
INFORMATICA, 2012, Vol. 23, No. 2, 203–224 203
© 2012 Vilnius University

Incorporating the Ontology Paradigm
into a Mainstream Programming Environment

Dragan DJURIC, Vladan DEVEDZIC
FON, University of Belgrade
Jove Ilica 154, 11000 Belgrade, Serbia
e-mail: dragan@dragandjuric.com

Received: August 2010; accepted: November 2011

Abstract. The emergence of the Semantic Web have revived the interest in knowledge engineer-
ing and ontologies. Different paradigms often share challenges and solutions, and can complement
and mutually improve each other. This paper presents a simple and agile integration of ontologies
and programming on a small scale, and in a down-to-Earth manner by incorporating the ontol-
ogy paradigm into a mainstream programming environment. The approach is based on metapro-
gramming, which has been used to internalize the ontology modeling paradigm into the Clojure
language. The resulting DSL, Magic Potion, is implemented in Cojure and blends ontology, func-
tional, object-oriented and concurrent paradigms, which is suitable for general-purpose domain
modeling, from technology enhanced learning to business.

Keywords: programming paradigms, multiparadigm languages, ontology paradigm, ontology
languages, metaprogramming, domain-specific languages, programming languages, domain engi-
neering, programming techniques.

1. Introduction

One of the central activities in software development is modeling and implementing busi-
ness domains. Business domain modeling is essentially a kind of domain knowledge
modeling, so knowledge engineering and ontologies can be a solid and sound approach.
However, although knowledge engineering has been indirectly influencing software mod-
eling practices for a long time, ontologies and semantic technologies are still rarely used
in software development. Current ontology languages and tools neither fit current soft-
ware development practices well, nor they are easy to use with mainstream programming
languages and tools, although different paradigms often share challenges and solutions
(Vaira and Čaplinskas, 2011). Moreover, good practices for managing the development
of ontologies remain largely vague and are still a research topic (Lavbicand Krisper,
2010).

On the other hand, general-purpose programming languages still do not provide inter-
nal support for semantically rich domain-driven programming. Of course, it is possible to
extend the grammar of a specific language to include such support. However, extending
grammars of widely used languages may not be easy and the relevant community may



204 D. Djuric, V. Devedzic

not adopt it easily. An alternative can be to develop and use special-purpose libraries
(e.g., McBride, 2002), but it always adds complexity and impedance mismatch. Yet an-
other alternative is to use homogeneous metaprogramming. It is a craft and a process
of using tools and languages for creating, modifying, adapting, adjusting, and otherwise
transforming other programs. Some programming languages support metaprogramming
on mainstream platforms in such a way that developers can extend the language/platform
with the features they need and implement first-class support for ontology paradigm – to
incorporate the ontology paradigm in the host platform.

This paper presents a lightweight metaprogramming approach to bringing semantics
and ontologies closer to software engineering environments – incorporating the ontology
paradigm into a general-purpose programming language as an internal meta Domain-
Specific Language (DSL; Djuric and Devedzic, 2010).

The approach is based on the application of metaprogramming to incorporate the on-
tology modeling paradigm into a programming environment based on Java ecosystem, as
an embedded domain-specific language for modeling business domains. It relies on the
use of Clojure, an emerging language for Java Virtual Machine (JVM) that offers homo-
geneous metaprogramming support (Hickey, 2008). This work is conceptually guided by
Modeling Spaces, an abstract framework for studying heterogeneous modeling problems
in a more uniform way (Djuric et al., 2006).

The objective was to find a way to introduce support for semantically rich domain-
driven programming in the host environment in a pragmatic, down-to-Earth manner, suit-
able for small development teams with limited resources. The result is an internal meta
domain-specific language, called Magic Potion, that blends ontology, functional, object-
oriented and concurrent paradigms to offer a concise means for developing business do-
main models.

After the introduction, the second section gives a brief overview of the foundations
and enabling technologies that this work is based on. The third section identifies some
typical areas in software engineering that ontologies can improve, and define require-
ments that a solution should fulfill. The fourth section presents Magic Potion, a meta DSL
that incorporates the ontology paradigm in Clojure language and Java platform to support
semantically rich means for business domain modeling/programming. The fifth section
discusses the application of the presented approach in some software engineering tasks
beyond domain modeling. The sixth section presents the results of an evaluationof the ap-
proach, and the seventh brings the discussion on its suitability for software engineering.
The paper uses an example of an art dealership business domain that is simplified but still
tailored to illustrate the elegance and practicality of the presented solution for difficult
modeling tasks.

2. The Foundation and Related Work

2.1. Modeling Spaces

A domain model is a conceptual model of a system. It abstractly represents the system,
usually by describing entities and their relations (Gasevic et al., 2009). Mainstream soft-



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 205

ware development methodologies (Larman, 2004) often incorporate domain layer at the
core of their architecture as the representation of the real-world concepts (e.g., business-
related), and build the supporting infrastructure around it. A typical infrastructure in-
cludes the orthogonal aspects of security, persistence, communication, distributed and
parallel computation, etc. These aspects are also based on their own orthogonal models
of the respective domains.

Models, in their broadest meaning of being abstract representations of real-world
things, are built using modeling languages. Here, any computer program is considered a
model of the real world and thus any programming language a modeling language. Many
heterogeneous languages often interoperate and are used at many levels of abstraction
or to define one another. The description of the approach has been based on Modeling
Spaces (Djuric et al., 2006), an encompassing framework for studying heterogeneous
modeling and meta-modeling problems inspired by Model-Driven Architecture (MDA;
Schmidt, 2006).

Model-Driven Architecture (Schmidt, 2006) is an ongoing software engineering ef-
fort driven by Object Management Group (OMG). It defines three viewpoints (levels of
abstraction) from which a certain system can be analyzed. Starting from a specific view-
point, the following system representations (viewpoint models) can be defined: Com-
putation Independent Model (CIM), Platform Independent Model (PIM) and Platform
Specific Model (PSM). MDA is based on a four-layer meta-modeling architecture that
has been used as an inspiration and was further generalized to n-layered modeling archi-
tecture by Modeling Spaces framework.

