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Abstract. Fuzzy identity based encryption (FIBE), proposed by Sahai and Waters, is a new kind of
identity based encryption. It allows users with identity w can decrypt ciphertext for w′ if and only
if w is close enough to w′. Recently, Ren et al. proposed a new FIBE scheme and claimed it is fully
CCA2 secure in the standard model with a tight reduction. However, in this paper we will show
that their scheme is not correct. Furthermore, the key generation process of their scheme cannot
resist the collusion attack, which is a basic security requirement for FIBE. At last, we propose a
new fully secure FIBE scheme based on the Sahai–Waters FIBE scheme and prove its security by
using the “dual system encryption” technique.
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1. Introduction

Shamir (1984) introduced the concept of identity based encryption (IBE), whose motiva-
tion is to ease the certificate management. A user’s public key in an identity based system
is some unique information about the identity of the user (e.g., email address). How-
ever, only in 2001 the first practical identity based encryption was realized by Boneh and
Franklin using bilinear maps on elliptic curve. However, their scheme can only be proved
secure in the random oracle model. In Eurocrypt’03, Canetti et al. proposed a weaker
security notion, selective identity (selective-ID) security for IBE, relative to which they
were able to build an inefficient but secure IBE scheme in the standard model (Canetti
et al., 2003). In Eurocrypt’04, Boneh and Boyen proposed two new efficient selective
identity secure identity based encryption schemes without random oracles (BB1 IBE and
BB2 IBE) (Boneh and Boyen, 2004a). In Crypto’04, they improved their scheme to full
security (Boneh and Boyen, 2004b) but with a loose security reduction. In Eurocrypt’05,
Waters improved their work by proposing a fully secure identity based encryption with
tight security proof in the standard model (Waters’ IBE; Waters, 2005). In Eurocrypt’06,
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Gentry gave another interesting efficient fully secure identity based encryption with tight
security proof in the standard model but based on a strong assumption (Gentry’s IBE;
Gentry, 2006).

1.1. Fuzzy Identity Based Encryption

In Eurocrypt’05, Sahai and Waters introduced a new concept, fuzzy identity based en-
cryption (FIBE), which aimed at error-tolerance property of IBE (Sahai and Waters,
2005). In a FIBE, a user with the secret key for the identity w is able to decrypt a ci-
phertext encrypted with the public key w′ if and only if ID and ID ′ are within a certain
distance of each other as judged by some metric. FIBE at least has two interesting appli-
cations, the first is an IBE system with biometric identities, the error-tolerance property
of FIBE allows for a private key (derived from a measurement of a biometric ) to decrypt
a ciphertext encrypted with a slightly different measurement of the same biometric. Sec-
ondly FIBE can be used for “attribute-based encryption (ABE)”, where both ciphertexts
and secret keys are associated with sets of attributes. Decryption is enabled if and only
if the cipertext and secret key attribute sets overlap by at least a fixed threshold value
d. Goyal et al. (2006) proposed an ABE scheme that provides fine-grained sharing of
encrypted data. Piretti et al. (2006) used FIBE to realize their secure information man-
agement architecture. Later Baek et al. constructed two new efficient FIBE schemes in
the random oracle model (Baek et al., 2007).

1.2. Dual System Encryption

In Crypto’09, Waters (2009) introduced a new methodology named “dual system encryp-
tion” for proving security of encryption systems. In this system, both ciphertexts and pri-
vate keys can take on one of two indistinguishable forms, semi-functional one or normal
one. A semi-functional private key will be able to decrypt all normally generated cipher-
texts; however, a semi-functional private key cannot decrypt a semi-functional ciphertext.
The security can be reduced to a sequence of games, where the challenge ciphertext and
the private keys one by one were changed to be semi-functional. In the finally game, the
challenge ciphertext and all private keys are semi-functional, at which point the adversary
can only guess the challenge plaintext randomly. In TCC’10, Lewko and Waters 2010b)
realized the dual system encryption in the composite order group and thus achieve fully
secure IBE and HIBE scheme with simple structure. In Eucrypto’10, Lewko et al. (2010)
construct the fully secure ABE also by using dual system encryption technique.

