
INFORMATICA, 2012, Vol. 23, No. 2, 247–282 247
© 2012 Vilnius University

Storing XML Data – The ExDB and CellStore Way
in the Context of Current Approaches

Pavel LOUPAL1, Irena MLÝNKOVÁ2, Martin NEČASKÝ2,
Karel RICHTA2, Pavel STRNAD1

1Department of Software Engineering, Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9, 16000 Praha 6, Czech Republic

2Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague
Karlovo 13, 12135 Praha 2, Czech Republic

e-mail: pavel.loupal@fit.cvut.cz, mlynkova@ksi.mff.cuni.cz, necasky@ksi.mff.cuni.cz,
richta@ksi.mff.cuni.cz, pavel.strnad@fel.cvut.cz

Received: November 2011; accepted: November 2011

Abstract. In this paper we describe possible approaches how to store XML data, which is a key as-
pect for their further processing. One popular technique for managing XML data is to map the data
to an existing database system, e.g., to the relational or object-relational database management sys-
tem. We describe possible ways how to store XML data in relational databases, because relational
systems are still widely used for various purposes, including XML data management. But XML
data are trees, not tables, so the main focus of this article is oriented to native XML databases. We
describe general properties of such kind of databases and, in particular, explain possible solutions
on two experimental native XML database management systems – ExDB and CellStore. Both have
been proposed, implemented and optimized in our research groups in recent years for experimental
purposes.

Keywords: XML data management, XML-enabled databases, native XML databases, ExDB,
CellStore.

1. Introduction

With the growing popularity of XML, it is clear that there will be requests for large
repositories of XML data. One popular technique for managing XML data is to map
these data to an existing database systems, e.g., to the relational database management
systems (RDBMS) or object-relational database management systems (ORDBMS). We
speak about so-called XML-enabled databases. However, such a mapping often results
in either an unnormalized relational representation or in a very large number of tables,
due to the flexible nature of XML, with attributes and sub-elements frequently missing,
and repetition of sub-elements being allowed. Therefore, the great challenge is to develop
native XML databases, in which XML data can be stored directly, retaining its natural tree
structure. We speak about so-called native XML approaches and respective native XML



248 P. Loupal et al.

database management systems (NXDBMS). At the same time, we need in such native
XML management systems all the benefits of relational database management, such as
declarative querying and set-at-a-time processing. Such approaches have to use special
indices, numbering schemas, and/or structures suitable particularly for tree structure of
XML data. Expectably, the highest-performance techniques should be the native ones,
since they are proposed particularly for XML processing and do not need to artificially
adapt existing structures to a new purpose. On the other hand, the most practically used
ones are methods which exploit features of (O)RDBMSs. The reason for their popularity
is that (O)RDBMSs are still regarded as universal and powerful data processing tools
which can guarantee a reasonable level of reliability and efficiency.

1.1. Contribution

In this paper we describe two different approaches to the problem of storing XML data.
Either we can use existing resources and DBMSs, or we can create new tools. Hence,
firstly, we provide a general overview of current approaches and strategies in both the ar-
eas and conclude it with a summary of features of current most popular implementations.

Since traditional (O)RDBMSs are complex systems having a long history and espe-
cially commercial support (Oracle Database, 2010; Microsoft SQL Server, 2008; DB2
Product Family), creating new native XML systems has a meaning only if they bring new
features and a new quality. For these purposes it is necessary to carry out robust and reli-
able experiments to be able to compare these different approaches. In our research groups
we have proposed, implemented and optimized two NXDBMSs – ExDB (Loupal, 2006)
and CellStore (Vraný et al., 2008). Both are based on similar ideas, but use a different
environment – ExDB uses Java, CellStore uses Smalltalk. In the second part of this paper,
we provide their description and comparison in the context of current best known storage
strategies.

The aim of this paper is to provide both a general study of the current approaches to
storing XML data and an overview and description of the two systems we have proposed
and implemented.

1.2. Outline

The rest of the text is structured as follows: Section 2 introduces the features, advantages,
and disadvantages of miscellaneous possibilities of exploiting general XML-enabled
databases. You can find ways, how XML documents can be transformed into relational
format. Section 3 deals with the basic features of native DBMSs and how they differ
from relational systems. Section 4 contains description of the ExDB DBMS and Sec-
tion 5 describes the CellStore DBMS. In Section 6 we describe benchmark configuration
and comparison of the two systems. We have to deal with two technologies – Java and
Smalltalk, each requiring different setup and behaving in a specific manner. Finally, con-
clusions with possible future research directions are attached in Section 7.



Storing XML Data – The ExDB and CellStore Way 249

2. XML-Enabled Databases

Before we focus on the key aim of this paper – native XML approaches – we describe the
currently most commonly used approaches to management of XML data, i.e., exploita-
tion of (O)RDBMSs. Even though these approaches are proven to be less efficient than
the native XML ones, they still have two unbeatable advantages – long theoretical and
implementation history.

In general the basic idea of XML processing based on an (O)RDBMS is relatively
simple. The XML data are firstly stored into relations – we speak about so-called XML-to-
relational mapping. Then, each XML query posed over the data stored in the database is
translated to a set of SQL queries (which is usually a singleton). And, finally, the resulting
set of tuples is transformed to an XML document. We speak about reconstruction of XML
fragments.

Consequently, the primary concern of the database-oriented XML techniques is the
choice of the way XML data is stored into relations. On the basis of exploitation or omit-
ting information from XML schema we can distinguish so-called generic and schema-
driven methods. From the point of view of the input data we can distinguish so-called
fixed methods which store the data purely on the basis of their model and adaptive meth-
ods, where also sample XML documents and XML queries are taken into account to find
a more efficient storage strategy. And there are also techniques based on user involvement
which can be divided to user-defined and user-driven, where in the former case a user is
expected to define both the relational schema and the required mapping, whereas in the
latter case a user specifies just local mapping changes of a default storage strategy.

Approaching the aim form another point of view the SQL standard has been extended
by a new part SQL/XML (ISO/IEC 9075-14:2003, 2003) which introduces new XML data
type and operations for XML and relational data manipulation within SQL queries. It in-
volves functions such as, e.g., XMLELEMENT for creating elements from relational data,
XMLATTRIBUTES for creating attributes, XMLDOCUMENT or XMLFOREST for creat-
ing more complex structures, XMLNAMESPACES, XMLCOMMENT or XMLPI for creating
more advanced parts of XML data, XMLQUERY, XMLTABLE or XMLEXISTS for query-
ing over XML data using XPath (Clark and DeRose, 1999; Berglund et al., 2007) or
XQuery (Boag et al., 2007), etc.

As we have mentioned in the introduction, the native XML databases differ from the
XML-enabled ones in the fact that they do not adapt an existing technology to XML, but
exploit techniques suitable for XML tree structure. Most of them use a kind of numbering
schema, i.e., an index that captures the XML structure. Examples of such schemas are
Dietz encoding (Dietz, 1982), Dewey encoding (Tatarinov et al., 2002), interval encoding
(Li and Moon, 2001), prefix encoding (Cohen et al., 2002), ORDPATHS (O’Neil et al.,
2004) or APEX (Chung et al., 2002). (We discuss them in more detail in Section 3.) And
such indices can be also exploited in relational databases to optimize query processing.

2.1. Generic vs. Schema-Driven Methods

Generic mapping methods (Florescu and Kossmann, 1999; Kuckelberg and Krieger,
2003) do not use (possibly) existing XML schema of stored XML documents. They are



250 P. Loupal et al.

usually based on one of the following two approaches – creating a general (O)R schema
into whose relations any XML document regardless its structure can be stored, or a special
kind of (O)R schema into whose relations only a certain collection of XML documents
having a similar structure can be stored. The former methods model an XML document
as a tree T according to, e.g., the DOM model (Document Object Model), while the latter
reflect its special “relational” structure.