Figure 1 shows a general n-layered modeling architecture (Gasevic et al., 2009). The
M0 layer is the real world, abstractly represented using models (M1 layer). Models are
created using concepts defined in metamodels (M2), which are created using concepts de-
fined in meta-metamodels (M3). The topmost layer contains the super-metamodel (Mn),
which is metacircular (defined by its own concepts).

The term represents denotes that models stand in place of real-world things, acting
on their behalf in some specific context. Models’ concepts conform to metaconcepts that
define them, in the sense that metaconcepts determine their nature, specify their precise
meaning and form, and identify essential qualities. Each paradigm has its own variations
of meaning for these terms.

A Modeling Space (MS; Djuric et al., 2006) is a modeling architecture based on a par-
ticular super-metamodel. Every layer above M0 in this hierarchy conforms to the higher
layer, finally reaching the top layer containing the self-defined super-metamodel.

The important thing to understand is that this architecture depends on the context;
the position of some thing is not absolute. In a multiparadigm approach, there are many
modeling spaces. Some models represent the same thing independently, i.e., from dif-
ferent perspectives (parallel spaces), or a model from one modeling space can represent
something from another space (orthogonal spaces).



206 D. Djuric, V. Devedzic

Fig. 1. Multi-layer modeling architecture.

2.2. Metaprogramming

Metaprogramming is a process of making programs (metaprograms) that manipulate
other programs as data (object programs) (Sheard, 2001). Typical metaprogramming in-
cludes:

• dynamic generation of source code (SQL expressions, scripts);
• using built-in language extension mechanisms (Java annotations);
• metaprogramming languages that extend the host language or create a new one;
• creating compilers, etc.

Metaprogramming languages can be heterogeneous, when the meta-language is dif-
ferent from the object language and homogeneous, when the meta-language and the object
language are the same. Heterogeneous languages (TXL, Stratego/XT, ML etc.; Sheard,
2001) usually offer more possibilities than homogeneous ones, but require very special-
ized knowledge of both the metaprogram and the object program internals and are more
difficult to learn and use.

Recently, general purpose languages with metaprogramming capabilities have started
to attract a substantial attention. They offer more metaprogramming support than main-
stream languages like Java or C#. Clojure, Ruby, Python, Perl, Lua and other dynamic
languages offer various metaprogramming techniques.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 207

2.3. Domain-Specific Languages

A Domain Specific Language (DSL; Van-Deursen and Visser, 2000) is a computer lan-
guage targeted at a specific kind of problem, rather than any kind of problem as is the case
with general-purpose computer languages. DSLs are, by design, simpler than general-
purpose languages. DSLs have been around for quite some time, but have recently be-
come more popular due to the rise of domain-specific modeling and model-driven engi-
neering. The concept of a DSL is quite close to that of ontology – both provide terminol-
ogy for representing specific problem domains.

DSLs can be internal (embedded, homogeneous), when the facilities of the host lan-
guage are utilized to create a DSL that also conforms to the host language, and external
(heterogeneous), which use their own custom syntax and require building a special parser
and tools (Langlois et al., 2007). Typical examples of internal DSLs are expectations
in JMock, parts of Ruby on Rails framework, and many libraries in Lisp; external DSL
examples are CSS, SQL, and ant.

2.4. Clojure

Clojure (Hickey, 2008) is a recently developed language that compiles directly to the
Java or CLR bytecode. Being a dialect of Lisp language, it inherits its simplicity, high
expressiveness and adaptability, as well as a strong theoretical foundation. Better yet,
it is a pragmatic language that leaves out historical intricacies of Lisp while embracing
modern mainstream platforms (Java and .NET), allowing seamless integration with their
ubiquitous libraries.

Clojure is a functional language that models the real world as a set of functions that
take certain values and produce others. Pure functions have no side effects, they do not
change any external memory. In contrast to today’s prevailing imperative style, they do
not have any effects on memory. To the extent the program is fully functional, it does not
modify anything that is not local to the function, and thus there is no need for synchro-
nization.

As in other powerful functional languages, Clojure code can define functions that
create other functions, functions that receive other functions as parameters, and functions
that combine other functions with a set of variable bindings, called closures. Clojure also
fully supports macros. Macros are essentially functions that generate Lisp (Clojure) code;
they are programs that write other programs. These powerful facilities that are awkwardly
implemented and rarely found in mainstream programming languages are essential for
writing embedded DSLs (VanDeursen and Visser, 2000).

Transactional memory is similar to concurrency control found in database transac-
tions, where concurrent access to a shared memory is controled by transactions that guar-
antee atomicity. Clojure has a built-in support for concurrency via an implementation of
software transaction memory (Shavit and Touitou, 1997) that protects mutable references
that can change the immutable values (represented by various data structures) they hold
only inside a transaction.

More details on Clojure and Lisp can be learned from Halloway (2009), Graham
(1993), Hickey (2011) and Volkmann (2009).



208 D. Djuric, V. Devedzic

2.5. Description Logics and Ontologies

Description Logics (DL) languages are formalisms for representing knowledge (Baader et
al., 2007). This is one of the main theoretical cornerstones of ontologies and the Semantic
Web (Berners et al., 2001), the intelligent layer of the largest distributed information sys-
tem in the world – the World Wide Web. Ontological languages are very descriptive and
theoretically sound modeling languages. The Semantic Web standard ontology language
is Web Ontology Language (OWL; Motik et al., 2008), an extension of RDF (Klyne et
al., 2004). However, the Semantic Web technologies are still too resource-demanding and
developer-unfriendly to reach the envisioned usability. Still, they have popularized quite a
few good ideas that this work aims to make more practical and approachable for software
engineers through this research.

