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Abstract. The notion of general backlash is introduced where instead of the straight lines deter-
mining the upward and downward parts of backlash characteristic general curves are considered.
An analytic form of general backlash characteristic description is proposed, which is based on ap-
propriate switching and internal functions. Consequently, this multi-valued mapping is represented
by one difference equation. All the parameters in the equation describing this hard nonlinearity are
separated; hence the general backlash identification can be solved as a quasi-linear problem using
an iterative parameter estimation method with internal variable estimation. Also the identification
of cascaded systems consisting of a general input backlash followed by a linear dynamic system is
presented. Simulation studies of general backlash identification and that of cascaded systems with
general input backlash are included.
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1. Introduction

One of the most important nonlinearities that limit control systems performance in many
applications is the so-called backlash (Kalaš et al., 1985). Backlash appears whenever two
physical parts are supposed to move together and there is an amount of space between
the parts. Some systems must have some amount of backlash in order to function, for
example a gear box needs some space for heat expansion.

The backlash can be classified as a hard (i.e., nondifferentiable) and dynamic nonlin-
earity. The presence of such nonlinearities influences the performance by affecting static
accuracy of the control systems. This kind of nonlinearity may often cause delays, os-
cillations and inaccuracy which severely limit the performance of control systems and
compensation of backlash has attracted research effort by several decades (Nordin and
Gutman, 2002; Tao and Canudas de Wit, 1997; Tao and Kokotovic, 1993). Actuator and
sensor nonlinearities are among the key factors limiting both static and dynamic perfor-
mance of feedback control systems. For example, backlash in gears and other mechanical
components prevents accurate positioning and may lead to chattering and limit-cycle in-
stabilities. This in turn increases backlash. In general, backlash could be present at the
input of the system, output of the system, or at both the input and the output.
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However, in most applications the backlash parameters are either poorly known or
completely unknown, hence the identification of backlash is fundamental for its compen-
sation and implementation of the corresponding inverse. Unfortunately, there are only
few contributions in the literature on the identification of systems with nonstatic hard
nonlinearities, e.g., (Bai, 2002; Vörös, 1997) and even fewer on backlash identification
(Cerone and Regruto, 2007; Dong et al., 2009, 2010; Giri et al., 2008a; Sun et al., 1999).
Moreover, it is assumed that the backlash is “ideal”, i.e., straight lines approximate the
upward and downward curves of the characteristic. This simplifies the system description,
however, in some cases it may lead to inaccuracies.

The components of control systems may be free from backlash when new, but after
some time in use the wear results in an introduction of backlash in the systems. In general
the form of backlash changes with time and wear, regardless of what form of backlash
was present when the component was new. Therefore it may be appropriate to generalize
the backlash and consider general upward and downward curves.

The only works dealing with the identification of Hammerstein-like systems with gen-
eral switch and backlash nonlinearities were published in Giri et al. (2008b), Rochdi et al.
(2010). The proposed identification method consists of two independent, but structurally
symmetric, identification schemes. The first one determines the points located on the de-
scendent border of general nonlinearity as well as the parameters of the linear subsystem.
The second identification scheme determines the points located on the ascendent border
of general nonlinearity and the parameters of the linear subsystem. The key idea is to use
pulse-type periodic input signals so that only the points of interest are excited on each
border.

In this paper, an alternative approach to the identification of systems with general
backlash is described. A simple identification method based on a new mathematical
model for general backlash is proposed. First, an analytic description of this hard dy-
namic nonlinearity is introduced based on a compound operator decomposition approach,
which uses appropriate switching functions and internal variables and is a generalization
of the backlash description presented in Vörös (2010a). The general backlash parame-
ters in the resulting model equation are separated; hence their estimation is solved as a
quasi-linear problem using an iterative method with internal variable estimation similarly
as in (Vörös, 1999, 2002). Then the identification of cascade systems consisting of a
general input backlash followed by a linear dynamic system is presented. In contrast to
the well-known Hammerstein systems, a nonlinear dynamic system and a linear dynamic
system are cascaded in this case. Application of the decomposition technique leads to a
system description, which is again quasi-linear, and the parameters of cascade system are
estimated iteratively based on available inputs and outputs. Simulation studies of general
backlash identification and that of cascaded systems with general input backlash illustrate
the feasibility of proposed identification methods.