A typical representative of a generic mapping is a group of methods called structure-
centered mapping (Kuckelberg and Krieger, 2003). It considers all nodes of the tree T

having the same structure defined as a tuple v = (t, l, c, n), where t is the type of the
node (e.g., element, attribute, text, . . .), l is the node label, c is the node content and
n ∈ {1, . . . , n} is the list of successor nodes. The paper considers the problem how
to realize mapping of the lists of successor nodes. It proposes several kinds of storage
strategies focusing on speeding up the performance of access. In Foreign Key Strategy
each tree node v is simply mapped to a tuple with a unique identifier and a foreign key
reference to the parent node. The method is quite simple and the stored tree can easily
be modified. Nevertheless, its disadvantage is evident – the retrieval of the data involves
many self-join operations. In Depth First (DF) Strategy, conversely, each node of T is
given an index value (a couple of minimum and maximum DF values), which represents
its position in T . The DF values are determined when traversing T in a depth first manner.
A counter is increased each time another node is visited. If a node v is visited for the first
time, its minimum DF value vmin is set to the current counter value. When all child nodes
have been visited, the maximum DF value vmax is set to the current counter value (see
Fig. 1).

Using DF values relationships of nodes (e.g., sibling order, element-subelement re-
lationship, etc.) can easily be determined just by comparisons. For example, a node v is
a descendant of node u, if umin < vmin and vmax < umax. Moreover, as the nodes can
be totally ordered according to DF values, retrieving a part of a document is linear. The
weak point of this strategy is document update – in the worst case it requires to update
DF values of all nodes of the tree.

On the other hand, schema-driven mapping methods (Shanmugasundaram et al.,
1999; Runapongsa and Patel, 2002) are based on an existing schema S1 of stored XML
documents, written in DTD (Bray et al., 2006) or XML Schema (Thompson et al.,
2004; Biron and Malhotra, 2004), which is mapped to (O)R database schema S2. The data
from XML documents valid against S1 are then stored into relations of S2. The purpose
of these methods is to create optimal schema S2, which consists of reasonable amount
of relations and whose structure corresponds to the structure of S1 as much as possible.

Fig. 1. An example of a generic-tree.



Storing XML Data – The ExDB and CellStore Way 251

Fig. 2. An example of a DTD graph.

All of these methods try to improve the basic mapping idea “to create one relation for
each element composed of its attributes and to map element-subelement relationships
using keys and foreign keys”.

Schema-driven mapping methods have several common basic principles resulting
from information stored in the XML schema. The most important ones are:

• Subelements with maxOccurs = 1 are (instead of to separate tables) mapped to
tables of parent elements (so-called inlining).

• Elements with maxOccurs > 1 are mapped to separate tables (so-called outlin-
ing). Element-subelement relationships are mapped using keys and foreign keys.

• Alternative subelements are mapped to separate tables (analogous to the previous
case) or to one universal table (with many nullable fields).

• If it is necessary to preserve the order of sibling elements, the information is
mapped to a special column.

• Elements with mixed content are usually not supported.
• A reconstruction of an element requires joining several tables.
The best-known and probably the first representative of schema-driven mapping meth-

ods is a group of three algorithms for mapping a DTD to relational schema called Basic,
Shared, and Hybrid (Shanmugasundaram et al., 1999). The main idea, further used in all
the successive approaches, is based on a definition of a directed graph, so-called DTD
graph, which represents the processed DTD. Nodes of the graph are elements (which ap-
pear exactly once), attributes, and operators (which appear as many times as in the DTD).
Edges of the graph represent element-attribute, element-subelement or element-operator
and operator-subelement relationships (see Fig. 2).

The algorithms try to gradually improve the idea “to create one relation for each
element” and they differ according to the amount of redundancy they may cause.

2.2. Fixed vs. Adaptive Methods

All the previously described approaches represented so-called fixed methods, i.e., meth-
ods which provide the target mapping regardless the target application. Adaptive methods
(Klettke and Meyer, 2001; Bohannon et al., 2002; Xiao-Ling et al., 2003; Zheng et al.,
2003) focus on the idea that each application, represented using sample data and oper-
ations (i.e., queries), requires a different storage strategy to achieve optimal efficiency.
So before they provide the resulting mapping, they analyze the given sample data and
operations and adapt the target schema to them.



252 P. Loupal et al.

A representative of flexible schema-driven mapping methods is an algorithm proposed
in system LegoDB (Bohannon et al., 2002). First the method defines a fixed mapping of
XML Schema structures (for processing simplicity rewritten into syntactically simpler,
but semantically equivalent p-schemas) to relations. The flexibility is based on the idea
to explore a space of possible XML-to-relational mappings and to select the best one
according to given statistics including information about a sample set of XML documents
and queries. In order to select the best mapping the system in turns applies the following
two steps to the source p-schema, until a good result is achieved:

1. Any possible XML-to-XML transformation is applied to the p-schema.
2. XML-to-relational transformations are applied to the new p-schema and against

the resulting relational schema the given queries are estimated.

As the space of possible p-schemas can be large (possibly infinite), the paper also
proposes a greedy evaluation strategy that explores only the most interesting subset.
The XML-to-XML transformations used in the algorithm are: inlining/outlining, union
factorization/distribution, repetition merge/split, wildcards rewriting, etc. The XML-to-
relational transformations are similar to those described in the previously mentioned fixed
methods.

2.3. User-Defined vs. User-Driven Methods

Both user-defined and user-driven approaches are based on the same idea as adaptive
methods, i.e., to provide a target schema which is optimal for a particular application.
However they achieve this aim using a different strategy – “to leave the whole process in
hands of a user”. User-defined (Amer-Yahia, 2003) mapping methods were the first ap-
proaches supported by the commercial systems, probably due to simple implementation.
This approach requires that the user first defines S2 and then expresses required mapping
between S1 and S2 using a system-dependent mechanism, e.g., a special query language,
a declarative interface, etc. At first sight the idea is correct – users can decide what suits
them most and are not restricted by features and especially disadvantages of a particu-
lar technique. The problem is that such approach assumes users skilled in two complex
technologies – (object-)relational databases and XML. Furthermore, for more complex
applications the design of an optimal relational schema is generally an uneasy task.

At present, most of existing systems support a kind of user-driven mapping (Balmin
and Papakonstantinou, 2005; Amer-Yahia et al., 2004; Mlýnková, 2007) where the effort
a user is expected to make is lowered. The main difference is that the user can influence
a default fixed mapping strategy using annotations which specify the required mapping
for particular schema fragments. The set of allowed mappings is naturally limited but
still enough powerful to define various mapping strategies. Each of the techniques is
characterized by the following four features:

• an initial XML schema Sinit ,
• a set of allowed fixed XML-to-relational mappings {f i

map }i=1,...,n,
• a set of annotations A, each of which is specified by name, target, allowed values,

and function, and
• a default mapping strategy fdef for not annotated fragments.



Storing XML Data – The ExDB and CellStore Way 253

Probably the first approach which faces the mentioned issues is proposed in sys-
tem ShreX (Du et al., 2004). It allows users to specify the required mapping and it is
able to check correctness and completeness of such specifications and to complete possi-
ble incompleteness. The mapping specifications are made by annotating the input XML
Schema definition with a predefined set of annotations, i.e., attributes from namespace
called mdf. The set of annotating attributes A is listed in Table 1.

As we can see, the set of allowed XML-to-relational mappings {f i
map }i=1,...,n in-

volves inlining and outlining of an element or an attribute, Edge mapping (Florescu and
Kossmann, 1999) strategy, and mapping an element or an attribute to a CLOB column.
Furthermore, it enables one to specify the required capturing of the structure of the whole
schema using one of the following three approaches:

• Key, Foreign Key, and Ordinal Strategy (KFO) – each node is assigned a unique
integer ID and a foreign key pointing to parent ID, the sibling order is captured
using an ordinal value

• Interval Encoding – a unique {start,end} interval is assigned to each node
corresponding to preorder and postorder traversal entering time

• Dewey Decimal Classification – each node is assigned a path to the root node de-
scribed using concatenation of node IDs along the path

As side effects can be considered attributes for specifying names of tables or columns
and data types of columns. Not annotated parts are stored using user-predefined rules,
whereas such mapping is always a fixed one.

Table 1

Annotation attributes for ShreX

Attribute Target Value Function

outline Attribute or
element

true,
false

If the value is true, a separate table is created
for the attribute/element. Otherwise, it is inlined
to parent table.

tablename Attribute,
element, or
group

string The string is used as the table name.

columnname Attribute,
element, or
simple type

string The string is used as the column name.

sqltype Attribute,
element, or
simple type

string The string defines the SQL type of a column.

structurescheme Root element KFO,
Interval,
Dewey

Defines the way of capturing the structure of the
whole schema.

edgemapping Element true,
false

If the value is true, the element and all its
subelements are mapped using Edge mapping.

maptoclob Attribute or
element

true,
false

If the value is true, the element/attribute is
mapped to a CLOB column.