The main constructs in DL theory are atomic concepts, as unary predicates, and
atomic roles as binary predicates on the given domain. Complex concepts and roles are
defined over atomic ones using logical constructors like negation, intersection, union, etc.
For example, if Customer, Artist are atomic concepts on the domain of all people in the
world (Customer � ¬ Artist), is a complex concept of all customers that are not artists.
Such languages are equipped with a formal logic-based semantics.

A great advantage of DLs is availability of reasoning mechanisms usually based on
tableau or hyper-tableau (HT) algorithm (Motik et al., 2007). Tableau is a graph and
is designed for concept satisfiability. A HT algorithm is applicable to DLs knowledge
bases (KB) extended with description graphs (DGs) . It is also a classification algo-
rithm.

3. Ontology-Based Software

3.1. Domain Modeling and Ontologies

Currently, the most popular mainstream platforms are centered around the object-oriented
(OO) paradigm. Object-oriented programs are supposed to be based around well defined
and flexible objects that expose flexible behavior while hiding the limiting internal im-
plementation and actual data. However, OO approach has lately been heavily criticized
for its poor suitability for building parallel applications; the practical applications often
divert to essentially non-OO solutions implemented in OO languages1 (Fowler, 2004).

In addition, OO suffers from other serious limitations (Gasevic et al., 2009):
• it models behavior, not the semantics of data;
• it often requires large ceremony and self-discipline for supporting domain-

modeling tasks that are not built-in (constraints, complex associations between
objects, etc.);

• it is not based on any mathematically sound theory, which leads to ad-hoc imple-
mentations that are difficult to analyze;

1Anemic Domain Model (anti)pattern coupled with Service Layer pattern are the most obvious example.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 209

• its concept of inheritance, as implemented in mainstream OO languages, is not in
accordance with the set theory;

• its mutable objects are not suitable for parallel computations.
On the other hand, business domain modeling is essentially a kind of knowledge mod-

eling (Gasevic et al., 2009), a field of artificial intelligence that became attractive through
the Semantic Web movement (Shadbolt et al., 2006). Semantic Web is based on ontolo-
gies, a very descriptive, flexible and theoretically sound means for knowledge modeling
based on description logics, mathematical formalisms for representing knowledge. How-
ever, XML-based Web Ontology Language (OWL; Shadbolt et al., 2006) ontologies have
some practical drawbacks. They are not executable, which means they are stored in repos-
itories written in, say, Java and have to be accessed and manipulated through repository
APIs (Jena, jena.sf.net), which makes them infrastructure-demanding and programmer-
unfriendly.

The objective is to take what’s best from the ontology paradigm (the expressiveness
and the theoretical background of description logics) and implement it natively in Clojure
to support business domain-driven programming, making it accessible to all JVM-based
programs. The implementation has to blend the ontology paradigm into the existing en-
vironment in a programmer-friendly manner that would feel like the new paradigm is
natively supported in Clojure.

3.2. Enhancing Software with Ontologies

A programming language that natively supports ontologies as a natural means for
domain-driven programming in a programmer-friendly manner can improve software en-
gineering practices in the following ways:

• Semantics-based software development: A programming language that natively
supports semantically rich means for business domain modeling can help pro-
grammers adopt semantic-based approach to programming (Djuric and Devedzic,
2010; Djuric et al., 2010). Current programming languages do not offer such ca-
pabilities. They are sometimes available through library support, which impose a
high impedance mismatch: they are not easy to learn and use, and have poor per-
formance.

• Integration of software and semantic technologies: Native support for semantics
through incorporating the ontology paradigm brings a much closer integration with
other paradigms that are built into the language or are incorporated (Djuric and
Devedzic, 2010).

• Connection to the Semantic Web languages: The incorporated ontology paradigm
is much closer to RDF and OWL than Java, C#, Python, Ruby or any other
widespread language is (Djuric and Devedzic, 2010).

• Component discovery and ontologies: In this area, semantic technologies are pri-
marily used for Semantic Web services (Sycara et al., 2003). The incorporated
paradigm, being the new integral part of the host environment, can be non-
intrusively used for building a specialized ontology in the form of a DSL for de-
scribing the program itself: different modules, components and other parts.



210 D. Djuric, V. Devedzic

• Feature modeling and ontologies. The incorporated ontology meta-DSL can be
used to build a special DSL for semantic feature modeling (Peng et al., 2006) in a
host language that feels natural to software developers.

• Ontology reasoning for software engineering: The models built with the incorpo-
rated ontology language can be used as a source for custom-built reasoners, or can
be transformed to standard ontology languages and used as an input for standard
reasoners (Sirin et al., 2007; Tsarkov and Horrocks, 2006) easier than mainstream
non-semantic language constructs.

• Semantic annotations in software engineering: Semantic annotation is about as-
signing to the entities in the text links to their semantic descriptions. The programs
written in the incorporated language seamlessly integrate with other parts written
in the host language, and can be used to seamlessly annotate other parts of the
program.

• Ontology-driven software architectures: Most current research in this direction is
geared towards semantic web services (Paolucci et al., 2002; Sycara et al., 2003).
Business domain layer is one of the cornerstones of the popular multi-layer soft-
ware architecture (Fowler, 2004). Basing this layer on the ontology paradigm lays
the foundation for a more general ontology-driven architecture.Suitability of the
Incorporated Paradigm

The following key points need to be addressed in developing this DSL (Djuric and
Devedzic, 2010; see also Spinellis’ (2008) requirements):

• Homogeneous approach. Such a DSL should be implemented using the same plat-
form/language as the native one, thus lowering the increase in complexity incurred
by using multiple paradigms.

• Minimum of additional features. This DSL should implement only the features
of ontologies needed for the most common tasks in the host language. With this
approach the disturbance in the application architecture and in the development
process itself tend to minimize.