2. Ideal Backlash

The discrete-time mathematical description for the ideal backlash nonlinearity with inputs
u(t) and outputs x(t) shown in Fig. 1, is given by Cerone and Regruto (2007), Tao and
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Fig. 1. Ideal backlash characteristic.

Kokotovic (1993) as

x(t) =

⎧⎨
⎩

mL[u(t) + cL], u(t) � zL,

x(t − 1), zL � u(t) � zR,

mR[u(t) − cR], u(t) � zR,

(1)

with zL and zR defined by

x(t − 1) = mL(zL + cL), (2)

x(t − 1) = mR(zR − cR), (3)

where the slopes mL, mR, the dead zone constants cL > 0, cR > 0 characterize the
backlash and zL and zR are the u-axis values of intersections of the two lines with the
horizontal inner segment containing x(t − 1).

A special form of backlash description was proposed in Vörös (2010) to specify the
three branches of (1) in one equation. This is based on the function

h(s) =
{

0, if s > 0,

1, if s � 0,
(4)

switching between two sets of values, i.e., (−∞, s) and (s, ∞), and the complementary
function to h(s), that is [1 − h(s)]. Defining the following variables based on (2) and (3):

f1(t) = h
[
u(t) − zL

]
= h

{[
mLu(t) + mLcL − x(t − 1)

]
/mL

}
, (5)

f2(t) = h
[
zR − u(t)

]
= h

{[
x(t − 1) − mRu(t) + mRcR

]
/mR

}
, (6)

the backlash, which is a multi-valued mapping, can be described by one difference equa-
tion as:

x(t) = mLu(t)f1(t) + mLcLf1(t) + mRu(t)f2(t) − mRcRf2(t)

+ x(t − 1)
[
1 − f1(t)

][
1 − f2(t)

]
. (7)
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The input/output relation (7) is identical with that of (1). The slopes of straight lines
mL and mR may be simultaneously positive or negative, while the constants cL and
cR, determining the dead zone, must be positive. This equation allows the upward and
downward line slopes to be different provided that the intersection of the two lines is not
in the region of practical interest.

3. General Backlash

(a) Description

In the above mentioned case of ideal backlash the left and right branches of the character-
istic are considered to be straight lines. However, in some applications the straight lines
are only advantageous approximations of general curves constituting the left and right
branches of backlash as shown in Fig. 2. Therefore the backlash can be generalized in the
following way.

The general backlash characteristic can be described by the equation

x(t) =

⎧⎨
⎩

L[u(t)], u(t) � zL,

x(t − 1), zL � u(t) � zR,

R[u(t)], u(t) � zR,

(8)

where the mappings L[u(t)] and R[u(t)] describe the left and right branches of the char-
acteristic, respectively, the u-axis values zL and zR, by analogy with (2) and (3), are given
as follows:

x(t − 1) = L(zL), (9)

x(t − 1) = R(zR). (10)

Fig. 2. General backlash characteristic.
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Assume the left and right curves can be approximated by the polynomials

L
[
u(t)

]
=

n∑
i=1

mLi

[
u(t) + cL

]i
, (11)

R
[
u(t)

]
=

n∑
i=1

mRi

[
u(t) − cR

]i
, (12)

respectively, where cL > 0, cR > 0 are the intersections of L[u(t)] and R[u(t)] with the
u-axis. Then the general backlash characteristic can be written as

x(t) =

⎧⎪⎨
⎪⎩

∑n
i=1 mLi

[
u(t) + cL

]i
, u(t) � zL,

x(t − 1), zL � u(t) � zR,∑n
i=1 mRi

[
u(t) − cR

]i
, u(t) � zR,

(13)

where

x(t − 1) =
n∑

i=1

mLi[zL + cL]i, (14)

x(t − 1) =
n∑

i=1

mRi[zR − cR]i. (15)

Now, an analogous approach, as was done in the previous Section, can be applied to
the description of general backlash. After introducing the internal variables

ξ1(t) = u(t) + cL, (16)

ξ2(t) = u(t) − cR, (17)

the following variables based on (14) and (15) can be defined:

f1(t) = h

[ n∑
i=1

mLiξ
i
1(t) − x(t − 1)

]
, (18)

f2(t) = h

[
x(t − 1) −

n∑
i=1

mRiξ
i
2(t)

]
. (19)

Then the general backlash can be described by one difference equation as follows:

x(t) =
n∑

i=1

mLiξ
i
1(t)f1(t) +

n∑
i=1

mRiξ
i
2(t)f2(t)