254 P. Loupal et al.

2.4. Comparison of XML Enabled Databases

To conclude this section we provide a comparison of support of XML technologies and
respective strategies in the current most popular XML-enabled databases – Oracle DB
(Oracle Database, 2010), IBM DB2 (DB2 Product Family), and Microsoft SQL Server
(Microsoft SQL Server, 2008), sometimes denoted as the “Big Three”. Table 2 provides
an overview of the XML-related functions that are (not) supported in the three systems
and their key characteristics.

As we can see, in general, all the three vendors follow the same pattern and try to sup-
port as much XML functionality as possible. The most advanced and, at the same time,
standard-conforming support has Oracle DB, whereas the SQL Server traditionally ig-
nores the proposed standards the most. Under a closer investigation we can see that there
are some significant observations and differences in respective areas of XML support.

Firstly, all three systems support a kind of XML data type (called either XML or XML-
Type) and several types of respective storage strategies. In particular, the XML data type
can be naturally stored into a kind of LOB (we speak about a non-structured storage), al-
though such kind of storage is trivial and suitable only for a specific type of applications.
Hence, there are two other types of storage strategies – shredding into relations (called
structured) and native XML storage (called binary or native). In the former case usually a

Table 2

Overview and comparison of key XML features of selected XML enabled databases

Feature Oracle DB DB2 SQL Server

XML data type XMLType XML XML

Structured, binary,
non-structured

Binary, structured LOB, native, structured

Mapping User-defined User-defined User-defined

Names, data types
and storage strategies
(VARRAY vs. LOB)

Relations, columns, condi-
tions, expressions

Relations, columns, keys,
relationships

Querying XQuery, SQL/XML XQuery, SQL/XML, SQL
embedded to XQuery

XQuery, SQLXML
(OPENXML, FOR XML)

Indexing XMLIndex Region index, column path
index, XML index

Primary, secondary
(PATH, PROPERTY,
VALUE), full-text

ORDPATHS, path index,
axes index

Indexing particular XPath
expressions

ORDPATHS

Other op-
erations

Validity checking, XSL
transformations

Validity checking, XSL
transformations

Validity checking, XSL
transformations only via
an external tool

Updating Own functions for insert-
ing, replacing, deleting
nodes

XQuery Update Facility Own function with param-
eter for inserting, replac-
ing, deleting
nodes



Storing XML Data – The ExDB and CellStore Way 255

kind of user-driven mapping is supported, where the user can specify, e.g., names of rela-
tions and columns, data types of columns, decide on inlining/outlining or storing a whole
XML fragment into a LOB column, types of storage strategies or various additional SQL
conditions and expressions.

As for the query capabilities, all the systems support the XQuery language and its
embedding in SQL to enable working with both XML and SQL data at the same time. To
further increase this ability, both Oracle DB and DB2 support the SQL/XML standard,
while SQL Server provides own set of functions called SQLXML (which involve con-
structs OPENXML and FOR XML providing SQL views over XML data and XML views
over SQL relations respectively). Surprisingly, DB2 also supports a new feature – em-
bedding SQL queries into XQuery – which is not a part of the SQL/XML standard. All
the three systems support several kinds of indices that enable to speed up XML query-
ing. Naturally, they are highly related to the selected storage strategy. If structural storage
is selected, classical B+ trees are used. If a native storage is used, native XML indeces
(such as ORDPATHS (O’Neil et al., 2004)) are exploited. All the systems also support a
kind of XML full-text search, requiring respective indices as well.

Considering other operations with XML data, all systems naturally support validity
checking and XSL transformations. On the other hand, considering update operations,
each of them has its own approach. Oracle DB provides a set of update functions, SQL
Server provides a single function with multiple parameters and only DB2 already supports
the XQuery Update Facility.

As we can see, all the three current database leaders try to exploit the relational aspects
as much as possible. However, at the same time, they realize that native approaches are
more suitable for semi-structured XML data and, hence, try to extend the systems towards
these strategies. We provide their overview in the following section.

3. Native XML Databases

A native XML database system is a database system whose internal structure is espe-
cially designed for XML data management. XML data are stored in a format which is
maximally adapted according to specific characteristics of XML data – hierarchical and
irregular structure potentially mixed with unstructured data. Advantages of an NXDBMS
in comparison to storing XML data into an (O)RDBMS are obvious. An XML document
may be stored “as it is” without complicated transformation into relational tables and,
therefore, may be efficiently retrieved from the system in its original form. Moreover,
an NXDBMS directly supports XML query languages such as XPath and XQuery and,
therefore, it is not necessary to translate XML queries to SQL queries.

On the other hand, there are also fundamental disadvantages of NXDBMSs we need
to count with. In comparison to RDBMS technologies, NXDBMS technologies are rela-
tively new and, therefore, not so well developed. Therefore, NXDBMSs rarely provide a
support for, e.g., transactions or advanced query optimizers.

Contrary to relational queries, XML queries deal with not only data items of stored
XML documents but also structural relationships between their XML nodes. Therefore,



256 P. Loupal et al.

an NXDBMS can exploit well-known query evaluation algorithms from the theory of
relational databases. However, they also need novel algorithms for evaluating structural
queries. The most important kind of these algorithms widely studied in current literature
are so-called structural join algorithms. In this section, we describe the most impor-
tant representatives of these algorithms. Before this we introduce the notion numbering
schema which is for structural joins crucial.

3.1. Numbering Schemas

Obviously, the amount of XML data might be extensive and an NXDBMS cannot store it
all in the main memory. It is, therefore, necessary to identify the stored XML nodes so that
we can locate them on the disc. The identification system is generally called numbering
schema.

The simplest numbering schema is a sequential numbering schema. It numbers XML
nodes starting from 1 and each new XML node is assigned with the last assigned iden-
tifier increased by 1. The advantage of this numbering schema is its simplicity. It does
not require any complex management by the database system. On the other hand, it does
not provide any assistance to the database system when evaluating queries. As we have
noticed, XML queries are not evaluated only on the basis of data values of XML nodes,
but also on the basis of structural relationships between them. The problem is that a se-
quential numbering schema does not provide such kind of information. Having numbers
of two XML nodes, we need to traverse the XML document to find out whether, e.g., the
nodes are in the ancestor/descendant relationship.

To solve the problem with structural information, various kinds of numbering sche-
mas, called structural numbering schemas were introduced in the literature. They are
designed to quickly recognize whether two given XML nodes are in the ancestor/descen-
dant relationship. Formally, a structural numbering schema is a pair (p, L), where L is a
function which assigns each XML node v with a number L(v) and p is a predicate such
that p(L(u), L(v)) = true iff u is an ancestor of v.

An example of a structural numbering schema is Dietz schema (Dietz, 1982). It as-
signs each XML node v with a pair L(v) = (pre(v), post(v)), where pre(v) returns the
order of v in the pre-order traversal of the XML tree while post(v) returns its order in the
post-order. Having two nodes u and v, p(L(u), L(v)) = true iff pre(u) < pre(v) and
post(u) > post(v). In other words, u is an ancestor of v iff u appears earlier than v in
the pre-order traversal than v and, vice versa, later than v in the post-order traversal.

As shown, Dietz schema allows for deciding the structural ancestor/descendant re-
lationship effectively. A problem arises when management of identifiers comes to the
scene – inserting a new XML node into an XML tree affects Dietz identifiers of the an-
cestors of the new XML node, as well as all XML nodes which are after it in the pre-order
traversal. These affected nodes must be renumbered which may be a non-trivial and time-
consuming task. A solution to this problem is to use an interval schema. It assigns each
XML node v with an interval L(v) = (start(v), end(v)), such that L(v) is contained in
the interval L(u) for each ancestor u of v and two intervals of any sibling nodes do not



Storing XML Data – The ExDB and CellStore Way 257

Fig. 3. An example of XML document with nodes numbered by (a) Dietz and (b) Dewey encoding.

overlap. The intervals may be “blew up” so that there is a space for new incoming nodes
without the necessity of renumbering the existing ones.

