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Abstract. The dynamic programming method for estimation of many 
change-points in univariate autoregressive (AR) sequences with known AR pa­
rameters between change-points is investIgated. A probJem how t.o use this 
met.hod for long autoregressive sequences is solved and a constructive solution 
is given. A simulation experiment illustrates the advantages of the solution 
obtained. 
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1. Introd uction. The problem of estimation of"many c:lange­
points in random sequences is rather complicated because.of a large 
amount of computations required. There are many papers (e.g. 
Ozaki, Tong, ·1975; Kitagawa, Akaike, 1978; Praetorius, Boden­
stein, 1977) in which suboptimal methods to solve this problem are 
proposed. But these methods do not enable us to reach a global 
maximum (or minimum) of the objective function. For this reason 
we discuss here ·optimal methods. 

As far ~s we know, the problem of estimation of many chaage­
points in random processes has been investigated for the first time 
by Telksnys in 1970. Later on, under the assumption that the pa­
rameters between change-points are known, the problem was for­
mulated for autoregressive random sequences (Lipeika, 1975; 1977) 
and important properties of the likelihood function of change-points 



38 Estimation of many change-points 

have been established. Using specific properties of the likelihood 
function of change points a method for global maximization of the 
likelihood function was constructed (Lipeika, 1979; 1987a). This 
method enabled us to solve the problem by computer. The appli­
cation of a dyna.mic programming method to solve the maximiza­
tion problem (Lipeika, Lipeikiene, 1987b; 1990) allowed to reduce 
significantly the computation amount. However, the usage of the 
developed methods for estimation of change-points in the segmen­
tation of speech signals proved to be inconvenient for estimation of 
change-points in long ARsequences. (Long sequences are assumed 
to have 5000 or more points). Thus there arose a necessity to ap­
ply the developed methods to long sequences. \-Ve present here an 
algorithm which enables us to estimate the change-points in long 
sequences without complicated manipulatious with the main and 
external memory of a computer. An example illustrates the perfor­
mance of the constructed algorithm. All computations were carried 
out ,by IBM PC AT. We used C language for programming. 

2. Statement of the problem. We consider the output 
X t , t = ... ,1,2, ./. of a linear discrete nonstationa.ry dynamic sys­
tem, whose inp~t is a sequence of Goussian independent random 
variables Vt, t + ... ,1,2, ... , N, ... with zero mean and variance l. 
The system structure is described by an autogressive model 

At the unknown points of time 'Ul,"" 'Un the system parameters 
At = (al(t), ... , ap,(t), b(t),Jl(t)) abruptly change their values: 

Q1, t= ... ,1,2"",Ul 

Q2, t='Ul+1"",U2 

t = Ui-l + 1, ... , Ui 

t = Un-l + 1, ... , Un 

t = Un + 1, ... , iV, . ' .. , 
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w~ere Qi = (a~i), ... , a~i.), bi, Pi)' i = 1, ... ,71+ 1 are known. The pr~b­
lem is to obtain the maximum likelihood estimates U = (UI,.'·' un) 

of change-poin ts U = (UI' ... , Un) using the realization x = (XI. ..•• x N ) 

of the random sequence X t . It is convenient to denote Uo ;:: Pmax + 
1. U'n+l = N, where Pmax = max(Pl, ... ,Pn+1)' 

3. Solution of the problem. The maximum likelihood esti­
mate of change-points has the following form: 

U= argmax L(u/x), (2) 
" Pmu<"l <, .. <'j. <N 

where the logarithmic function L(u/:r) of change-points (if we nc­
glect the constants not depending on u) is (Lipeika. 19/7): 

11+1 

L(u/x) = - L(Ui - ui_l)ln b; 
;=1 

For the logarithmic likelihood function L(u/x) the eqlla,\ity 

u = arg max L(u/z) = arg ma..x Oeu/x) (4) 
u u 

Pmu<"l <"'<"" <N Pmu<"l < ... <u. <N 

is valid, where the function O(u/x) consists of the sum of partial 
functions Li(ui/x): 

The functions Li(U;!Z) are calculated recurrently: 
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with the initial conditions 

Li(Pmax + l/x) =-0, i = L 2, ... , n. 

Since the function B( u/ x) consists of the sum of partial functioIls and 
each of these functions depends only on .one variable, we may use 
the dynamic programming method to determine the global maxi­
mum of this function. 

According to the dynamic programming method let us define 
the BeIlmon functions 

max 
'" Pm&X+i - 1 <"; <";+1 

'l/.2 = Pmax + i + 1, . -- , N 

[L;(u;/x) + g;_l(u;jZ)). (8) 

The value of gn(N\z) is the global maximum of B(u/x) and simulta­
neously we find the exact global maximum of the function L(u/x)_ 

For further reduction of computation amount one may com­
pute the functions g;(ui+dz), i = 1, ... , n recurrently. Then 

gl(udz) = max [gl(U2 - l/z), L1 (U2 - l/z»), (9) 
.I 

U2 :::: Pmax + 3t .. , N with the initial conditions 
j 
j gl(Pmax + 2/z) :::: L1(Pmax + l/z) . 