• Host platform support. Since homogeneous DSL introduces only a small number
of non-intrusive constructs, the resulting implementation of the ontology paradigm
is compatible with standard tools of the host platform.

• Consistency. If implemented using a suitable language, such a DSL makes pro-
gramming with the ontology paradigm almost the same as ordinary programming
and thus transparent.

• Clarity. Relating different platforms, metamodels, and paradigms can be challeng-
ing. It is important that incorporation of any new paradigm creates a clear picture
of what it is good for and why it is needed in the host environment. This paper uses
Modeling Spaces to clarify what’s happening during incorporation of the ontology
paradigm.

• Familiarity. The ontology paradigm is not commonly used in programming, and
many developers may not be familiar with it. To ensure easier adoption, the DSL
should provide an easy integration of the ontology paradigm with the host environ-
ment, in a way that makes the users of the host environment feel comfortable when
using it.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 211

• Tools and services. Availability of tools and consulting services pose a problem
with emerging technologies. The incorporated ontology paradigm and the corre-
sponding DSL should require as simple tools and support as possible. An important
point to take into account is whether the tools are open source and free or not.

• Trends. The resulting solution should support current trends and developers’ inter-
ests, and should be supported by available literature and resources.

4. Magic Potion: Ontology Paradigm Incorporated into a General-Purpose
Programming Language

4.1. Magic Potion

Magic Potion, a meta DSL that introduces the ontology paradigm for business domain
modeling into Clojure, is theoretically based on description logics. As Fig. 2 shows, Clo-
jure is used in the Java technical space (Djuric et al., 2006; Gasevic et al., 2009) to build
Magic Potion as a DSL for creating other, concrete DSLs related to real-world domains.
Magic Potion:

• enables capturing the semantics of business processes (through ontologies);
• seamlessly fits the concepts of rich domain modeling into the concurrent program-

ming paradigm based on Clojure’s Software Transaction Memory;
• is practical and easily comprehensible for software developers, requiring minimal

theoretical knowledge or even less;
• is formally sound, theoretically based on description logics.

In this case, Clojure was a better choice than Scala or JRuby due to the requirements
for native parallel programming support and seamless blend into language’s preferred

Fig. 2. Magic Potion Architecture.



212 D. Djuric, V. Devedzic

data structures. It was a better fit for consistency, homogeneous approach, familiarity,
and host platform support. Other teams may find that other languages fit their challenges
better.

In Clojure’s modeling space, Clojure is considered as a super-metamodel at layer
M3. Clojure defines all metamodels (programs), even itself. Magic Potion is a Clojure
program, a metamodel at layer M2, defined with Clojure functions, macros, and data
structures. Using functions and macros defined in Magic Potion, programmers can cre-
ate models at M1 that describe abstract concepts of some domains and their relations.
These models (the code the programmer has written) become really useful only when the
programmer compiles them with Clojure compiler. At that moment they become mini-
languages that can, when run as programs in memory, describe the customers who have
purchased specific paintings under specific policies on specific dates an have paid specific
prices. Artwork, Purchases and Customers DSLs become metamodels at layer M2. When
executed, they create instances of the respective objects (at M1) that represent real-world
artworks, customers and the process of purchasing (M0).

4.2. Programming with Ontologies

To illustrate what it means to integrate an ontology paradigm into a host environment, an
example from a business domain is used.

Figure 3 shows a UML sketch of a simplified art dealership business domain. Cus-
tomers purchase items from art dealers. The items could be commodities that can be

Fig. 3. Art dealership domain.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 213

bought instantly, or artwork that can be under restricted trade. If the artwork is under the
restricted policy, the purchase has to get the approval from an authority. This would nor-
mally be a part of a much bigger domain that has much more business rules and policies
to take into consideration. This favors the declarative programming style, where arbitrary
predicates can be freely combined.

Magic Potion enables the programmer to use the description logics abstractions
(concepts, properties, roles, restrictions) as if they were parts of Clojure. For example,
the following code declares two properties, aname and human-name, and a concept
customer that uses human-name as one of its roles. Ontology properties are, unlike at-
tributes or associations in object paradigm, independent first-class constructs. Keywords
:restrictions and :super can enhance readability, and are usually not mandatory.

(property aname [string?])

(property human-name
:restrictions [(length-between 2 32)]
:super [aname])

(concept customer
[human-name])

This domain declaration defines the customer function that the programmer can call
to create statements about a customer that can have a valid human name, a string between
2 and 32 characters. If she tries to create an invalid statement, she would get a validation
exception with a report that contains a list of unsatisfied restrictions for each of the prop-
erties. This can be used to produce a nice-looking error report to the user that supplied
the invalid data through, say, a Web form.

(customer ::human-name "A")

java.lang.IllegalArgumentException
([:user/human-name (length_between)])

An attempt to create a customer with valid statements would return its representation
as a Clojure persistent map.

(customer ::human-name "Jason Bourne")
{::human-name "Jason Bourne"}

In addition to unqualified restrictions, which apply to a property regardless of the con-
cept in its range, Magic Potion supports qualified restrictions, which apply to a property
only in the context of a certain concept. The following declaration of a concept item
further restricts aname only when used as a role of item.

(concept item
[(val> aname [(min-length 8) (max-length 256)])])

Now the programmer declare properties that can be used to define statements about
something that contains item, is bought by customer and sold by dealer, and use them



214 D. Djuric, V. Devedzic

as roles in purchase. Magic Potion supports arbitrary predicates on all statements of a
role; e.g., min-count constrains multiplicity.

(property contains [item?])

(property bought-by [customer?])

(property sold-by [dealer?])

(concept purchase
[(ref> bought-by)
(ref> sold-by)
(ref*> contains [] [(min-count 1)])])

Note that, since the domains of these properties are not simple datatypes but individu-
als represented as immutable maps of statements, the role has been defined to use Clojure
refs instead of direct values. To suit parallel computation better, Clojure uses immutable
data structures (in this case maps). Once a map is created, it represents a “snapshot”
value of an individual that cannot be changed. If direct values have been used, purchase
would eternally refer to the specific customer information even when that information
becomes outdated (for example, when the customer who moves to a new address makes
new purchases).