Another partial solution to the node insertion problem provides Dewey encoding
(Tatarinov et al., 2002). It assigns each non-root XML node v with a code L(v) =
L(u).position(v), where u is the parent of v and position(v) is the position of v among
the children of u. The root XML node is assigned with an empty code. Insertion of a new
XML node affects the codes of following siblings and their descendants which is better
than in the case of previous schemas. However, the resulting codes are longer and with a
variable length. A solution to this problem may be found in (Bača et al., 2010).

A sample XML document with nodes numbered by Dietz and Dewey encoding sche-
mas is depicted in Fig. 3.

3.2. Structural Join Algorithms

As we have outlined, an NXDBMS strongly depends on ability to evaluate queries which
query structural relationships between nodes. For example, an XPath query is typically
a structural query. Its simplest form searches for XML elements or attributes with spec-
ified names and with specified structural relationships between them. In this section, we
consider only ancestor-descendant (AD) and parent-child (PC) relationships.

When evaluating a structural query, the query is firstly represented as a tree Q called
twig pattern. Its nodes have names and represent the queried nodes in XML documents.
Its edges represent the required structural relationships and are, therefore, of two types:
AD and PC. A structural join algorithm then searches for all occurrences of Q in a given
XML tree (or XML trees). An occurrence of a query Q with nodes q1, . . . , qn is a tuple
u1, . . . , un of XML nodes so that ui has the same name as qi and each pair ui and uj

is a PC or AD structural relationship iff there is an edge of that type between qi and qj ,
respectively.

In general, each structural join algorithm works as follows: It assigns each node q in
the twig pattern Q with an ordered stream of XML nodes from the input XML docu-
ment. The sequence contains only XML nodes with the name equal to the name of q. The
algorithm then sequentially reads the input streams and searches for twig pattern occur-
rences. It is clear that the crucial property of any structural join algorithm is its ability to



258 P. Loupal et al.

determine whether two given nodes are in PC or AD relationship. This might be achieved
easily by selecting a suitable numbering schema, e.g., the ones introduced in Section 3.1.

Occurrences of a twig pattern in an XML document may be searched in various ways.
Each way has significant advantages but drawbacks as well. The majority of approaches
firstly separate Q into smaller components, evaluate these components individually and
then merge the intermediate results into the final output. We distinguish two groups of
such approaches. Approaches in the first group evaluate each edge in Q separately. This
group is called binary structural join algorithms as each edge specifies a binary structural
relationship. Approaches in the second group evaluate each root-to-leaf path separately.
This group is called holistic structural join algorithms. Finally, there are also algorithms
which evaluate Q as a whole. This group is called one-way structural join algorithms.

3.2.1. Binary Structural Join Algorithms
The simplest idea to evaluate a twig pattern Q is to evaluate each edge of Q separately
and then merge the intermediate solutions to the final solution. We speak about so-called
binary structural join algorithms. The approaches concentrate solely on the first part of
the problem, i.e., finding the intermediate solutions. Merging intermediate solutions is not
so interesting since it can be solved by classical merging algorithms. Historically, binary
structural joins algorithms represent the oldest and already obsolete algorithms. On the
other hand, their principles have strongly influenced state-of-the art holistic structural
join algorithms.

The first attempt in this area was introduced in Zhang et al., (2001). It showed that
an algorithm specially designed for twig query matching can significantly outperform
classical relational join algorithms. In Al-Khalifa et al. (2002), the authors introduced a
binary structural join algorithm STACK-TREEwhich put basics of many later algorithms.
It sequentially reads two input streams Tu and Tv associated with two nodes qu and qv

connected by an evaluated edge e from Q. For the current XML nodes Cu and Cv from
the input sequences, it decides whether they are in the required PC or AD relationship.
If so, it puts the found pair on the input. For a given XML node from Tu the algorithm
searches for all nodes in Tv which form an occurrence. A problem occurs when there
are two nodes u1 and u2 in Tu s.t. u1 is an ancestor of u2. In that case, all XML nodes
from Tv which form an occurrence with u1 might also form an occurrence with u2 and,
therefore, a part of Tu must be accessed twice. Therefore, the authors proposed to use
a stack to cache nodes from Tu which are in the AD relationship. This prevents from
repeated traversal of Tu.

The authors showed that STACK-TREE is time and space optimal in case of twig pat-
terns with AD edges only. If a twig pattern contains also a PC edge, the time complexity
degrades. This is because STACK-TREE can join XML nodes only on the AD relation-
ship and, then, it must check whether they are also in the PC relationship. However, the
optimal algorithm would skip the nodes which are not in PC relationship without joining
them. This problem was partially solved for holistic structural join algorithms and we
describe the solutions later in this section.

Another disadvantage of STACK-TREE is that it may read XML nodes in Tu or Tv

which cannot form an occurrence. It reads them from the disc and skips them. It would be



Storing XML Data – The ExDB and CellStore Way 259

more optimal if it would not be necessary to access them at all. This can be achieved by
using a suitable indexing structure. There were introduced several solutions which allow
us to skip XML nodes in Tu to the first ancestors of Cv and, vice versa, to skip XML
nodes in Tv to the first descendant of Cu. The first attempt in this area used a classical
B+ tree (Chien et al., 2002). More optimal solutions are XR-tree (Jiang et al., 2003b) and
XB-tree (Bruno et al., 2002) which are used also for holistic structural join algorithms.

3.2.2. Holistic Structural Join Algorithms
All binary structural join algorithms can solve only a binary relationship which is usually
a part of a more complex twig pattern. However, only parts of the intermediate solu-
tions of the binary relationships contribute to the final solution of the whole twig pattern.
Therefore, these algorithms can produce unusable intermediate results. This behavior can
be partly minimized by selection of an appropriate order of the joins (Wu et al., 2003).
However, such a solution needs expensive statistics about the XML documents.

This problem is partly solved by another family of structural join algorithms called
holistic structural join algorithms. (Note that algorithms in this family still do not eval-
uate a twig pattern as a whole.) They are based on the idea of decomposition of the twig
pattern to root-to-leaf paths. Even though they can produce intermediate occurrences that
do not contribute to the final solution, the intermediate solutions are much smaller than
in case of binary structural join algorithms. Moreover, there have been proposed various
techniques that further minimize them.

In Bruno et al. (2002), the authors proposed two holistic structural join algorithms
called PATH-STACK and TWIG-STACK. This was the first work which introduced the
family of holistic structural joins. PATH-STACK directly extends binary STACK-TREE.
More specifically, it extends the idea of caching intermediate XML nodes which possibly
contribute to any occurrence of the twig pattern. The caching is realized in a stack Sq

assigned to each twig pattern node q. The algorithm reads all input streams sequentially
and stores those which are in the AD relationship on the corresponding stacks similarly
to PATH-STACK. When an XML node corresponding to a leaf node of the twig pattern
is found, occurrences containing this XML node are reconstructed by combining XML
nodes on the stacks.

PATH-STACK is optimal when evaluating a twig pattern without branching nodes
(i.e., a twig pattern which has a form of path). TWIG-STACK introduces an optimization.
When an XML node corresponding to a twig pattern node q is found, it is not directly put
on Sq. Instead, TWIG-STACK checks whether it is in AD relationship with all current
nodes in the input streams corresponding to twig pattern child nodes of q. This prevents
from processing XML nodes which cannot participate in any occurrence. TWIG-STACK
is optimal when evaluating twig patterns with AD edges only.

Later there appeared extensions to TWIG-STACK which optimize it such as, e.g.,
TSGeneric (Jiang et al., 2003a), TWIG-STACK-LIST (Lu et al., 2004), or TWIG-
BUFFER (Li and Wang, 2008b). These extensions provide various techniques which al-
low for evaluation of twig patterns which contain PC edges on specific positions. How-
ever, they still cannot evaluate a general twig pattern with PC edges at an arbitrary posi-
tion optimally.



260 P. Loupal et al.

3.2.3. One-Way Structural Join Algorithms
In Chen et al. (2006), another family of structural join algorithms was introduced. It
overcomes the main drawback of holistic structural join algorithms – the necessity to de-
compose a given twig pattern to root-to-leaf paths and merging their intermediate results.
More specifically, the work introduces algorithm TWIG2STACK which extends the idea
of stacks by so-called hierarchical stacks. It is then able to store a partial occurrence of
a twig pattern as a whole on the hierarchical stacks without decomposition to root-to-
leaf paths. The advantage is clear – the merging phase is reduced. However, it might be
necessary to hold the whole XML document in the hierarchical stacks.