+ x(t − 1)
[
1 − f1(t)

][
1 − f2(t)

]
. (20)

To include the dead zone parameters cL and cR into the backlash description, we can
separate the first terms of the sums in (20) and half-substitute from (16) and (17) as
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follows:

x(t) = mL1u(t)f1(t) + mL1cLf1(t) +
n∑

i=2

mLiξ
i
1(t)f1(t) + mR1u(t)f2(t)

− mR1cRf2(t) +
n∑

i=2

mRiξ
i
2(t)f2(t) + x(t − 1)

[
1 − f1(t)

][
1 − f2(t)

]
.

(21)

Now the input/output relation for the generalized backlash (21) is identical with that
of (8). All the parameters are separated and the equation is linear in the input, output
and internal variables. This description allows the upward and downward curves to be
different provided that the intersection of the two curves is not in the region of practical
interest.

(b) Parameter Estimation

The proposed new description can be used for estimation of generalized backlash param-
eters. Defining the following vector of data

ϕ(t) =
[
u(t)f1(t), f1(t), ξ2

1(t)f1(t), . . . , ξn
1 (t)f1(t),

u(t)f2(t), −f2(t), ξ2
2(t)f2(t), . . . , ξn

2 (t)f2(t)
]T

, (22)

and the vector of parameters

θ = [mL1, mL1cL, mL2, . . . , mLn, mR1, mR1cR, mR2, . . . , mRn]T , (23)

the mathematical model for generalized backlash can be written in the vector form

x(t) − x(t − 1)
[
1 − f1(t)

][
1 − f2(t)

]
= ϕT (t)θ + e(t), (24)

where e(t) is an additive noise.
As the variables ξ1(t), ξ2(t), f1(t) and f2(t) in (22) are unmeasurable and must be

estimated, an iterative parameter estimation process has to be considered, similarly as in
Vörös (1999, 2002). Assigning the estimated variables in the sth step as

sξ1(t) = u(t) + scL, (25)
sξ2(t) = u(t) − scR, (26)

sf1(t) = h

[ n∑
i=1

smLi
sξi

1(t) − x(t − 1)
]
, (27)

sf2(t) = h

[
x(t − 1) −

n∑
i=1

smRi
sξi

2(t)
]
, (28)
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the error to be minimized in the estimation procedure is

s+1ε(t) = x(t) − x(t − 1)
[
1 − sf1(t)

][
1 − sf2(t)

]
− sϕT (t)s+1θ, (29)

where sϕ(t) is the data vector with the corresponding estimates of variables ξ1(t), ξ2(t),
f1(t) and f2(t) according to (25)–(28) and s+1θ is the (s+1)th estimate of the parameter
vector.

The steps in the iterative procedure may be now stated as follows:

(a) Minimizing the least squares criterion based on (29) for t = 1, 2, . . . , N samples
of inputs and outputs, the estimates of parameters s+1θ are computed using sϕ(t)
with the sth estimates of variables, i.e., sξ1(t), sξ2(t), sf1(t) and sf2(t).

(b) Using (25)–(28) the estimates of s+1ϕ(t) are evaluated by means of the recent
estimates of corresponding parameters and variables.

(c) If the estimation criterion is met the procedure ends, else it continues by repeating
steps (a) and (b).

In the first iteration nonzero initial values of the parameters mL1, mR1, cL and cR

have to be considered for evaluation of 1ϕ(t) to start up the iterative algorithm. In the
simplest case 1mL1 = 1mR1 = 1 for the general backlash with increasing curves or
1mL1 = 1mR1 = −1 for the general backlash with decreasing curves, while cL and cR

are chosen small enough.
The key properties of the proposed algorithm (convergence, bias, consistency) can be

considered as analogous to those of the applied least-squares algorithm, because always
the corresponding polynomial segment of the nonlinearity is included into the computa-
tion. However, only the estimates of internal variables are used in the data vector, which
depend on the previous estimates of corresponding parameters and variables. Therefore
the convergence of the above algorithm with estimation of internal variables cannot be
exactly proved.

(c) Simulation Studies

The method for the identification of general backlash was implemented and tested in
MATLAB. Several cases were simulated and the estimations of parameters were carried
out on the basis of input and output records. The performance of the proposed method is
illustrated on the following examples.