. For i = 2,3, ... , n 

g;(Ui+I/z) =~ax{9;(Ui+l -I/z), [Li(Ui+l -I/x) 

+9;-1(U;+l-1/X)]}, tI+l =Pmax+ i + 2, ... ,N 

with the initial conditions 

9;(Pmax + i + l/x) :::: L;(Pmax + i/z) + gi-l(Pmax + i/x). (11) 

Thus we get the following estimates of change-points: 

Un = min ( arg max gn~un+dz)J, (12) 
U n +l 

Pm .. x+n~""+1 ~N 

Un-I:::: min [ arg max 9n-l(Un /Z)]' 
tI" 

(13) 

p", .... +n-1 ~"a<;. 
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argmax (14) 
U2 

p ...... +l~u~<;;2 

4. Minimization of the main memory of a computer. 
, Expressions (6), (9), (10) show that in order to realize the algorithm 
by computer one must store at least four arrays of length N (array 
z(N), 9i(N)., g.-l(N) and Li(N». We have modified the algorithm 
for determination of maximum of the function L(u/z) in such a 
way that we have to store only two arrays of 17ngth N in the main 
memory of a computer, where we save X(N) and the meanings 
of g.-l( ). We store the calculated functions g.( ) in the external 
memory. In this case the functions gi( ) are calculated as follows. 
Let us denote 

r(i, us) =L.(Ui/Z) - Li(Ui - l)/x) 

bi+l 1 ( (i+l) 
= In -b' + 2b2 zU; - J1.Hl + a l xui-l + ... 

I HI 

. (HI) )2 1 ( (.) + ap '+l zU;+J-P;+l - 2b? ZUi - Pi + a 1 Xui-l 
• 

+ ... + a~i,)zu;_p;( (15) 

When. calculating the Bellmon functions, we do not compute r(i, us) 
in advance but calculate them right away when it is necessary to 
use them. Then 9.(U2/X) are calculated in such a way: 

91(Pmax + 2/x) = r(l,Pmax + 1); 

1 = r(l,Pmax + 1) + r(l,Pmax + 2); 

91(U2/X) = max [91(U2 -l/z),l]; 

1= [+ r(l, U2); 

U2 =Pmax+3, ... ,N. (16) 

·For i = 2.3, ... ,n. the calculating procedure of 9i(UHdx) is the 
. following. We put the values of the function gi-l( ui/x) into. the 
auxiliary array h( ) of length N : 

Ui = 1, ... ,N. 
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Afterwards we calculate the initial values: 

t=Pmu+{ 

1= L r(i,t); 

a=h(Pmax+ i + 1); 

h(Pmax + i + 1) = h(Pmax + i) + 4; 

1 = 1 +r(i,Pmax + i + 1). 

Then, for Ui+! = Pmax + i + 2, ... ,N, 

! (3 = h(Ui+l); 

h~i+l) =. max [~(Ui+l - 1), (l + a)]; 
I - 1+ rea, ui+d, 
a = (3. 

(17) 

(18) 

After the calculations the array h( ) contains the values of the func­
tion gi(Ui+!/X), stored in the external memory for determination of 
change-points according to (12) - (14). 

5. Examllle. We have solved the following simulation prob­
lem. We genfrated a realization of the random second-order au­
toregressive :fequence with 10 change-points (values in Table 2). 
The length </If the realization was n = 8000. The parameters of 
the autoregressive model between change-points are presented in 
Table 1 ' 

Table 1. The parameters of the autoregressive model. 

1 1 2 3 4 5 6 7 8 9 10 11 Qi 

ail 0.9 0.7 0.5 0.3 0.1 0 -0.1 -0.3 -0.5 -0.7 -0.9 
a i) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
bi 1 1 1 1 1 1 1 1 1 1 1 

Fig. 1 illustrates the generated realization (as one can see, it is 
long enough to be considered long) and the Bellma,n flH'.lctioI}~ 

gi(Ui+l/X), i = 1, ... ,10. Fig. 2 displays the spectral densities which 
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.correspond to the parameters of AR between the change-points. 
These functions show how much the parameters differ. We have 
got estimates of change-points which are presented in Table 2. 

Table 2. Chan~e-points and their estimates 

) 1 2 3 4 5 6 ! 7 8 9 10 
Iti 750 1500 2250 3000 37.50 450015250 6000 6750 7500 
It; 1'49 1497 2195 3007 3108 4541 15251 6002 6751 7494 

6. Conclusions. The presented change-points detection algo­
rithm enables us to solve the problem for comparatively long AR 
sequences and extends the sphere of applications. It can be used 
for the analysis of real random~ sequences (e.g., for segmentation of 
speech signals). For the use of the algorithm one must store two 
arrays of length N in the main menory of a computer instead of 
four such arrays as before. 
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