Refs enable us to create an immutable statement that references another individual that
can change its immutable value only in the scope of an STM-managed transaction. ref>,
val>, ref*> and val*> are functions that create roles that use appropriate referencing
and multiplicity one or many.

The next few declarations follow the same principles.

(concept trade-policy)

(concept free-trade-policy
:super [trade-policy])

(concept restricted-trade-policy
:super [trade-policy])

(property has-trade-policy [trade-policy?])

(concept artwork
[has-trade-policy]
[item])

(concept commodity
:super [item])

(concept restricted-purchase
[(ref> approved-by [authority?])]
[purchase]



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 215

Clojure multimethods provide polymorphism based on arbitrary functions, not only
on parameter type. As the newly implemented ontology paradigm natively blends into
Clojure, the programmer can take advantage of multimethods for some of more complex
predicates. Depending on the type of the item (in a general case, on any arbitrary function
of an item) this tiny artwork DSL enables creating and validating the statements about
different kinds of purchases.

(defmulti eligible-for-free-trade? type)

(defmethod eligible-for-free-trade?
:commodity [an-item]
true)

(defmethod eligible-for-free-trade?
:artwork [an-item]
(-> an-item has-trade-policy free-trade-policy?))

(concept instant-purchase
[(ref*> contains [eligible-for-free-trade?])]
[purchase]

This example demonstrated the use of the ontology paradigm incorporated into a
general-purpose programming language. Clojure has a native support for metaprogram-
ming, so Magic Potion actually consists of functions and macros that do not differ at all
from regular Clojure code. Since the ontology paradigm sits on top of Clojure’s native
data structures, the domain functions create validated business objects as statements in
ordinary Clojure maps with additional metadata, which are used in a usual Clojure way.

5. Magic Potion Beyond Business Domain Modeling

Although business domain modeling is certainly the central use case for ontologies in-
corporated into software engineering process, due to their native integration with the host
language they can be very useful in other ways as well. In the case of Magic Potion, the
following discussion explains these additional use cases:

5.1. Semantics-Based Software Development

Magic Potion does not only provide a means to capture domain expert’s knowledge in a
model that could be transferred to code – it is a way to create both a semantically rich
domain model and the working code at the same time. It is designed to be friendly to
domain experts and programmers.

Moreover, it fits well into mainstream agile software development process and sup-
ports its practices and tools due to the native integration into Clojure language and Java
platform. Magic Potion supports refactoring, testing with the automatic testing tools,
management by issue tracking integration tools, automatic formatting, formatting com-
pliance, syntax checking, code completion and other techniques and tools available for
the host language (Clojure).



216 D. Djuric, V. Devedzic

5.2. Integration of Software, Semantic Technologies, and Semantic Web Technologies

The way that Magic Potion describes the data by the statements is designed to be easily
transformed to Semantic Web technologies, notably RDF. For example, the transforma-
tion of the following Magic Potion individual (a Clojure map) to RDF is straightforward
(RDF is shown in the shorthand Turtle syntax):

(def purchase-1 (ref ::bought-by buyer-ref
::sold-by seller-ref
::contains #artwork-ref-1 artwork-ref-2))

(to-rdf purchase-1)

<purchase-1>
bought-by "buyer-ref-uuid";
sold-by "seller-ref-uuid";
contains ("artwork-ref-1"
"artwork-ref-2").

Concepts and properties can also be transformed to RDF(S) and OWL, but since
Magic Potion is based on different kind of DLs than OWL, the transformation at that level
is not straightforward and complete. For example, Magic Potion constraint functions have
to be translated to OWL restrictions manually, and many of the complex constraints may
be not possible to describe in OWL.

5.3. Component Discovery

Since Clojure supports metadata, Magic Potion is a natural choice for describing Clo-
jure artifacts with rich semantics. The described components, Clojure functions, proto-
cols, data, agents, references etc. can be later analyzed using that metadata for the pur-
pose of discovering and combining the components. Combined with the transformation
to RDF/OWL, such metadata can be read and used by Semantic Web discovery services.

(concept policy-processor
[support-policies authorized-by support-protocols]

(def policy-service (with-meta policy-function
(policy-processor ...)))

Suitability of the component for a particular task can be determined in a straightfor-
ward way, through the taxonomy of concepts and properties, or with algorithms that can
determine the similarity of interfaces analyzing the domain and the constraint functions.

5.4. Feature Modeling

Similarly to the way that general feature modeling is proposed to be supported by Se-
mantic Web technologies (Wang et al., 2005), it can be supported by Magic Potion in
Clojure. Standard feature relationships: mandatory, optional, alternative, and additional



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 217

constraints: requires and excludes can be supported by an internal DSL created by Magic
Potion. The following listing shows a greatly simplified part of such a DSL:

(concept feature . . .)
(property mandatory [feature?])
(property alternative [feature?])
(concept Concept

[(ref*> mandatory)
(ref*> alterantive [] [all-distinct?])])

These feature models are used to annotate Clojure artifacts and are suitable for pro-
cessing by other Clojure and Java code, while still being available to other tools through
the transformation to RDF that was previously described.

5.5. Ontology Reasoning for Software Engineering

The most straightforward way for the incorporated ontology paradigm to facilitate rea-
soning on the host platform is through its transformation to RDF/OWL ontologies, which
are then used as an input for reasoners that support these technologies. An alternative for
Magic Potion is to build a plugin for reasoners such as Pellet, Racer or FaCT that enable
them to use Magic Potion data as input. Potentially, the most feature-rich and easy-to-se
approach is to create a custom reasoner based on the hyper-tableau algorithm (Motik
et al., 2007), but that is not a high-priority task at this stage of implementation (there are
other more important areas where MP implementation can be improved).