1.3. Our Contribution

Recently Ren et al. (2010) claimed to construct a fully CCA2 secure FIBE in the standard
model with a tight reduction. However, we will show that their scheme is not correct at
all. Furthermore, the key generation process of their scheme cannot resist the collusion
attack, which is crucial for FIBE. As an improvement of Ren et al. ’s FIBE result, we
propose a new fully secure FIBE scheme based on the Sahai–Waters FIBE scheme and
prove its security by using the “dual system encryption” technique.
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1.4. Organization

The organization of this paper is as follows. Section 2 gives the definition and security
model for FIBE. We review Ren et al.’s scheme and show their scheme is not correct and
secure at all in Section 3. In Section 4, we propose our new FIBE scheme and prove its
security. We conclude our paper in the last section.

2. Definition and Security Model for FIBE

2.1. Definition

A FIBE consists of the following algorithms.

1. Setup(1k). Taking 1k as the security parameter, the Private Key Generator (PKG)
runs this algorithm to generate its master key mk and public parameters params
which contains an error tolerance parameter d. Note that params is given to all
interested parties while mk is kept secret.

2. Extract(mk, ID). Taking the master key mk and an identity ID as input, the PKG

runs this algorithm to generate a private key associated with ID, denoted by dID.
3. Encrypt(params, ID′, M ). Taking the public parameters params , an identity ID′,

and a plaintext M as input, a sender runs this algorithm to generate a ciphertext C ′.
4. Decrypt(params, dID, C ′). Taking the public parameters params , a private key

dID associated with the identity ID and a ciphertext C encrypted with an identity ID
such that |ID′ ∩ ID| > d as input, a receiver runs this algorithm to get a decryption,
which is either a plaintext or a “Reject” message.

2.2. Security Model

(IND-FID-CCA2 and IND-FID-CPA Security.) The semantic security against an adaptive
chosen ciphertext attack security for a fuzzy IBE system is defined by the following game
between an adversary and a challenger.

Setup. The challenger runs algorithm Setup, and forwards parameters to the adversary.
Phase 1. Proceeding adaptively, the adversary issues queries q1, . . . , qm, where qi is

one of the following:

• Key generation query 〈IDi〉 The challenger runs algorithm KeyGen on IDi

and forwards the resulting private key to the adversary.
• Decryption query 〈IDi, ci〉 The challenger runs algorithm KeyGen on IDi,

decrypts ci with the resulting private key, and sends the result to the adversary.

Challenge. The adversary sends (ID∗, m0, m1) to the challenger, where |ID ∩ ID∗ | < d,
and ID denotes the identity that has appeared in key generation and decryp-
tion query in Phase 1. The challenger selects a random bit k ∈ {0, 1}, sets
c∗ = Encrypt(params, ID∗, mk), and sends c∗ to the adversary as its challenged
ciphertext.
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Phase 2. A executes the following queries:

• Key generation query 〈ID〉, where |ID ∩ ID∗ | < d.
• Decryption query 〈ID, c〉, where c �= c∗.

These queries maybe be adaptive.
Guess. The adversary submits a guess k′ ∈ {0, 1}.
We call an adversary A in the above game an IND-FID-CCA2 adversary. The
advantage of A is defined as |Pr[k = k′] − 1

2 |.

DEFINITION 1. A fuzzy IBE system is (t, ε, qk, qd) IND-FID-CCA2 secure if all t-time
IND-FID-CCA2 adversaries making at most qk key generation queries and qd decryption
queries have advantage of at most ε in the above game.

We call an adversary A an IND-FID-CPA adversary if the adversary remain the same
in the above game except it cannot execute decryption queries. The advantage of A is
defined as |Pr[k = k′] − 1

2 |.

DEFINITION 2. A fuzzy IBE system is (t, ε, qk) IND-FID-CPA secure if all t-time IND-
FID-CCA2 adversaries making at most qk key generation queries have advantage of at
most ε in the above game.

Collusion Attack Security. Collusion attack for a fuzzy IBE system is defined by the
following game between an adversary and a challenger.

Setup. The challenger runs algorithm Setup, and forwards parameters to the ad-
versary.
Phase 1. Proceeding adaptively, the adversary issues queries q1, . . . , qm, where qi

is one of the following:

• Key generation query 〈IDi〉 The challenger runs algorithm KeyGen on IDi

and forwards the resulting private key to the adversary.

Challenge. The adversary can output a valid private key of ID∗ which is not equal
any of IDi (i = 1 . . . , m)
We call the adversary successfully run the collusion attack on the scheme.