Later, an algorithm called TWIG-LIST (Qin et al., 2007) was introduced. It optimizes
TWIG2STACK by replacing hierarchical stacks with direct pointers to input streams of
XML nodes. This reduces the space complexity and allows for easier management. There
have also appeared further optimizations in Jiang et al. (2007) or Li and Wang (2008a)
which are based on combining one-way structural join algorithms with the holistic ones.

3.3. Indexing Structures

The effectiveness of any structural join algorithm depends on the way how the data is
stored and indexed by an NXDBMS. As we have already showed, each structural join
algorithm requires an ordered input stream of XML nodes of a given name associated
with each twig pattern node. It is therefore necessary to store the XML nodes on the disc
in a way which allows us to retrieve them in a form of the input streams. In this sec-
tion, we discuss an index structure called DataGuide which is designed for this purpose.
We also discuss alternative indexing techniques which help in particular situations when
evaluating XML queries.

3.3.1. DataGuide
DataGuide was one of the first NXDBMS-specific indexing structures. It allows for in-
dexing structure of XML documents. More specifically, a DataGuide of an XML docu-
ment is a tree. Its each node represents a single root-to-leaf path of XML node names
in the XML document. Its each edge represents that XML nodes on the path represented
by the parent are parents of the XML nodes on the path represented by the child. A
DataGuide for the sample XML document in Fig. 3 is depicted in Fig. 4.

For each of its nodes a DataGuide indexes a sequence of XML nodes on the path rep-
resented by the node. For each indexed XML node, the DataGuide indexes the identifica-
tion number assigned to the XML node by the chosen numbering schema. It then allows
for providing structural join algorithms with required input streams of XML nodes. In the
basic version, XML nodes with a given name are put into a common stream. However, a
DataGuide allows for more advanced streaming schemas. For example, it may provide a
separate stream for each of its nodes. In other words, XML nodes targeted by the same
root-to-leaf path of names are put into a common stream. As shown in Chen et al. (2005),
this improves the time complexity of structural join algorithms when evaluating twig pat-
tern PC edges. It is also possible to reduce the space complexity by stream compression
as shown in Bača et al. (2010).



Storing XML Data – The ExDB and CellStore Way 261

Fig. 4. An example of DataGuide.

3.3.2. Covering Indices
A covering index is an index which allows for evaluating queries of a particular type
without accessing the source data on the disc. This kind of indices may be also found
in RDBMSs but there are also equivalents in NXDBMSs. For example, a DataGuide is
a covering index for queries whose twig patterns do not contain branching nodes. These
queries may be evaluated directly by searching for respective node in the DataGuide and
returning the associated XML node stream.

Having a query whose twig pattern contains branching nodes, we can separate the
twig pattern to root-to-leaf paths, evaluate them using the DataGuide and then join them
using a structural join algorithm. Another possibility is to exploit a stronger index which
covers not only twig patterns in a form of paths but twig patterns in general (i.e., with
branching nodes). This index is called F&B index (Kaushik et al., 2002). F&B index is a
DataGuide constructed over source XML documents complemented with reversed edges
of the original source edges.

In practice, F&B index may be, however, extremely large – even larger than the orig-
inal data. On the other hand, the authors show in Kaushik et al. (2002) that F&B is the
smallest possible index covering queries whose twig patterns contain branching nodes.
The problem with the size of F&B index may be, therefore, solved only by restricting the
index to cover only specific kinds of queries. For example, we might index only selected
paths in the XML documents by an F&B index. This is analogical to indexing tables in
an RDBMS, where it is a common practice to index only selected table columns instead
all columns and their combinations. It is up to the database administrator to decide what
paths should be indexed. The overall performance of NXDBMSs, therefore, depends on
the chosen compromise between the number of indexed paths and the size of the covering
index.

3.3.3. Adaptive Indices
Another solution to the problem of optimization of evaluating queries with twig pat-
terns with branching nodes which moreover decreases the size of the resulting index is
so-called adaptive indexation. An adaptive method indexes primarily basic structural re-
lationships and extends them in runtime according to incoming queries.



262 P. Loupal et al.

For example, the APEX index (Chung et al., 2002) primarily indexes only edges in
a DataGuide of a given set of XML documents. In other words, it indexes only pairs of
XML nodes which are connected by an edge corresponding to an edge of the DataGuide.
Then, it extends the index according to evaluated queries by concatenating the edges to
longer paths. A path is indexed by the APEX index only when the ratio of all user queries
containing the path to all user queries exceeds a given threshold.

An advantage is that the system automatically reflects actual user queries. On the other
hand, when users start pushing different kind of queries, the index cannot be used. The
best way, therefore, is to combine the presented approaches, i.e., to index a set of paths
using a fixed F&B index and then also use an adaptive index for other, not indexed paths.

3.4. Comparison of Native XML Databases

At the end of this section, we compare three selected native XML databases – open source
(eXist Native XML Database) and (Oracle Berkeley XML DB) and commercial (web-
Methods Tamino). Table 3 provides an overview of the XML-related functions that are
supported in the three systems.

Let us discuss in more detail some observations resulting from the table. Firstly, many
native XML database systems still use a relational database as an option of their internal
data storage. Even though the relational database is completely hidden from the applica-
tions built on top of the native XML database, there are some important consequences
for the applications. For example, transactions, security or full-text search functions can
be easily built on top of relational mechanism and directly offered to the applications as
functions of the native XML database.

Secondly, regarding XML data querying, all systems support at least the XPath lan-
guage. Most of them support the full XQuery and XSLT languages as well. This is natural

Table 3

Overview and comparison of key XML features of selected native XML databases

Feature eXist Berkeley XML DB Tamino

Data store Native in paged files and
B+-trees

Relational database Native in paged files; rela-
tional database

Query languages XQuery, XSTL XQuery XQuery

Indexing Element and attribute
names, Dewey encoding,
DataGuide

Element and attribute
names and values, path in-
dices

Indices covering user-
defined XPath expressions

Query evaluation Binary structural join Binary structural join n/a

Other functions XInclude, XPointer, full-
text search, security, trans-
actions (only for crash re-
covery)

Full-text search, trans-
actions, security

Full-text search, trans-
action, security

Updating XQuery Update Facility XQuery Update Facility Own XQuery extension



Storing XML Data – The ExDB and CellStore Way 263

for native XML databases. No combination with the SQL language as we could see in
the case of XML enabled databases is supported and it is not even necessary. Regard-
ing XML data updates, usually XQuery Update Facility is supported. The commercial
Tamino system supports own extension to XQuery.

All systems support indices to speed up XML querying. All of them support basic
indices for indexing XML element and XML attribute names and values. The name in-
dices are very important for structural joins as we described in Section 3.2 (they allow
for retrieving a sequence of XML nodes with a given name which is the input for struc-
tural join algorithms). Both open-source and commercial systems support some more
advanced kinds of indices. The eXist system indexes the full structure of elements and
attributes in the XML documents with a structure based on DataGuide that was described
in Section 3.3. The Berkeley XML DB system uses a kind of indices which cover all paths
going from the root to elements or attributes with a specified name. The Tamino server
uses indices which cover user defined XPath expressions. Additionally to XML-specific
indices, most native XML database systems (and all the three compared in the ta ble)
support a kind of XML full-text search, requiring respective indices as well. The table
also shows that binary structural join algorithms are supported by the open-source tools.

Thirdly, an important feature of each database system are security and transactional
features. While these are sufficiently supported by current relational database systems
their support in native XML database systems must be built from scratch when relational
features are not used. As can be seen, current versions of the native systems support these
features which is a great step towards applying native XML database systems in practice.

In general, current open-source as well as commercial native XML database systems
support recent research results in the area of indexing XML data and evaluating path ex-
pressions only partly. For example, more advanced covering indices are not supported.
Also holistic structural join algorithms are not supported as well. Therefore, current sys-
tems could be further improved by adding support of these advanced techniques. This
is also demonstrated by the authors of the research results who usually implement their
proposed techniques as extensions to current open-source systems, e.g., Berkeley XML
DB.

In the second part of this paper we will describe two NXDBMSs we have proposed
and implemented for educational purposes at our department – ExDB and CellStore. We
will show their key features and compare them mutually as well as with the current state
of the art.