Direct reasoning on business domain models and metadata written in a general pur-
pose language (Clojure) on a mainstream platform (Java) would yield benefits not only
from the improved analysis of the created code through reasoning, but from the expo-
sure of the approach of reasoning on software to a wider audience involved in solving
real-world problems.

5.6. Semantic Annotations in Software Engineering

All software artifacts can be considered entities that are being annotated with semantic
annotations. Compared to the annotations written in RDF/OWL, “incorporated” annota-
tions written in the host language have the advantage of being easy to implement and use
by software engineers, while still being available to translate to RDF/OWL and exposed
to Semantic Web tools. Clojure’s support for metadata is an excellent attachment point.

For example, the following listing uses an annotation DSL and shows a Magic Potion
concept being annotated with Magic Potion statements regarding a mandatory feature
(see Section 5.4):

(annotate policy-processor :mandatory security-test)



218 D. Djuric, V. Devedzic

5.7. Ontology-Driven Software Architectures

Clojure programs created in Magic Potion are ontology-driven. They integrate semanti-
cally rich business domain models with other mainstream and/or emerging paradigms,
notably functional, service-oriented, message-oriented, concurrent paradigm, etc.

The key point related to this issue is that integrating the ontology paradigm into a
suitable host language makes that paradigm suitable to be an architectural cornerstone
for the suitable class of applications. It also broadens the potential to be combined as
a complement with the architectural aspects based on other paradigms. For example,
incorporating the ontology paradigm into Clojure on Java platform via Magic Potion,
makes it suitable for creating business domains models/programs that can be used for
parallel computation, thanks to the good fit with the Clojure’s immutable data structures
and Software Transaction Memory (Djuric and Krdzavac, 2010; Djuric and Devedzic,
2010).

6. Evaluation: Is This Approach Good Enough?

Finding the best approach to solve a particular task has never been easy; there are many
solutions, each of them having advantages and drawbacks. To this end, there has been a
concrete experience with Magic Potion as an internalized paradigm and it is summarized
here.

Since Magic Potion has been created to suit specific practical needs, it is considerably
simpler and faster than heavyweight ontology solutions such as Jena. It is not a surprise
that it has exactly those advantages that were defined as a goal (Section 4.1), and disad-
vantages that the authors were prepared to tolerate (comparative immaturity, obscurity,
the need for custom maintenance etc.). However, these metrics are mostly subjective,
specific to the authors and not generally relevant.

Fortunately, there has been an opportunity to evaluate this approach with a group of
30 students who attended a MSc course on Software Engineering Tools and Methodolo-
gies. Most of them were active software developers familiar with mainstream languages
(Java/.NET/PHP), more than half of them were familiar with Semantic Web technology
(OWL, Jena), a few of them were familiar with alternative languages (Ruby, Python)
and none of them was familiar with Clojure and advanced metaprogramming. During
the course, they first had to learn Clojure and then learn and use Magic Potion to create
domain models for the domains they had worked with previously.

Regarding the key points that have been identified, the following has been found (sum-
marized in Table 1):

• Homogeneous approach. Once the developers have learned the basics of Clojure,
a majority of them (23) found Magic Potion easier to work with than external Jena
repository and OWL. Almost one half of them think that Magic Potion’s integration
with Clojure’s native constructs helped them better understand Clojure, immutable
structures and the functional paradigm.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 219

Table 1

Magic Potion evaluation summary

Issue Advantages Disadvantages

Homogeneous approach – Ease of use
– Helps understand Clojure

– Applicable only in host languages
with rich metaprogramming
support

Minimum of
additional features

– Most of MP features are
frequently used

– Easy to learn
– Helps learning Semantic Web

technologies

– Does not support all features of the
original paradigm

Host platform support – Blends well with the host platform
– Supported by all regular tools

– The original platform may not be
preferred by some developers

Consistency – Fully consistent with the host
language

No

Clarity – Easier to understand, learn, and
use

No

Familiarity – Intuitive to the host platform’s
developers

– Advantages limited to the host
language

Tools and services – Can be supported by all tools and
services of the host platform

– Good for prototyping and
experimentation

– Applicable languages are still
emerging

– Not yet suitable for mainstream
projects

Trends – Advanced developers are
interested in such technologies

– There is a clear need
– Suitable host languages gain much

attention from the industry lately

– Not yet in the mainstream
– Still mostly applicable for

prototypes and experiments

• Minimum of additional features. For completing their programming tasks for the
course, the majority of the developers used most of Magic Potion’s features. Those
who were already familiar with OWL found Magic Potion concise, focused, and
very easy to learn, while those who had to learn the ontology paradigm learned it
faster than the developers that were learning it through Semantic Web technologies.

• Host platform support: At first, developers that were used to heavyweight IDEs
and graphical tools were intimidated by the spartan features in Clojure plugins
for Eclipse and NetBeans. After a couple of weeks, 6 of them preferred such an
environment, while the rest did not, but still found Magic Potion not requiring
more than Clojure.

• Consistency. The majority of developers (24) found learning Magic Potion easier
than learning advanced topics of Clojure. They weren’t able to find inconsistencies
between Magic Potion and idiomatic Clojure.

• Clarity. Mentally relating different platforms, metamodels, and paradigms was the
most challenging task for all developers. Modeling Spaces helped, but only 10 fully



220 D. Djuric, V. Devedzic

understood how Magic Potion was created and had an idea how they would do simi-
lar thing for another paradigm. Only a few understood these issues if heterogeneous
approach and multiple platforms were involved.

• Familiarity. All developers that learned Clojure found Magic Potion very intuitive.
• Tools and services. All developers were concerned with how they would integrate

this approach in their everyday workflows. They liked the idea and even had some
ideas on their own in other domains, but were skeptical regarding its feasibility in
larger projects. Those who had previous experience with dynamic languages were
more enthusiastic about trying it for their experimental projects first.