3. Cryptanalysis of Ren et al.’s FIBE Scheme

3.1. Review of Ren et al.’s FIBE Scheme

Assume an identity ID = (ID1, ID2, . . . , IDn), where n is the length of ID and ID i ∈ Z∗
p

represents the minimal error tolerance and n > d. Now we wish to create a FIBE scheme
in which a ciphertext created using identity ID′ can be decrypted only by a private key
associated with identity ID, where |ID ∩ ID′ | > d. We also define the Lagrange coefficient
Δi,S for i ∈ Z∗

p and a set S, of elements in Z∗
p : Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j .
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Setup. Let p be a large prime number, G1, G2 are groups of order p. e : G1 × G1 → G2

is a bilinear map, g is a generator of G1, h : (Z∗
p ){0,1} × {1, 2, . . . , n} →

Z∗
p , H : Gn

1 × Gl
2 → Z∗

p are collision-resistant hash functions, where l ∈
Z∗

p . The PKG randomly choose α ∈ Z∗
p , h0, h1, h2 ∈ G1, and two random

polynomials f(x), q(x) ∈ Z∗
p [x] of degree 1 and d − 1 respectively, where

f(x) = ax + b. If h0 = h−a
2 or h1 = h−b

2 , randomly choose f(x) again. The

PKG computes g1 = gα, g2 = gq(0), g3 = g
q(0)
1 . The public parameters are

(g, g1, g2, g3, h0, h1, h2, d, h, H, f(x)) and α, q(x) are the private keys of PKG.
KeyGen. To a user U with identity ID = (ID1, ID2, . . . , IDn), the PKG randomly

chooses r0 ∈ Z∗
p and computes

d0 = r0, di =
(
h0h

r0
1 h

f(r0)
2

) αq(i)
q(0)h(IDi,i)+h(i)

(i = 1, 2, . . . , n),

so the private key of U is dID = (d0, d1, d2, . . . , dn).
Encrypt. To encrypt a message m ∈ G2 with a key associated with identity ID′ =

(ID ′
1, . . . , ID

′
n), randomly choose s ∈ Z∗

p and a polynomial A(x) ∈ Z∗
p [x] of

degree d − 1, compute:

ui = (gh(ID′
i,i)

2 · gh(i))sA(i) (i = 1, 2, . . . , n), v1 = e(g3, h1)sA(0),

v2 = e(g3, h2)sA(0), w = m · e(g3, h0)sA(0)+γ ,

β = H
(
u1, . . . , un, v1, v2, w, m · e(g3, h0

)sA(0)

),

where γ = H(u1, . . . , un, v1, v2, e(g3, h0)sA(0)). The ciphertext of message m is
c = (u1, . . . , un, v1, v2, w, β).

Decrypt. Suppose that a ciphertext c is encrypted with a key associated with identity ID′

and we have a private key for identity ID, where |ID ∩ ID′ | > d. Choose an arbitrary
d-element subset S = {i|i ∈ {1, . . . , n}, ID i ∈ ID ∩ ID′ } and decrypt

∏
i∈S e(ui, di)Δi,S(0)

vd0
1 v

f(d0)
2

= e(g3, h0)sA(0),

γ = H
(
u1, . . . , un, v1, v2, e(g3, h0)sA(0)

)
,

w

e(g3, h0)γ
= R, β′ = H(u1, . . . , un, v1, v2, w, R),

and verify whether β′ = β. If yes, decrypt R
e(g3,h0)sA(0) = m. Otherwise, return an

error message.
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3.2. On the Correctness

In Ren et al. (2010), the correctness of the new fuzzy IBE scheme is shown as follows
where ID i ∈ ID ∩ ID′ if i ∈ S.

e(ui, di) = e
((

g
h(ID′

i,i)
2 · gh(i)

)sA(i)
,
(
h0h

r0
1 h

f(r0)
2

) α·q(i)
q(0)h(IDi,i)+h(i)

)
= e

(
gsA(i)(q(0)h(IDi,i)+h(i)),

(
h0h

r0
1 h

f(r0)
2

) α·q(i)
q(0)h(IDi,i)+h(i)

)
= e

(
gsA(i),

(
h0h

r0
1 h

f(r0)
2

)αq(i)
)
,∏

i∈S

e(ui, di)δi,S(0)

=
∏
i∈S

e
((

gsA(i), h0h
r0
1 h

f(r0)
2

)αq(i)
)δi,S(0)

= e
(
gs
1, h0h

r0
1 h

f(r0)
2

)Σi∈SA(i)q(i)δi,S(0)

= e
(
gs
1, h0h

r0
1 h

f(r0)
2

)A(0)q(0)

= e(g3, h0)sA(0)e(g3, h1)sr0A(0)e(g3, h2)sf(r0)A(0),∏
i∈S e(ui, di)δi,S(0)

vd0
1 v

f(d0)
2

= e(g3, h0)sA(0),

γ = H
(
u1, . . . , un, v1, v2, e(g3, h0)sA(0)

)
,

w

e(g3, h0)γ
= m · e(g3, h0)sA(0) = R,

β′ = H(u1, . . . , un, v1, v2, w, R) = β, R/e(g3, h0)sA(0) = m.