EXAMPLE 1. The backlash shown in Fig. 3 was simulated with the following param-
eters: mL1 = 0.5, mL2 = −0.3, mL3 = 0.3, cL = 0.7, mR1 = 0.6, mR2 =
0.4, mR3 = 0.2, cR = 0.8. The identification was performed on the basis of N = 800
samples of uniformly distributed random inputs with |u(t)| < 2.0 and simulated outputs.
Normally distributed random noise with zero mean and signal-to-noise ratio – SNR = 25
(the square root of the ratio of output and noise variances) was added to the outputs. The
iterative estimation algorithm was applied with initial values 1mL1 = 1mR1 = 1 and
1cL = 1cR = 0.001 for the first estimates of ξ1(t), ξ2(t), f1(t) and f2(t). The pro-
cess of parameter estimation is shown in Fig. 4 (the top-down order of parameters is
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Fig. 3. General backlash characteristic – Example 1.

Fig. 4. Parameter estimates – Example 1.

Fig. 5. General backlash characteristic – Example 2.

cR, cL, mR1, mL1, mR2, mL3, mR3, mL2). The estimates converge to the values of real
parameters after 5 iterations.

EXAMPLE 2. The general backlash (with decreasing both the left and the right curves)
shown in Fig. 5 was simulated with the following parameters: mL1 = −0.5, mL2 =
0.3, mL3 = −0.3, cL = 0.7, mR1 = −0.6, mR2 = −0.4, mR3 = −0.2, cR = 0.8.
The identification was performed under the same conditions as in Example 1 only the ini-
tial values 1mL1 = 1mR1 = −1. The process of parameter estimation is shown in Fig. 6
(the top-down order of parameters is cR, cL, mL2, mR3, mL3, mR2, mL1, mR1).
The estimates converge to the values of real parameters after 5 iterations.
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Fig. 6. Parameter estimates – Example 2.

As the simulation studies show the convergence of the proposed identification algo-
rithm is good despite the relatively high level of additive noise. This is because the non-
linearity has actually simple polynomial segments and the switching functions separate
these segments. Hence the main estimation problem is with the “hard nonlinear element”
of the general backlash, i.e., the unknown deadzones.

4. Cascade System with General Input Backlash

(a) Description

Cascade systems consist of serially connected linear and nonlinear subsystems. One of
the simplest cases is the connection of a static nonlinear subsystem followed by a linear
dynamic one. This cascade system is known as the Hammerstein system and there are lots
of identification methods for different types of nonlinearities and corresponding models,
e.g., Bai (2003), Bai and Li (2004). Bai et al. (2007), Bako et al. (2009), Chen (2009),
Chen et al. (2009), Ding et al. (2006, 2011), Dolanc and Strmcnik (2005), Giri et al.
(2001), Hasiewicz and Mzyk (2004), Hasiewicz et al. (2005), Janczak (2003, 2005), Lacy
and Bernstein (2005), Liu and Bai (2007), Mzyk (2007), Pupeikis (2005, 2006, 2010),
Sliwinski et al. (2009), Szabo et al. (2010), Wang and Ding (2011), Wang et al. (2008),
Zhang and Tan (2008).

In many real control systems the backlash appears in a cascade connection with a
linear dynamic system. One of the possible cases is the cascade system where the general
backlash is followed by a linear dynamic system as shown in Fig. 7. Compared to the
Hammerstein systems, the essential difference is that a nonlinear dynamic system and a
linear dynamic system are cascaded in this case.

The linear dynamic system can be described by the difference equation

y(t) =
r∑

i=1

aix(t − i) −
p∑

j=1

bjy(t − j), (30)

where x(t) and y(t) are the inputs and outputs, respectively. The nonlinear block consists
of a general backlash.
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Fig. 7. Cascade systems with general input backlash.