4. ExDB Native XML DBMS

ExDB (Experimental XML DataBase; Loupal, 2006) is a native XML database manage-
ment system being developed at the Czech Technical University in Prague by students
of the Faculty of Electrical Engineering and the Faculty of Information Technology. The
primary goal of the project is to prototype a working database environment based upon
the XML-λ Framework – a functional framework for XML – and thus confirm its suit-
ability for such use case. The framework and related research activities are described in
detail in Loupal (2010).



264 P. Loupal et al.

4.1. System Concept

There are two key ideas that distinguish the ExDB system from the other competitors:

(1) the employment of the functional data model for all in-memory data structures
related to XML, and

(2) method of evaluating XPath/XQuery queries via their XML-λ alternative.

These two properties influence to certain extent the internals of the system. Let us
briefly outline these two ideas.

4.1.1. Functional Data Model
All operations with XML data are performed through a library implementing the XML-λ
functional data model. It is the most important fact that distinguishes ExDB from other
systems. Strict use of the data model, its influence even on the structure of low-level
paging mechanism is a thorough test of features of the functional approach. The following
text points out its key attributes.

The data model utilized inside the ExDB for encoding XML data is exclusively based
on the functional data model introduced by Pokorný (2002) and later altered in Loupal
(2010). These works describe its formal basis in detail. For the purpose of this paper, we
select its main properties only and incite the reader to explore the details there.

In the XML-λ Framework, an XML document is modeled as a triple D = 〈E,T,S〉,
where E denotes a set of abstract elements, i.e., unique entities corresponding to elements
from a particular XML document, S denotes a set of all strings (either element or attribute
content), and finally T denotes a set of functions that encode relations between abstract
elements and strings; informally, we can say that these functions describe the parent-child
relationship for all elements within the document. For consistency reasons, attributes are
treated in the same way as elements.

4.1.2. Query Processing Approach
Our approach for query processing within the system is closely related to aforementioned
data model. As described in Loupal (2010) we have adopted and employed a query lan-
guage based on the XML-λ data model and simply typed λ-calculus – the XML-λ Query
Language. ExDB uses this language for evaluating queries written in “conventional”
query languages such as XQuery or XPath. Input queries are at first transformed into
a respective XML-λ form and consequently evaluated in a virtual machine (see Fig. 5).
We claim that this unification lets us concentrate on improving the evaluation capabil-
ity of the functional approach and hence encourage further research activities within this
field.

4.2. System Architecture

Having the functional data model and the associated query language in mind, we have
furthermore set two main design goals for the system:

• design and develop a modular and configurable system,



Storing XML Data – The ExDB and CellStore Way 265

Fig. 5. Evaluation of XPath/XQuery queries in ExDB.

• target the system more as an educational project, hence to take more care about sys-
tem design quality, its stability and code readability instead of chasing for superior
performance results.

We claim that such approach ensures long-term maintainability of the code base but,
nevertheless, can bring up an efficient and stable database system.

The modular design of ExDB is shown in Fig. 6. The modularity allows us to dis-
tribute relatively independent assignments to particular developers; new features can be
afterwards designed and programmed in parallel and consequent integration is not too
complicated. A brief sketch of all modules employed in the current version of the system
follows.

4.2.1. Connection Manager
manages all client connections (ExDB is designed as a client/server system only; we
do not plan to support its embedded clone). Nowadays, we offer only a TCP/IP-based
proprietary communication protocol (nevertheless, users may select among a command
line, Java-based GUI or web-based clients), but there is an existing need for additional
alternatives such as web services or a REST-through-servlet API.

4.2.2. ACL Management
Each DBMS must obviously support user authentication and corresponding authorization
covering all activities being performed. Within ExDB we have designed a module that
utilizes XACML 2.0 (a general-purpose access control policy language standardized by
OASIS); more precisely, SUN’s implementation of this standard (OASIS).

4.2.3. Storage Manager
aims to persistently save XML data and provide efficient access to it. As the main topic
of this paper, we discuss it in detail later in Section 4.3.



266 P. Loupal et al.

Fig. 6. The ExDB architecture.

4.2.4. Query Processor
can process XPath, XQuery and XML-λ (see Section 4.1.1) queries. It is basically the
main “customer” of the Storage module in the system and the ability of these two mod-
ules to effectively communicate determines the overall both functional and performance
outcomes of the database system. What might be seen as a distinct feature is the fact that
all queries are first converted into their XML-λ form and only then evaluated in a Virtual
Machine (see Section 4.1.2).

4.2.5. Transaction Manager
is a planned module used for solving simultaneous access to the stored data. Due to its
relative complexity, we have not been able to design a solution in sufficient quality yet.

All these components are controlled by the Core module responsible for start-up,
initial configuration and message routing among all parts of the system.

4.3. The Storage Subsystem

ExDB generally offers two storage options for XML data: (1) filesystem-based, and
(2) native storage. The first alternative is a testing-only option not suitable for produc-
tion deployment. Data is stored in a filesystem within directories and files that respect
a straightforward one-to-one collection/directory and XML document/file mapping. Due
to its simplicity this alternative is not worth mentioning in detail here. The latter option,
native storage, is obviously more efficient and configurable solution and is hence more
important for us. With no doubt, its design is one of the most critical challenges appearing
inside the database system.



Storing XML Data – The ExDB and CellStore Way 267

Fig. 7. Schema of the persistent storage within the ExDB.

Our approach for storing XML data is based on existing methods, primarily on B+
trees. The storage is divided into three logical parts which realize particular operations
for collections and documents, text content and indices, respectively. Underneath, the
high-level interface is backed by a Data Manager performing requested operations on
structures designed with respect to the available filesystem.

The low-level persistence layer does not principally differ from existing solutions; it
uses fixed-size blocks as fundamental elements of data and provides exchange of these
blocks between operational memory and disc drives. Each block contains references to
respective parent/sibling fellows and its payload. If possible, the storing algorithm clus-
ters neighboring data entities into one block (if it is not possible, then into multiple but
adjoining blocks). This approach is especially suitable for storing the mapping part of
the data model instances (denoted as T or T -objects; Loupal, 2010). This structure is
in the current implementation represented as a nested hashmap and thus such a tree-like
structure is a natural way of storing it persistently.

The efficiency of I/O operations is improved by involving of a memory-cache that
realizes (for the present only) the Least Recently Used algorithm. The overall schema of
the storage is depicted in Fig. 7.

4.4. Issues and Future Work

ExDB is a software project still under active development (lasts more than four years up
to now). The relatively slow progress in introduction of new features can be expected
with respect to its original goals and its management – the development team (compris-
ing of Bc and MSc students) changes almost each semester and the quality of particular
deliverables varies. However, we managed to design and develop multiple working re-
leases of both client and server parts with particular features. Such “long-term” approach
to software development cannot be obviously applied for a commercial project but for a



268 P. Loupal et al.

research-oriented project it is acceptable. The vision of the “final state” version can be
closely defined and the deliverables can be polished by continuous development.

Nowadays, we can describe the following topics as the most important areas for fur-
ther research and development:

• Experimental results. We need to perform both functional and performance
benchmarking of the system. So far we have executed only a few particular exper-
iments but still have not performed complex tests such as comparison with other
systems or execution of existing standard-compliance suites.

• Storage improvements. The storage module can be still improved in terms of
implemented indexing methods and related algorithms (see Section 3). We plan to
redesign the module (especially the structure of its interface) to gain more efficient
access to data.

• Query optimization. XPath and XQuery query languages are complex enough to
allow us to yield various optimizations. It is a wide topic we plan to address in our
future research work – we claim that the model where XPath/XQuery queries are
converted into their XML-λ equivalents and only then are evaluated offers a very
good chance to perform optimizations within the functional machine.

In spite of existing issues, ExDB is a usable working prototype of an NXDBMS uti-
lizing the functional approach for XML. The project fulfills its goals but still offers a pool
of challenging topics and potential improvements to be solved in the future.

5. CellStore Native XML DBMS

The main goal of project CellStore (Vraný et al., 2008) is to develop an NXDBMS for
both educational and research purposes. It is meant rather as an experimental platform
than an in-box and ready-to-use database engine. We planed such an engine because
the students can easily look inside it, understand and create new components for this
engine such as, e.g., a built-in XSLT engine, a query optimizer, an index engine, an event-
condition-action (ECA) processing, etc.