But actually, the equation of

e
(
gs
1, h0h

r0
1 h

f(r0)
2

)Σi∈SA(i)q(i)δi,S(0) = e
(
gs
1, h0h

r0
1 h

f(r0)
2

)A(0)q(0)

cannot hold.
In the reconstruction of an interpolating polynomial, n point-values are required to

reconstruct a polynomial with degree n − 1 to satisfy these n point-values. The degree of
A(x)q(x) is the sum of the degrees of A(x) and q(x), which is 2d − 2. But S = {i|i ∈
{1, . . . , n}, ID i ∈ ID ∩ ID′ } is a d-element subset, which is not 2d − 1, meaning the
above equation cannot hold at all. Thus the Decrypt algorithm is not correct.

3.3. Collusion Attack

Ren et al. claimed that their FIBE scheme is IND-FID-CCA secure, However, in this
section, we show that this is not true. Concretely, there exists a polynomial time adversary
A who can act the collusion attack against the FIBE scheme. Adversary A works as
follows:
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1. In Setup phase, adversary A obtains the public parameters params from the chal-
lenger.

2. In Phase 1 and Challenge phase, adversary A chooses a target identity ID∗ =
(ID ∗

1, . . . , ID
∗
n), denote

ÎD1 = (ID ∗
1, ID21, . . . , IDn1),

ÎD2 = (ID12, ID ∗
2, . . . , IDn2),

. . . . . . . . . . . . . . . . . .

ÎDn = (ID1n, ID2n, . . . , ID ∗
n),

where ID1i �= ID ∗
1 (i = 2, 3, . . . , n), ID2i �= ID ∗

2 (i = 1, 3, . . . , n), . . ., IDni �=
ID ∗

n (i = 1, 2, . . . , n − 1). Note here ÎD1, ÎD2, . . . , ÎDn all satisfies |ID ∩ ID∗ | < d.

(a) First adversary A issues key generation queries on every ÎDi (i = 1, . . . , n)
two times, he will get the private keys as follows:

d0

ÎD1
=

{
d0
01 = r0

1, d
0
11 =

(
h0h

r0
1

1 h
f(r0

1)
2

) αq(1)
q(0)h(ID∗

1
,1)+h(1)

,

d0
i1 =

(
h0h

r0
1

1 h
f(r0

1)
2

) αq(i)
q(0)h(IDi1,i)+h(i)

(i = 2, 3, . . . , n)
}

,

d1

ÎD1
=

{
(d1

01 = r1
1, d

1
11 =

(
h0h

r1
1

1 h
f(r1

1)
2

) αq(1)
q(0)h(ID∗

1
,1)+h(1)

,

d1
i1 =

(
h0h

r1
1

1 h
f(r1

1)
2

) αq(i)
q(0)h(IDi1,i)+h(i)

(i = 2, 3, . . . , n)
}

,

d0

ÎD2
=

{
d0
02 = r0

2, d
0
22 =

(
h0h

r0
2

1 h
f(r0

2)
2

) αq(2)
q(0)h(ID∗

2
,2)+h(2)

,

d0
i2 =

(
h0h

r0
2

1 h
f(r0

2)
2

) αq(i)
q(0)h(IDi2,i)+h(i)

(i = 1, 3, . . . , n)
}

,

d1

ÎD2
=

{
d1
02 = r1

2, d
1
22 =

(
h0h

r1
2

1 h
f(r1

2)
2

) αq(2)
q(0)h(ID∗

2
,2)+h(2)

,

d1
i2 =

(
h0h

r1
2

1 h
f(r1

2)
2

) αq(i)
q(0)h(IDi2,i)+h(i)

(i = 1, 3, . . . , n)
}

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d0

ÎDn

=
{

d0
0n = r0

n, d0
nn =

(
h0h

r0
n

1 h
f(r0

n)
2

) αq(n)
q(0)h(ID∗

n,n)+h(n)
,

d0
in =

(
h0h

r0
n

1 h
f(r0

n)
2

) αq(i)
q(0)h(IDin,i)+h(i)