The output equation of this cascade system can be constructed from (21) and (30).
However, a direct substitution of (21) into (30) would lead to a very complex expression,
therefore the so-called key term separation principle can be applied (Vörös, 1999). In
the connection of these subsystems, if the first subsystem is multiplied by a nonzero real
constant and if the second one is divided by the same constant, the resulting cascade
system has the same input-output behavior. Therefore we can assume that a1 = 1 and
substitute (21) into (30) only for the separated variable x(t − 1) leading to the following
equation

y(t) = mL1u(t − 1)f1(t − 1)+mL1cLf1(t − 1)

+
n∑

i=2

mLiξ
i
1(t − 1)f1(t − 1)+mR1u(t − 1)f2(t − 1) − mR1cRf2(t − 1)

+
n∑

i=2

mRiξ
i
2(t − 1)f2(t − 1)+x(t − 2)

[
1 − f1(t − 1)

][
1 − f2(t − 1)

]

+
r∑

i=2

aix(t − i) −
p∑

j=1

bjy(t − j), (31)

where the parameters of both the general backlash and the linear system are separated
and the equation is quasi-linear as the variables ξ1(t), ξ2(t), f1(t) and f2(t) depend on
the backlash parameters.

(b) Parameter Estimation

The parameter estimation for the cascade system with general input backlash can be
performed similarly, as in the previous case. Defining the vector of data

Φ(t) =
[
u(t − 1)f1(t − 1), f1(t − 1), ξ2

1(t − 1)f1(t − 1), . . . ,

ξn
1 (t − 1)f1(t − 1), u(t − 1)f2(t − 1), −f2(t − 1),

ξ2
2(t − 1)f2(t − 1), . . . , ξn

2 (t − 1)f2(t − 1), x(t − 2), . . . ,

x(t − r), −y(t − 1), . . . , −y(t − p)
]T

, (32)

and the vector of parameters

Θ = [mL1, c1, mL2, . . . , mLn, mR1, c2, mR2, . . . , mRn, a2, . . . ,

ar, b1, . . . , bp]T , (33)
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i.e.,

cL = c1/mL1, cR = c2/mR1, (34)

the mathematical model for the cascase system with general input backlash can be written
in the vector form

y(t) − x(t − 2)
[
1 − f1(t − 1)

][
1 − f2(t − 1)

]
= ΦT (t)Θ + e(t). (35)

where e(t) is an additive noise.
As the variables ξ1(t), ξ2(t), f1(t), f2(t) and x(t) in (32) are unmeasurable and

must be estimated, again an iterative parameter estimation process has to be considered.
Assigning the estimates of variables ξ1(t), ξ2(t), f1(t), f2(t) in the sth step as (25)–(28)
and the estimates of internal variable x(t) as

sx(t) = smL1u(t)sf1(t) + smL1
scL

sf1(t)

+
n∑

i=2

smLi
sξi

1(t)
sf1(t) + smR1u(t)sf2(t) − smR1

scR
sf2(t)

+
n∑

i=2

smRi
sξi

2(t)
sf2(t) + sx(t − 1)

[
1 − sf1(t)

][
1 − sf2(t)

]
, (36)

the error to be minimized in the estimation procedure is

s+1ε(t) = y(t) − sx(t − 2)
[
1 − sf1(t − 1)

][
1 − sf2(t − 1)

]
− sΦT (t)s+1Θ,

(37)

where sΦ(t) is the data vector with the corresponding estimates of variables ξ1(t), ξ2(t),
f1(t), f2(t) and x(t) according to (25)–(28) and (36) and s+1Θ is the (s + 1)th estimate
of the parameter vector.

The steps in the iterative procedure may be now stated as follows:

(a) Minimizing the least squares criterion based on (37) for N samples of inputs and
outputs, the estimates of parameters s+1Θ are computed using sΦ(t) with the sth
estimates of variables sξ1(t),s ξ2(t),s f1(t) and sf2(t).

(b) Using (25)–(28), however with estimates of internal variable x(.), and (36) the es-
timates of s+1Φ(t) are evaluated by means of the recent estimates of corresponding
parameters and variables.

(c) If the estimation criterion is met the procedure ends, else it continues by repeating
steps (a) and (b).

In the first iteration, equally as in the previous Section, nonzero initial values of the
general backlash parameters mL1, mR1, cL and cR have to be considered for evalua-
tion of 1Φ(t) to start up the iterative algorithm, while the initial values of linear system
parameters can be chosen zero.
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(c) Simulation Studies

Several cases of the cascade systems with generalized input backlash were simulated and
the estimations of parameters were carried out on the basis of input and output records.
The performance of the proposed method is illustrated on the following examples.