• Trends. The developers found the concept of incorporating the ontology paradigm
very compelling and in accordance with their interests. More than a half of them
(18) had heard about metaprogramming, emerging alternative languages, and func-
tional programming, and had been interested in the topic before, but the majority
didn’t practically pursue these interests due to time constraints and inability to find
an appropriate learning path. They found the homogeneous metaprogramming ap-
proach supported by Clojure much easier than they had expected or seen in other
metaprogramming tools.

7. Discussion: Who Is This For?

Magic Potion has been used in several domains of various scope (Djuric et al.,
2010; Djuric and Devedzic, 2010). Table 2 shows a summary of the gathered insights
regarding the suitability of the ontology paradigm for the software engineering. The

Table 2

Suitability of the incorporated ontology paradigm

Objective Advantages Challenges

Suitability for domain
modeling

Supports independent properties, com-
plex hierarchies and multimethod-
based polymorphism

Specific to the host language

Integration with Seman-
tic Web technologies

Individuals are easily tranformable to
RDF

IBased on different kind of DLs – con-
straint functions cannot be transformed
to OWL constraints in a straightfor-
ward manner

Transactional semantics Well-defined, STM-based, easy to use
and maintain

Clojure STM – specific

Suitability for parallel
computation

One of the design goals Distributed parallelization is not sup-
ported out of the box

Formal soundness Theoretically based on Description
Logics

The implementation trades some of the
purity for practicality

Developer friendliness Concise and very readable Clojure – specific



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 221

discussion covers Magic Potion’s approach of using STM to manage immutable DL-
based concept-property models with mutable references as an example of the ontology
paradigm working in accord with other paradigms on the host platform (functional, con-
current, object-oriented). Not surprisingly, Magic Potion fulfills the major goals that have
been defined in Section 4.1, while it has a long way to go regarding characteristics related
to maturity and support.

The focus was to take a promising new language tailored for parallel programming
(Clojure), and make it suitable for ontology-based and programmer-friendly domain mod-
eling with as little intervention as possible. The main goal was to provide a concise and
expressive formally sound language for domain modeling suitable for parallel program-
ming. In this regard, Magic Potion succeeds.

Both Magic Potion and traditional approaches are suitable for domain modeling. De-
pending on the implementation, some of these approaches are more or less expressive,
trading expressiveness for performance and easiness of use and vice-verse. Being based
on DLs, MP is quite expressive, while making pragmatic choices for performance and
usability. While mainstream approaches use manual locking, rendering them difficult and
error-prone for parallel computation, Magic Potion employs STM to solve the concur-
rency problem in domain-heavy programming in a more elegant manner. As with expres-
siveness, most traditional languages are either simple but not very powerful of are very
expressive but verbose. MP manages to be concise and very readable.

On the downside, MP approach still lacks maturity. It is expected to mature, since it
is a new approach that is only in its infancy. That same infancy can also be an advantage,
since it is an open canvas without the legacy baggage of older technologies. On the other
end of the maturity argument, MP does not require any additional tool or methodology,
just plain Clojure, so it does not impose a separate adoption cost. If Clojure is a good fit
for a project and there is a need for domain modeling, MP can be seamlessly introduced.
Magic Potion is still green, but fits excellently with the existing technologies, taking the
best from both worlds.

It is clear that this approach is still exotic to the majority of mainstream developers.
It can be a great fit for exploratory and experimental programming, prototyping and spe-
cialized solutions. The need to use multiple paradigms anyway may bring it closer to
more conservative projects once the emerging languages with strong metaprogramming
support that gain lots of attention of more curious and advanced developers today, also
gain more ground in mainstream projects.

8. Conclusions

Homogeneous metaprogramming enables multiparadigm programming on a single plat-
form/language. Embedding ontologies through a homogeneous DSL in a host language to
support the features of the ontology paradigm that were needed is an alternative to adding
a new platform to the environment. It avoids the complexity of multi-platform develop-
ment. It requires less tooling, code complexity is lower while maintaining succinctness,
while developers can stay inside the comfort zone of their preferred environment.



222 D. Djuric, V. Devedzic

Magic Potion is a DSL meta-language for domain modeling in software development,
theoretically based on description logics. It enables knowledge modeling in concurrent
applications through the use of ontologies implemented in Clojure. In fact, it can be
used together with Clojure to transform an ontology into an executable DSL. Yet, unlike
ontology modeling languages and tools widely used in the Semantic Web community,
Magic Potion is more practical from the perspective of a software developer. Its major
advantages over other ontology representation languages include its concise definition
and readability, as well as its well-defined transactional semantics, executability, and eas-
iness to use and maintain.

It becomes easier than ever to experiment with different paradigms in a software
team’s primary software environment, tailor them to the team’s needs, share and evolve
them, similarly to how the programmers develop libraries and frameworks. Ontologies
are a useful tool for many of the common tasks in software engineering. This work is a
pragmatic and practical approach that brings the most important features of the ontology
paradigm into the software engineering realm with as little disruption as possible.

References

Baader, F., Calvanese, D., McGuinness, D.L., Patel-Schneider, P., Nardi, D. (2007). The Description Logic
Handbook Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge.

Berners-Lee, T., Hendler, J., Lassila, O. et al. (2001). The semantic web. Scientific American, 284(5), 28–37.
Djuric, D., Devedzic, V. (2010). Magic potion: incorporating new development paradigms through DSLs. IEEE

Software, 27(5).
Djuric, D., Krdzavac, N. (2010). Software transaction memory powered domain modeling. Submitted to

Computing and Informatics.
Djuric, D., Gasevic, D., Devedzic, V. (2006). The tao of modeling spaces. Journal of Object Technology, 5(8),

125–147.
Djuric, D., Jovanovic, J., Devedzic, V., Sendelj, R. (2010). Modeling ontologies as executable domain specific

languages. In: Proceedings of the 3rd Indian Software Engineering Conference (ISEC 2010).
Fowler, M. (2004). Patterns of Enterprise Application Architecture. Addison-Wesley.
Gasevic, D., Djuric, D., Devedzic, V. (2009). Model Driven Engineering and Ontology Development, 2nd edn.