(i = 1, 2, . . . ,n−1)
}

,

d1

ÎDn

=
{

d1
0n = r1

n, d1
nn =

(
h0h

r1
n

1 h
f(r1

n)
2

) αq(n)
q(0)h(ID∗

n,n)+h(n)
,

d1
in =

(
h0h

r1
n

1 h
f(r1

n)
2

) αq(n)
q(0)h(IDin,i)+h(n)

(i = 1, 2, . . . ,n−1)
}

,
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where in dt
ij , i denotes the place in the private key, j denotes the place in the

identity list (ÎD1, ÎD2, . . . , ÎDn), and t denotes the time the key generation
query issued. r0

1, r
1
1, . . . , r

0
n, r1

n are all randomly chosen from Z∗
p .

(b) Note f(x) = ax + b is a public key, thus adversary A can compute

d0
11 = (h0h

r0
1

1 h
f(r0

1)
2 )

αq(1)
q(0)h(ID∗

1
,1)+h(1) ,

=
((

h0h
b
2

)
(h1h2)ar0

1

) αq(1)
q(0)h(ID∗

1
,1)+h(1)

,

d1
11 =

(
h0h

r1
1

1 h
f(r1

1)
2

) αq(1)
q(0)h(ID∗

1
,1)+h(1) ,

=
((

h0h
b
2

)
(h1h2)ar1

1

) αq(1)
q(0)h(ID∗

1
,1)+h(1)

.

Adversary A can then have

A1 =
(
(h1h2)a

) αq(1)
q(0)h(ID∗

1
,1)+h(1) =

(
d0
11

d1
11

) 1
r0
1

−r1
1

B1 =
(
h0h

b
2

) αq(1)
q(0)h(ID∗

1
,1)+h(1) =

d0
11

A
r0
1

1

.

Similarly, adversary A can have

A2 =
(

d0
22

d1
22

) 1
r0
2

−r1
2
, B2 =

d0
22

A
r0
2

2

,

. . . . . . . . .

An =
(

d0
nn

d1
nn

) 1
r0

n −r1
n
, Bn =

d0
nn

A
r0

n
n

.

(c) Adversary A then randomly chooses r ∈ Z∗
p and computes a valid private

key for ID∗

d̃0 = r, d̃1 = B1(A1)r =
(
h0h

r
1h

f(r)
2

) αq(1)
q(0)h(ID∗

1
,1)+h(1) ,

d̃2 = B2(A2)r =
(
h0h

r
1h

f(r)
2

) αq(2)
q(0)h(ID∗

2
,2)+h(2) , . . . . . . . . . ,

d̃n = Bn(An)r =
(
h0h

r
1h

f(r)
2

) αq(n)
q(0)h(ID∗

n,n)+h(n) .

We can verify it is a valid private key for ID∗.

Thus adversary A can successfully collusion attack this scheme.
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4. New Fully Secure FIBE Scheme

4.1. Construction

1. Setup(d). The setup algorithm chooses a bilinear group G of order N =
p1p2p3(where p1, p2, and p3 are distinct primes). We let Gpi denote the subgroup
of order pi in G. It chooses g ∈ Gp1 . Define the universe, U of elements. For
simplicity, we can take the first |U | elements of Z∗

N to be the universe. Namely,
the integers 1, . . . , |U | mod N . Choose t1, . . . , t|u| uniformly at random from ZN .
Choose y uniformly at random in ZN . The published public parameters are:

T1 = gt1 , . . . , T|U | = gt|u| , Y = e(g, g)y.

The master key is t1, . . . , t|u|, y and a generator of Gp3 .
2. KeyGeneration. To generate a private key for identity w ⊆ U the following steps

are taken. A d − 1 degree polynomial q is randomly chosen such that q(0) = y

and randomly Ri ∈ Gp3 (i = 1, . . . , N) are chosen. The private key consists of

components, (Di)i∈w, where Di = g
q(i)
ti Ri for every i ∈ w.

3. Encryption. Encryption with the public key w′ and message M ∈ G2 proceeds as
follows. First, a random value is chosen s ∈ Zp is chosen. The ciphertext is then
published as:

E =
(
w′, E′ = MY s,

{
Ei = T s

i

}
i∈w′

)
.

Note that the identity, w′, is included in the ciphertext.
4. Decryption. Suppose that a ciphertext, E, is encrypted with a key for identity w′

and we have a private key for identity w, where |w ∩ w′ | > d. Choose an arbitrary
d-element subset, S, of w ∩ w′.
Then the ciphertext can be decrypted as

E′∏
i∈S(e(Di, Ei))δi,s(0)

=
E′∏

i∈S(e(g
qi
ti Ri, gtis))δi,s(0)

=
E′∏

i∈S e(g, g)δi,s(0)qis

=
E′∏

i∈S e(g, g)ys

= M.