According to this goal the development platform had been chosen. Especially:

• it should be easy to change of functionality of subsystems,
• it should be purely object-oriented for development and design,
• it must enable component reusing, test-driven development and trace & log facili-

ties for both debugging and educational purposes.

In the end we selected Smalltalk/X as the development platform.

5.1. Development Strategy

CellStore development is managed incrementally mostly by master thesis of individual
participants. There are 8 already successfully finished and 1 ongoing master thesis on the
project. Its transaction subsystem (Valenta and Strnad, 2006) is also the topic of a PhD
thesis of Pavel Strand, and code-debugging framework Perseus (Vraný and Bergel, 2007)



Storing XML Data – The ExDB and CellStore Way 269

was added recently in order to approve concepts of PhD thesis of Jan Vraný. The evolu-
tion potential of the project is also an occasional participation on more general projects
covered by various national grants.

5.2. History

The project was started in 2004 with the first implementation of storage subsystem. Im-
plementation of part of XQuery functionality (2007) was the next step. Then implementa-
tion of modules for simple-indexing, DML, transactional processing, cache management,
web-based approach, remote client, and test setting and evaluation environment followed
from 2007 to 2009.

In 2008 a significant change in the system architecture had been done. Jan Vraný
included Perseus framework into CellStore’s architecture. It brought really illustrative
code debugger based on event mechanism. But, on the other hand, it also requires partial
redesign of several already done subsystems and slightly slows down CellStore efficiency.

5.3. CellStore’s State of The Art

There are two stages in CellStore history – before and after Perseus incorporation. The
first – pre-Perseus stage – provided several relatively well integrated modules. CellStore
worked as an embedded DBMS with partial implementation of XQuery 1.0. It had a
database console, a transaction management and a monitoring tool. A comprehensive
description of CellStore at this stage was published in Pokorný (2007).

In 2008 several new modules and subsystems were under development (e.g., web
and line clients, DML module, testing tool etc.). At the same time, Jan Vraný started
with Perseus implementation (Vraný and Bergel, 2008). His work implied the necessity
of partial redesign of several already developed modules as well as modules just under
development. The redesign process was successfully done on new XQuery interpreter,
partially on transaction manager, and continues (within master theses) on modules for
DML and indexing. Some modules (web and line clients and testing tools) were not
affected, others (namely cache management module) were not redesigned yet.

5.4. System Architecture

CellStore’s architecture is depicted in Fig. 8. It can be approached through several inter-
faces at different levels of services. The lowest layer – low level storage – consists of
several cooperating modules. Modules depicted in solid boxes are already implemented,
whereas modules in dotted boxes are not ready yet.

5.4.1. Storage Manager
Storage Manager is responsible for I/O operations. It operates on physical data layer, it
uses both persistent storages – cell space and text space. It also uses its own low-level
cache subsystem. Physical structure of both storages is described in detail in Section 5.5.



270 P. Loupal et al.

Fig. 8. CellStore architecture.

5.4.2. Higher Level Cache Manager
Higher Level Cache Manager was designed and partially implemented and tested as a
master thesis of Karel Příhoda in 2008. It is meant as a “database buffer cache”.

5.4.3. Transaction Manager
Transaction Manager is a subject of PhD thesis of Pavel Strnad. Some concepts and
benchmarks were already published in Strnad and Valenta (2009). It uses non-blocking
taDOM algorithms developed by Theo Härder and his research group (Haustein and
Harder, 2003).

5.4.4. ACL Manager
ACL Manager is in the planing phase – it was neither designed, nor implemented yet.
Thinking seriously about database engine, one cannot omit multiuser access which im-
plies both – transaction management and user/role subsystem with granting abilities.



Storing XML Data – The ExDB and CellStore Way 271

5.4.5. Front End APIs
The rest of the system architecture is denoted as “Front End APIs”. Individual APIs are
represented by interface marks in the CellStore’s architecture (see Fig. 8). They provide
various additional services and abstraction layers like XPath or XQuery etc.

5.5. Storage Subsystem

We developed a new method for storing XML data. The method is based on work of
Toman (2004) and partially inspired by solutions used in DBMSs Oracle1 and Gem-
stone2. Structural and data parts of an XML document are stored separately. Of course,
it increases necessary time to store and reconstruct documents. But, on the other hand, it
provides a great benefit in disc space management especially in case of document update,
query processing and indexing of the stored XML data.

Let us describe the storage model in more detail. Note that the description is based on
the first implementation version, because it is more illustrative. There exist improvements
in the newer versions of CellStore, but they are not so important for a quick view. XML
data documents are parsed and placed in two different files during the storing process
– cell file and data file. We illustrate the structure of both the files using the following
sample XML document:

<?xml version="1.0"?>
<!DOCTYPE simple PUBLIC

"-//CVUT//Simple Example DTD 1.0//EN" SYSTEM simple.dtd">
<simple>
<!– First comment –>
<?forsomeone process me?>

<element xmlns="namespace1">
First text

<ns2:element xmlns:ns2="namespace2"
attribute1="value1" ns2:attribute2="value2">

</ns2:element>
<empty/>
</element>

</simple>

5.5.1. Cell File Structure
A cell file consists of fixed-length cells. Each cell represents a single DOM object (doc-
ument, element, attribute, character data, etc.) or XML:DB API object (collection or
resource). Note that this API is developed by XML:DB Initiative for XML Databases
(XML:DB, 2003). Cells are organized into fixed-length blocks.

A database block is the smallest I/O unit of transfer between disc and low-level stor-
age cache. Only cells from one document can be stored in one block. The set of blocks
describing the structure of the whole document is called a segment. Each block starts with
header with a bitmap describing the density of the block.

1http://www.oracle.com/us/products/database/index.html.
2http://www.gemstone.com/products/gemstone.



272 P. Loupal et al.

Table 4

CellStore cell structure

Name Content Meaning

Head 1 byte The type of cell.

Parent Cell pointer Pointer to parent cell.

Child Cell pointer Pointer to the first child.

Sibling Cell pointer Pointer to the next cell brother (NIL if there is no one).

D1, D2, D3, D4 Depends on type Contain either data or pointers (to a text file or a tag file)

depending on the type of cell.

Fig. 9. CellStore cell file structure.

Inside the cell structure internal pointers are used to represent parent-child and sibling
relationships of nodes. Each cell consists of eight fields, whereas their meaning can differ
with different types of cells. The following cell types are supported in the system: char-
acter data, attribute, document, document type, processing instruction, comment, XML
Resource, and collection. The general structure of cell is described in Table 4.

See Fig. 9 to grasp the idea how the cell storage looks for the sample XML document
mentioned above.



Storing XML Data – The ExDB and CellStore Way 273

Fig. 10. CellStore text file structure.

5.5.2. Text File Structure
A text file contains all text data (i.e., contents of DOM text elements and attributes).
The data is organized into blocks too, whereas one block belongs just to one document.
The set of data blocks belonging to one document is called again a segment. A text pointer
is a pointer to a text file. It consists of a text block and a record. Each text block contains a
translation table which accepts a record number and returns the offset and the length of the
data block. This strategy ensures efficiency in case of data changes. The translation table
grows from the end of block, while data grow from the beginning. For these purposes the
translation table contains the number of actual records. The header of a text block contains
also a pointer to the root of its cell node necessary for full-text searching. A sample
content of text file structure is shown on Fig. 10.

The low-level subsystem was fully implemented and its stability was tested on INEX
data set. INEX (Govert and Kazai, 2002) is the set of articles from IEEE which contains
approximately 12,000 individual XML documents (without figures) with total size of
about 500 MB.

The newer version of low-level subsystem implementation allows for individual set-
ting of cell, cell-pointer, and block sizes. All these parameters can be used to optimize
low-level storage according to specific data needs3. Unfortunately, we did not provide
enough experiments yet to be able to approve efficiency of such low-level customization.

5.5.3. Storage Discussion
Our storage strategy has an obvious drawback – necessity to divide XML data into text
and structure parts during the storing process and their joining during the document re-
construction. On the other hand, it was experimentally shown, that the space requirement
of our storage method is acceptable even in case of frequent changes of parts of stored

3Similarly, in Oracle DBMS a BLOCK_ SIZE, PCT_FREE, and extent-allocation parameters can be used
to optimize storage.



274 P. Loupal et al.

data. Moreover, selected obvious improvements like using convenient compress algo-
rithms for text space are evident, although they are not approved by experiments yet.