Springer, New York.
Graham, P. (1993). On Lisp: Advanced Techniques for Common Lisp. Prentice-Hall, Upper Saddle River.
Halloway, S. (2009). Programming Clojure. Pragmatic Bookshelf.
Hickey, R. (2008). The Clojure programming language. In: Proceedings of the 2008 Symposium on Dynamic

Languages.
Hickey, R. (2011). Clojure homepage. Accessed online from: http://www.clojure.org on 24 June

2011.
Klyne, G., Carroll, J.J., McBride, B. (2004). Resource description framework (RDF): concepts and abstract

syntax. W3C Recommendation, 10.
Langlois, B., Jitia, C.E., Jouenne, E. (2007). Dsl classification. In: OOPSLA 7th Workshop on Domain Specific

Modeling.
Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and

Iterative Development. Prentice-Hall. Upper Saddle River.
Lavbič, D., Krisper, M. (2010). Facilitating ontology development with continuous evaluation. Informatica,

21(4), 533–552.
McBride, B. (2002). Jena: A semantic web toolkit. IEEE Internet Computing, 6(6), 55–59.
Motik, B., Shearer, R., Horrocks, I. (2007). Optimized reasoning in description logics using hypertableaux.

Lecture Notes in Computer Science, 4603, 67.



Incorporating the Ontology Paradigm into a Mainstream Programming Environment 223

Motik, B., Parsia, B., Hoekstra, R., Horrocks, I., Sattler, U. (2008). OWL 2 web ontology language: structural
specification and functional-style syntax. W3C Working Draft, W3C.

Paolucci, M., Kawamura, T., Payne, T., Sycara, K. (2002). Semantic matching of web services capabilities. In:
The Semantic WebISWC 2002, pp. 333–347.

Peng, X., Zhao, W., Xue, Y., Wu, Y. (2006). Ontology-based feature modeling and application-oriented tailor-
ing. Reuse of Off-the-Shelf Components, 87–100.

Schmidt, D.C. (2006). Guest editor’s introduction: model-driven engineering. Computer, 25–31.
Shadbolt, N., Hall, W., Berners-Lee, T. (2006). The semantic web revisited. IEEE Intelligent Systems, 21(3),

96–101.
Shavit, N., Touitou, D. (1997). Software transactional memory. Distributed Computing, 10(2), 99–116.
Sheard, T. (2001). Accomplishments and research challenges in meta-programming. Lecture Notes in Computer

Science, 2196, 2–44.
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y. (2007). Pellet: a practical owl-dl reasoner. Web

Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.
Spinellis, D. (2008). Rational metaprogramming. IEEE Software, 78–79.
Sycara, K., Paolucci, M., Ankolekar, A., Srinivasann, N. (2003). Automated discovery, interaction and compo-

sition of semantic web services. Journal of Web Semantics, 1(1), 27–46.
Tsarkov, D., Horrocks, I. (2006). FaCT++ description logic reasoner: system description. Automated Reasoning,

292–297.
Vaira, Ž., Čaplinskas, A. (2011). Software engineering paradigm independent design problems, gof 23 design

patterns, and aspect design. Informatica, 22(2), 289–317.
Van Deursen, A., Visser, J. (2000). Domain-specific languages: an annotated bibliography. ACM Sigplan

Notices, 35(6), 26–36.
Volkmann, M. (2009). Clojure – functional programming for the JVM. Accessed online from:

http://java.ociweb.com/mark/clojure/article.html on 12. Sept 2009.
Wang, H., Li, Y.F., Sun, J., Zhang, H., Pan, J. (2005). A semantic web approach to feature modeling and

verification. In 1st Workshop on Semantic Web Enabled Software Engineering (SWESE 05), Galway.

D. Djuric is an associate professor at the University of Belgrade, Serbia. His research
interests include software engineering and intelligent systems. He received his PhD in
information systems from the University of Belgrade.

V. Devedzic is a professor of computer science at the University of Belgrade, Serbia.
His main research interests include software engineering, intelligent systems, and ap-
plications of artificial intelligence techniques to education and healthcare. Homepage:
http://devedzic.fon.rs/.



224 D. Djuric, V. Devedzic

Ontologijos paradigmos jungimas ↪i bendrosios paskirties
programavimo aplink ↪a

Dragan DJURIC, Vladan DEVEDZIC

Atsiradus semantiniam pasauliniam saitynui, požiūris ↪i žini ↪u inžinerij ↪a ir ontologijas pakito.
Skirtingose paradigmose gana dažnai tenka spr ↪esti panašias problemas ir j ↪u sprendimo būdai
taip pat gana dažnai esti panašūs. Tokios paradigmos gali abipusiai viena kit ↪a papildyti ir pa-
tobulinti. Šiame straipsnyje pasiūlyta, kaip, jungiant ontologijas ↪i bendrosios paskirties progra-
mavimo aplink ↪a, jas paprastai ir lanksčiai panaudoti rašant nedideles programas. Siūlomas būdas
grindžiamas metaprogramavimu, panaudojant kur↪i, Clojure programavimo kalba papildoma on-
tologinio modeliavimo paradigma. Šitaip praplėsta Clojure kalba buvo realizuota specialios paskir-
ties programavimo kalba Magic Potion, integruojanti ontologij ↪u, funkcinio programavimo, objek-
tinio programavimo ir lygiagreči ↪uj ↪u skaičiavim ↪u paradigmos. Nors ir specializuota, ši kalba nėra
pritaikyta kokiai nors konkrečiai dalykinei sričiai ir gali būti vartojama plačiam uždavini ↪u ratui –
pradedant e-mokymusi ir baigiant e-verslu – programuoti.