The last equality is derived from using polynomial interpolation in the exponents.
Since, the polynomial sq(x) is of degree d − 1 it can be interpolated using d points.
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4.2. Assumptions

In this section, we give our complex assumption. These assumptions have been used in
Lewko and Waters (2010b), Lewko et al. (2010).

Assumption 1 (Subgroup Decision Problem). Given (N = p1p2p3, G, G1, e) select ran-
domly g ∈ Gp1 , X3 ∈ Gp3 , T1 ∈ Gp1p2 , T2 ∈ Gp1 and set D = (N, G, G1, e, g, X3). It
is hard to distinguish T1 from T2. The advantage of an algorithm is defined as

Adv1 = |Pr[A(D, T1) = 1] − Pr[A(D, T2) = 1].

DEFINITION 3. Assumption 1 holds if Adv1 is negligible.

Assumption 2 Given (N = p1p2p3, G, G1, e) choose randomly g, X1 ∈ Gp1 , X2, Y2 ∈
Gp2 , X3, Y3 ∈ Gp3 , and set D = (N, G, G1, e, g, X1X2, X3, Y2Y3). Then select T1 ∈ G,
T2 ∈ Gp1p3 at random. It is hard to distinguish T1 from T2. The advantage of an algorithm
is defined as

Adv2 = |Pr[A(D, T1) = 1] − Pr[A(D, T2) = 1].

DEFINITION 4. Assumption 2 holds if Adv2 is negligible.

Assumption 3 Given (N = p1p2p3, G, G1, e), pick randomly g ∈ Gp1 , X2, Y2, Z2 ∈
Gp2 , X3 ∈ Gp3 , α, s ∈ ZN and set D = (N, G, G1, e, g, gαX2, X3, g

sY2, Z2). Then
compute T1 = e(g, g)αs and pick randomly T2 ∈ G1. It is hard to distinguish T1 from
T2. The advantage of an algorithm is defined as

Adv3 = |Pr[A(D, T1) = 1] − Pr[A(D, T2) = 1].

DEFINITION 5. Assumption 3 holds if Adv3 is negligible.

4.3. Security Proof

In this section, we will prove the security of the proposed scheme. We first define semi-
functional keys and semi-functional ciphertexts. Let g2 denote a generator of Gp2 .

Semi-functional keys. At first, a normal secret key (̂Di) (i ∈ w) is generated by using
the KeyGeneration algorithm. Then some random elements γi (i ∈ w) are chosen in
ZN . The semi-functional keys are set as follows:

Di = D̂ig
γi

2 .

Semi-functional ciphertexts. At first, a normal ciphertext (ŵ′, Ê′, Êi) is obtained us-
ing the Encrypt algorithm. Then random elements λi are chosen in ZN . The semi-
functional ciphertexts are set as follows:

w′ = ŵ′, E′ = Ê′, Ei = Êig
λi
2 .
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We organize our proof as a sequence of games. The first game defined will be the real
fuzzy identity-based encryption game and the last one will be one in which the adversary
has no advantage unconditionally. We will show that each game is indistinguishable from
the next (under three complexity assumptions). We first define the games as:

Gamereal: This is a real FIBE security game. The next game, Gamerestricated, will
be like the real security game except that the attacker cannot ask for keys for identities
which are equal to the challenge identity modulo p2. This is a stronger restriction than the
real security game, where the identities must be unequal modulo N . We will retain this
stronger restriction throughout the subsequent games. The reason for it will be explained
in the proof. For 0 < i < q, the Gamei is defined as follows.

Gamei: Let Q denote the set of private keys which the adversary queries during the
games. This game is a real FIBE security game with the two exceptions: (1) The challenge
ciphertext will be a semi-functional ciphertext. (2) The first i keys will be semi-functional
private keys. The rest of the keys in Q will be normal.

Note. In game0, the challenge ciphertext is semi-functional. In gameq, the challenge
ciphertexts and all keys are semi-functional.

Gamefinal: This game is the same with gameq except that the challenge ciphertext is
a semi-functional encryption of random group element of G1.

We will show that these games are indistinguishable in a set of lemmas. Let
AdvgameA denote the advantage in the real game.

