula’s variables replacement with
the Kripke structure variables, this formula is transformed into “F (@Goal1 = true ∧ F
(@Goal1 = false)) ∨ F (@Goal2 = true ∧ F (@Goal2 = false)) ∨ F (@Goal3 = true ∧
F (@Goal3 = false))”. Consider another example of the intended usage “user can only
have one goal at a time”, which can be written with the following LTL formula with
variables “Vall {@Goal1, @Goal2, @Goal3} ! F(G1 = true ∧ G2 = true)”, which, after
the replacement step, is transformed into “! F(@Goal1 = true ∧ @Goal2 = true) ∧ !
F(@Goal2 = true ∧ @Goal3 = true) ∧ ! F(@Goal1 = true ∧ @Goal3 = true)”. Every
LTL formula’s variable must be replaced by a different Kripke variable. In the previous
example, G1 and G2 must refer to different Kripke variables and cannot be replaced with
the same variable, i.e., ! F(@Goal1 = true ∧ @Goal1 = true) is an incorrect replacement.

We propose the grammar GIU = (N, Σ, P, S) to express intended usage:

• N = {Start, Formula, LTL, LTLOper, Expr, Value, Names}
• Σ = { =, ;, ⇒, ∧, ∨, !, {, }, @, “X”, “F”,“G”, “U”, “V”, “S”,“T” }
• S = Start
• P =

Start → Formula; Start | Formula
Formula → Vone {Names} LTLOper LTL | Vall { Names} LTLOper LTL |

LTLOper LTL
LTL → LTL ∧ LTL | LTL ∨ LTL | Expr ⇒ LTL | LTLOp LTL | Expr |

Expr U Expr | Expr V Expr | Expr S Expr | Expr T Expr | ! LTL
LTLOper → X | F | G | ! LTLOper
Expr → @[a–Z] + = Value
Value → true | false | [0–9] +| [a–Z] +
Names → @[a–Z] +, Names | @[a–Z] +

Following are several examples of intended usage expressed with the grammar GIU :

• Never go three times to the home page: ! F(@document = home ∧
X F(@document = home ∧ X F(@document = home)))
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• Reach at least one goal of @Goal1, @Goal2 and @Goal3:
Vone {@Goal1,@Goal2,@Goal3} F(G1 = true ∧ F(G1 = false))

• User can have only one goal: Vall {@Goal1,@Goal2,@Goal3}
! F(G1 = true ∧ G2 = true)

6. Extracting Frequent Usage Patterns

Frequent usage patterns can be extracted form event files (log files) using sequential pat-
tern mining algorithms. Some frequent web portal usage patterns can be revealed by
extracting sequential patterns as episode rules (Meger and Rigotti, 2004; Mannila et al.,
1997; Min and Kai, 2004), frequent sub-strings (DeRaedt et al., 2002; Dan Lee and De
Raedt, 2004; Weiner, 1973; Ukkonen, 1995) and frequent sub-sequences (Agrawal et al.,
1995; Ayres et al., 2002). Interestingly, these frequent sequential patterns can be trans-
formed into LTL formulas. For example, a frequent sub-string [S1, S2, S3, . . . ] which is,
in our case, a string of successive clicks that appears in at least x% of the log sessions can
be expressed in LTL with the following formula: F(@document = S1∧ X(@document =
S2∧ X(@document = S3∧ X(. . . )))). A frequent sub-sequence [S1, S2, S3, . . . ] which
is a sequence of not necessary successive clicks that appears in at least x% of the log
sessions and such that the consecutive clicks of the extracted sequence appear in the
log session within a window of maximal size y, can be expressed with the following
LTL formula: F(@document = S1∧ X F(@document = S2∧ X F(@document = S3∧
X F(. . . )))). An episode rule [S11, . . . , S1n ⇒ S21, . . . , S2m] which is a couple of se-
quences (S1,S2) of clicks such that if the sequence S1 is present in a log session then S2
is also present afterward with a confidence of at least x% and it appears in at least y%
of the log session, can be expressed with the following LTL formula: G(@document =
S11∧ X(@document = S12 ∧ . . . ∧ @document = S1n∧ X F(@document = S21∧
X(@document = S22 ∧ . . . ∧ X(@document = S2m])))) ∨ ! (@document = S11∧
X(@document = S12 ∧ . . . ∧ @document = S1n))).

7. Comparing Real and Intended Usage Providing the Web Portal Model

Until now, we have described (1) how to model a web portal using a Kripke structure,
(2) how to specify intended usage in LTL and (3) how to extract frequent usage patterns
from usage traces by the means of Data Mining algorithms. To verify that the extracted
frequent usage patterns are coherent w.r.t. the intended usage, defined with the language
GIU providing a web portal model (Gwpu), we check if it exists a path in the Kripke
structure (Gwpu) that satisfies all the intended usages (GIU ) and the LTL formulas ob-
tained from the frequent usage patterns. Thereby, one can verify if the frequent usage
patterns are coherent w.r.t. the intended usage. For doing that, we generate and check the
LTL formula “! (C1 ∧ C2 ∧ . . . ∧ Cn ∧ Cp)” where C1, C2, . . . , Cn are the LTL formulas
specifying the intended usage, and Cp is the LTL formula obtained from a frequent usage
pattern. The negation on the LTL formula comes from the fact that a LTL formula is true



Comparing Real and Intended System Usages: A Case for Web Portal 199

if it is true in all its initial states and for all the paths of the Kripke structure. But our
aim is to check if it exists at least one path that satisfies the LTL formula. So, we use the
idea that if a LTL formula !L1 does not hold on all the computation paths then it exists a
computation path such L1 holds.

A frequent usage pattern is incoherent w.r.t. the intended usage, if no path can follow
the frequent usage pattern while satisfying the intended usage. The frequent usage pattern
is incoherent w.r.t. the intended usage, if the generated LTL formula is true. To check
whether the generated LTL formula is true over the Kripke structure model of a web
portal we use the NuSMV symbolic model checker.

8. Conclusions

We present a method to compare intended usage and real usage in web portal that use the
same formalism (LTL and Kripke structure) to represent the web portal model, intended
usage and real usage. Data Mining techniques are used to extract usage patterns from the
log files.
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Realaus ir prognozuoto sistemos naudojimo palyginimas:
web portalo atvejis

Jérémy BESSON, Audronė LUPEIKIENĖ,Viktor MEDVEDEV

Didėjant program ↪u sistem ↪u, apimant ir web portalus, sudėtingumui vis sunkiau išvengiama
atotrūkio tarp numatyto ir realaus sistemos naudojimo. Išspr ↪esti ši ↪a problem ↪a galima lyginant
išankstines sistemos naudojimo prielaidas su tikr ↪aja naudotoj ↪u elgsena ir tokiu būdu išsiaiškinti,
kaip pakeisti sistemos portal ↪a. Realus naudojimasis portalu nustatomas analizuojant sistemos nau-
dojimo pėdsakus duomen ↪u tyrybos algoritmais. Sprendžiant adekvataus portalo užtikrinimo prob-
lem ↪a siūloma taikyti t ↪a pat↪i formalizm ↪a web portalo modeliui ir prognozuojamam bei realiam
portalo naudojimui aprašyti. Inspiruoti BioCham idėj ↪u straipsnio autoriai siūlo tokiu formalizmu
pasirinkti laiko logik ↪a ir Kripke struktūr ↪a.