EXAMPLE 3. The cascade system with general input backlash (Fig. 8) characterized by
the parameters mL1 = 0.5, mL2 = −0.3, mL3 = 0.3, cL = 0.45, mR1 = 0.6, mR2 =
0.4, mR3 = 0.2, cR = 0.55 and followed by the linear dynamic system described by the
difference equation

y(t) = x(t − 1) + 0.15x(t − 2) + 0.2y(t − 1) − 0.35y(t − 2)

was considered. The identification was performed on the basis of N = 1500 samples
of uniformly distributed random inputs with |u(t)| < 1.0 and simulated outputs. Nor-
mally distributed random noise with zero mean and SNR = 50 was added to the outputs.
The iterative estimation algorithm was applied with initial values 1mL1 = 1mR1 = 1
and 1cL = 1cR = 0.001 for the first estimate of ξ1(t), ξ2(t), f1(t) and f2(t), while
the initial values of linear system parameters were chosen zero. The process of back-
lash parameter estimation is shown in Fig. 9 (the top-down order of parameters is
mR1, cR, mL1, cL, mR2, mL3, mR3, mL2) and the process of linear block parameter
estimation is shown in Fig. 10. The estimates converge to the values of real parameters
after 8 iterations.

Fig. 8. General backlash characteristic – Example 3.

Fig. 9. Backlash parameter estimates – Example 3.
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Fig. 10. Linear block parameter estimates – Example 3.

Fig. 11. General backlash characteristic – Example 4.

Fig. 12. Backlash parameter estimates – Example 4.

EXAMPLE 4. The cascade system with “equidistant” general input backlash (Fig. 11)
characterized by the parameters mL1 = 0.5, mL2 = 0.0, mL3 = 0.3, cL = 0.4, mR1 =
0.5, mR2 = 0.0, mR3 = 0.3, cR = 0.4 and followed by the same linear dynamic
system as above was considered. The identification was performed on the same basis as in
Example 3 with |u(t)| < 1.5. The backlash parameter estimates are shown in Fig. 12 (the
top-down order of parameters is mR1 = mL1, cR = cL, mR3 = mL3, mR2 = mL2)
and those of linear block are shown in Fig. 13. The estimates converge to the values of
real parameters after 7 iterations.
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Fig. 13. Linear block parameter estimates – Example 4.

5. Conclusions

In this paper a new analytic form of general backlash characteristic was introduced, where
this three-branch nonlinearity is described by one output equation with separated param-
eters. The new model was applied to the identification of general backlash systems and
the cascaded systems consisting of a general input backlash followed by a linear dy-
namic system. For both cases, iterative parameter estimation algorithms were proposed
and their feasibility was shown in simulation studies. Although no convergence proof
of the identification methods with internal variable estimation is available, testing of the
proposed algorithms showed very good results. Compared to Giri et al. (2008b), Rochdi
et al. (2010), the proposed identification methods do not require special input signals,
however, they are not dealing with dynamic nonlinearities of the switch type.

Finally note, that the presented model of general backlash and the parameter estima-
tion method can be easily extended for other types of cascaded systems (Vörös, 2010b).
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Sistem ↪u su paprast ↪aja rimties eiga parametrinis identifikavimas

Jozef VÖRÖS

Supažindinama su paprast ↪aja rimties eiga, kurioje vietoje aukštyn bei žemyn nukreipt ↪uj ↪u
tiesi ↪u, apibrėžianči ↪u rimties eigos charakteristikos dalis, taikomos atitinkamos kreivės. Darbe
pasiūlyta analitinė forma paprastosios rimties eigos charakteristikos aprašymui, kuri grindžiama
tarpusavyje susijusiomis perjungimo bei vidinėmis funkcijomis. Todėl šis daugiareikšmis at-
vaizdavimas pateikiamas vienintele skirtumine lygtimi. Visi šios lygties, aprašančios „kiet ↪aj↪i“
netiesiškum ↪a, parametrai esti atskirti; taigi paprastosios rimties eigos identifikavimas gali būti
sprendžiamas kaip kvazi-tiesinis uždavinys, taikant iteracin↪i parametr ↪u identifikavimo metod ↪a su
vidinio kintamojo ↪ivertinimu. Darbe taip pat nagrinėjamas kaskadini ↪u sistem ↪u, susidedanči ↪u iš pa-
prastosios rimties eigos ir po jos sekančios tiesinės dinaminės sistemos, identifikavimo uždavinys.
Pateikti rimties eigos bei kaskadini ↪u sistem ↪u su paprast ↪aja rimties eiga modeliavimo ir j ↪u identi-
fikavimo rezultatai.