Lemma 1. Suppose there exists an algorithm A such that
GameRealAdvA − GameRestricatedAdvA = ε.
Then we can build an algorithm B with advantage > ε

2 in breaking either Assumption 1
or Assumption 2.

Proof. Given g, X3, B can simulate GameReal with A. With probability ε, A produces
identities ID and ID∗ such that ID �= ID∗ modulo N and p2 divides ID − ID∗. B uses these
identities to produce a nontrivial factor of N by computing a = gcd(ID − ID∗, N). We
set b = N

a . We note that p2 divides a and N = ab = p1p2p3. We consider two cases:

1. p1 divides b.
2. a = p1p2 and b = p3.

At least one of these cases must occur with probability > ε
2 . In case 1, B will break

assumption 1. Given g, X3, T , B can determine that p1 divides b by verifying that gb is
the identity and will then test whether T b is the identity. If it is, then T ∈ Gp1 . If it is not,
T ∈ Gp1p2 .

In case 2, B will break Assumption 2. Given g, X1X2, X3, Y2Y3, B can determine
that a = p1p2 by verifying that (X1X2)a is the identity and will then test whether
e((Y2Y3)b, T ) is the identity. If it is, then T ∈ Gp1p3 . If it is not, then T ∈ G.

Lemma 2. Suppose that there exists an algorithm A such that
AdvgameRestricated A − Advgame0 A = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 1.
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Proof. Our algorithm B begins by receiving g, X3, T where g ∈ Gp1 , X3 ∈ Gp3 . It
works as follows:

1. Setup. B chooses random elements t1, . . . , t|U |, y ∈ ZN and sets Ti = gti ,
Y = e(g, g)y for 1 < i < |U |. It sends the public keys PK = (T1, . . . , T|U |,
Y = e(g, g)y) to A.

2. Query phase 1. The adversary A issues a private key query for identity w. B
answers as follows: A d − 1 degree polynomial q is randomly chosen such that
q(0) = y and t′

i(i ∈ w) are randomly chosen in ZN . Then it sets

Di = g
q(i)
ti X

t′
i

3 .

It is a valid simulation to A.
3. Challenge. The adversary A outputs two challenge message M0, M1 and a chal-

lenge identity w∗. Then the ciphertext is formed as

w∗, E′ = Mbe(T, g)y, Ei = T ti (i ∈ w∗),

where b ∈ {0, 1}.
4. Query phase 2. The adversary continues to issue queries qj , where qj is the fol-

lowing:

• Extraction query (γ): as in phase 1 with the constraint that |γ ∩ w∗ | < d.

5. Guess. Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if
b′ = b.

If T ∈ Gp1p2 , then (w∗, E′, Ei (1 < i < |w∗ |)) is a semi-functional ciphertext. If
T ∈ Gp1 , then (w∗, E′, Ei (1 < i < |w∗ |)) is a normal ciphertext. Hence B can use A’s
guess to break Assumption 1 with advantage ε.

Lemma 3. Suppose there exists an algorithm A such that
Gamek−1AdvA − GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Proof. B first receives g, X1X2, X3, Y2Y3, T . It works as follows:

1. Setup. B chooses random elements t1, . . . , t|U |, y ∈ ZN and sets Ti = gti , Y =
e(g, g)y for 1 < i < |U |. It sends the public keys PK = (T1, . . . , T|U |, Y =
e(g, g)y) to A.

2. Query phase 1.

(a) The adversary A issues the ith private key query for identity w when i < k.
B answers as follows: two d − 1 degree polynomial q1, q2 is randomly chosen
such that q1(0) = y, q2(0) = 0. Then it sets

Di = g
q1(i)

ti (Y2Y3)
q2(i)

ti .
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It is a semi-functional key to A.
(b) The adversary A issues the ith private key query for identity w when i > k.

B answers as follows: two d − 1 degree polynomial q1, q2 is randomly chosen
such that q1(0) = y, q2(0) = 0. Then it sets

Di = g
q1(i)

ti (X3)
q2(i)

ti .

It is a normal key to A.
(c) The adversary A issues the ith private key query for identity w when i = k.

B answers as follows: two d − 1 degree polynomial q1, q2 is randomly chosen
such that q1(0) = y, q2(0) = 0. Then it sets

Di = g
q1(i)

ti (T )
q2(i)

ti .

3. Challenge. The adversary A outputs two challenge message M0, M1 and a chal-
lenge identity w∗. Then the ciphertext is formed as

w∗, E′ = Mbe(X1X2, g)y, Ei = (X1X2)ti (i ∈ w∗),

where b ∈ {0, 1}.
If B attempts to test itself whether key k is semi-functional by creating a semi-
functional ciphertext for w′(|S = {w′ ∩ w}| > d) and trying to decrypt, then
decryption will work whether key k is semi-functional or not, because

E′∏
i∈S(e(Di, Ei))δi,s(0)

=
E′∏

i∈S(e(g
q1(i)

ti (T )
q2(i)

ti , (X1X2)ti))δi,s(0)

=
E′∏

i∈S e(g, g)δi,s(0)q1(i)se(g2, g2)δi,s(0)q2(i)s

=
E′∏

i∈S e(g, g)yse(g2, g2)0

= M.

In other words, the simulator B can only make a nominally semi-functional key k.
4. Query phase 2. The adversary continues to issue queries qj , where qj is the fol-

lowing:

• Extraction query (γ): as in phase 1 with the constraint that |γ ∩ w∗ | < d.

5. Guess. Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if
b′ = b.

If T ∈ Gp1p3 , then B has properly simulated Gamek−1. If T ∈ G, then B has prop-
erly simulated Gamek. Hence B can use the output of A to break Assumption 2 with
advantage ε.
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Lemma 4. Suppose there exists an algorithm A such that
Gamek−1AdvA −GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2, T . It works as follows:

1. Setup. B chooses random elements t1, . . . , t|U |, y ∈ ZN and sets Ti = gti , Y =
e(gαX2, g) for 1 < i < |U |. It sends the public keys PK = (T1, . . . , T|U |, Y ) to
A.

2. Query phase 1. The adversary A issues a private key query for identity w. B
answers as follows: A d − 1 degree polynomial q is randomly chosen such that
q(0) = y and t′

i (i ∈ w) are randomly chosen in ZN . Then it sets

Di = g
q(i)
ti X

t′
i

3 .

It is a valid simulation to A.
3. Challenge. The adversary A outputs two challenge message M0, M1 and a chal-

lenge identity w∗. Then the ciphertext is formed as

w∗, E′ = MbT, Ei = (gsY2)ti (i ∈ w∗),

where b ∈ {0, 1}.
4. Query phase 2. The adversary continues to issue queries qj , where qj is the fol-

lowing:

• Extraction query (γ): as in phase 1 with the constraint that |γ ∩ w∗ | < d.

5. Guess. Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if
b′ = b.

If T = e(g, g)αs, then (w∗, E′, Ei (1 < i < |w∗ |)) is a semi-functional ciphertext.
then this is a properly distributed semi-functional ciphertext with message Mb. If T is a
random element of GT , then this is a semi-functional ciphertext with a random message.
Hence B can use A’s guess to break Assumption 3 with advantage ε.

Theorem 1. If Assumptions 1, 2, and 3 hold, then our FIBE system is fully IND-FID-CPA
secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lemmas
that the real security game is indistinguishable from GameFinal, in which the value of
b is information theoretically hidden from the attacker. Hence the attacker can attain no
advantage in breaking the FIBE system.

5. Conclusion

In this paper, we analyzed Ren et al.’s (2010) FIBE scheme. We first show their scheme
is not correct and then we give a resist collusion attack for the scheme’s key generation
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process. At last, we propose a new fully secure FIBE scheme by using the “dual system
encryption” technique (Waters, 2009) and prove its security.
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Standartinio modelio tapatumu gr ↪istas neraiškiosios šifravimo schemos
analizė

Xu An WANG, Xiaoyuan YANG, Minqing ZHANG, Yong YU

Tapatumu gr↪istas neraiškusis šifravimas (FIBE), kur↪i pasiūlė Sahai ir Waters, yra naujas tapa-
tumu gr↪istas šifravimo metodas. Jis ↪igalina vartotoj ↪a, kurio tapatybė w, dešifruoti tekst ↪a užšifruot ↪a
viešuoju raktu w′, jei ir tik jei vartotoj ↪u identifikatoriai ID ir ID′ mažai skiriasi. Neseniai Ren ir kt.
pasiūlė nauj ↪a FIBE schem ↪a ir tvirtino, kad ji yra visiškai saugi. Šiame straipsnyje parodyta, kad j ↪u
schema nėra gera, o j ↪u schemos rakto generavimo procesas nėra atsparus konfliktinėms atakoms.
Pasiūlyta nauja visiškai saugi FIBE schema besiremianti Sahai–Waters FIBE schema, o jos saugu-
mas ↪irodytas naudojant „dvigubo šifravimo“ metod ↪a.