We believe that our storage method can also provide significant benefits in XQuery
processing. Of course, it requires well designed and complex (XQuery) optimizer, which
is able to guess and decide when to prefer text and when structure selection criteria. And,
separation of structural and text information may also allow us to apply special indexing
algorithms. However, all these notions are still at the level of hypothesis and future work.

5.6. Issues and Future Work

The CellStore project is currently running more than 6 years with very alternate devel-
opment activities. The main idea of educational and research platform is still vital and
attractive. Actually, a lot of design and programming work had been done, but, on the
other hand, the development strategy described above can be hardly changed under the
same circumstances, i.e., combination of theses and grants.

6. Experimental Results

In this section we provide a performance comparison of CellStore, ExDB and eXist – one
of the most commonly used NXDBMSs – on the basis of efficiency of storing documents.
We have measured time needed to store an XML document into the database. But, for the
sake of completeness and possibility to compare the systems with those mentioned in
Tables 2 and 3, we firstly provide an overview and comparison of main features of all the
three benchmarked systems in Table 5.

Table 5

Main characteristics of all systems submitted for the benchmark

Feature ExDB CellStore eXist

Started in 2005 2004 2001

Platform Java Smalltalk/X Java

Query languages XPath, XQuery, XML-λ XPath, XQuery XPath, XQuery, XSLT

Query optimization – – –

Data model XML-λ functional model DOM-based DOM-based

Storage strategy Filesystem-based, native Cell file, text file Native

Transaction support – taDOM –

Access control XACML 2.0 – XACML 1.0, 1.1

6.1. Benchmarking Environment

The benchmarking environment consists of the XMark data files, all NXDBMSs men-
tioned above, and a bash script that controls the execution. All parts are subsequently
described.



Storing XML Data – The ExDB and CellStore Way 275

6.1.1. Hardware and Software
For all parts of the benchmark we have utilized a personal computer with the following
system configuration:

• Single-core AMD Athlon 64 3000+ CPU, 2 GB RAM,
• Seagate Barracuda 5400 rpm (SATA),
• Ubuntu 9.10 running 2.6.31-17 (32-bit) linux kernel,
• Sun JRE 1.6.0_17,
• Smalltalk/X 5.4.6.

During the benchmarking, all the daemon processes were shut down to minimize
external interference. In order to get realistic results, swap file usage was disabled, so that
final results reflect rather the NXDBMS storage algorithm efficiency and not the virtual
memory manager paging behavior.

6.1.2. Benchmark Configuration
6.1.2.1. XML data. The xmlgen tool, developed at CWI as a part of the XML Bench-
mark Project (Schmit et al., 2001), was used to generate a set of input XML files. Setting
the XMark factor parameter values to 0.01, 0.02, 0.05, 0.1 and 0.2 in successive steps, the
test set containing 1.12 MB, 2.27 MB, 5.6 MB, 11.3 MB, 22.8 MB, 56 MB and 112 MB
XML files was obtained.

6.1.2.2. Benchmark Realization. Within the benchmark we have to deal with two tech-
nologies – Java and Smalltalk. Each one requires different setup and behaves in a specific
manner.

For Java databases we developed a benchmarking suite (in principle, a simple Java
application that acts as an Adapter for all databases) that is encapsulated by various op-
erating system scripts (using fundamental Linux tools, such as grep or awk).

Both Java and Smalltalk databases output their results in a common shared (textual)
format. These files are processed by additional Ruby scripts that prepare input for the
GNUPlot drawing utility.

6.2. Results

The obtained results are shown in Table 6. Figure 11 depicts corresponding chart. The
CellStore has a linear time complexity of the storing algorithm according to the size
of a document. Its storing algorithm is approximately 4-times slower than the eXist but
the time complexity of the import operation is the same. The ExDB implements storing
algorithm in another way. Storing of a document is done in two phases. In the first phase
the document is parsed and stored into the memory. The document is stored into the
disc in the second phase. Unfortunately, as shown in Fig. 12 this solution does not scale
well and it has to be redesigned. Moreover, the parsing time complexity seems to be
unacceptable.



276 P. Loupal et al.

Table 6

Document storing experimental results

Dataset Filename XMark Size Document Storing Time (ms)

factor (kB) CellStore ExDB eXist

1 db001.xml 0.01 1 154 3 222 2 798 651

2 db002.xml 0.02 2 291 6 472 5 423 1 084

5 db005.xml 0.05 5 735 15 542 17 992 2 770

10 db01.xml 0.10 11 596 31 032 56 614 6 995

20 db02.xml 0.20 23 364 63 040 192 334 12 925

50 db05.xml 0.50 56 647 157 603 781 239 32 896

100 db10.xml 1.00 113 787 305 510 2 356 872 93 696

Fig. 11. Document storing experiment results.

Fig. 12. ExDB parsing and storing times.



Storing XML Data – The ExDB and CellStore Way 277

7. Conclusions

The main aim of this paper was to provide an overview of current approaches towards
efficient storage and management of XML data. In general, the paper consists of two
parts. Firstly, we have provided a general overview of two current key approaches – XML-
enabled databases which are based on usage of verified relational database management
systems and native XML databases which are designed particularly for the hierarchical
tree structures of XML data.

In the second part of our paper we have introduced and compared two native XML
databases – ExDB (Loupal, 2006) and CellStore (Vraný et al., 2008) – that have been
proposed, implemented and optimized in our research groups in recent years. Both the
systems were planned for the educational purposes, can be freely downloaded and tested
and enable anyone to study and analyze the native approaches in detail. The reader should
get an idea how to design and develop an XML database.

Our aim was to provide a general description of the state of the art of XML stor-
age strategies and to put into this context our two systems. The reader may easily get
acquainted with their features in comparison to the other implementations and decide
whether and for what purposes they can be used.

As we have indicated in the text, both the systems have several open issues to be pro-
posed, implemented and tested. The key aspect of an XML database is naturally efficient
evaluation of XML queries. Hence, the amount of existing approaches is enormous and
we have focused on this aspect primarily as well. However, a reasonable DBMS must
support also “side” functionality such as multi-user access, transactions, versioning etc.
So, in our future work, we will focus mainly on two parallel aims – query optimization
strategies and implementation of full functionality of a classical database management
system. On the other hand, our key target still remains the educational aspect of the sys-
tems, not the performance results which form the key aim of other related, partly of fully
commercial projects.

Acknowlegments. This work has been supported by the Czech Science Foundation
(GAČR), grants No. 201/09/0990 (M. Nečaský, K. Richta), 201/09/P364 (I. Mlýnková)
and by the Czech Technical University in Prague, grants No. SGS10/201/OHK3/2T/13
(P. Strnad), SGS10/226/OHK3/2T/18 (P. Loupal).

References

Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D. (2002). Structural joins: a primi-
tive for efficient xml query pattern matching. In: Proceedings of ICDE’02. IEEE Computer Society, Wash-
ington, pp. 141–152.

Amer-Yahia, S. (2003). Storage techniques and mapping schemas for XML. Technical report TD-5P4L7B, ATT
Labs-Research.

Amer-Yahia, S., Du, F., Freire, J. (2004). A comprehensive solution to the XML-to-relational mapping problem.
In: Proceedings of WIDM’04. ACM Press, New York, NY, pp. 31–38.

Balmin, A., Papakonstantinou, Y. (2005). Storing and querying XML data using denormalized relational
databases. The VLDB Journal, 14(1), 30–49.



278 P. Loupal et al.

Bača, R., Walder, J., Pawlas, M., Krátký, M. (2010). Benchmarking the compression of XML node streams.
In: Proceedings of BenchmarX’10 International Workshop, DASFAA. Springer, Berlin, LNCS, Vol. 6193,
pp. 179–190.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J., Simeon, J. (2007). XML Path
Language (XPath) 2.0. W3C. http://www.w3.org/TR/xpath20/.

Biron, P.V., Malhotra, A. (2004). XML Schema Part 2: Datatypes, 2nd edn. W3C.
http://www.w3.org/TR/xmlschema-2/.

Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J. (2007). XQuery 1.0: An XML
Query Language. W3C. http://www.w3.org/TR/xquery/.

Bohannon, P., Freire, J., Roy, P., Simeon, J. (2002). From XML Schema to relations: a cost-based approach to
XML storage. In: Proceedings of ICDE’02. IEEE Computer Society, Washington, pp. 64–75.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (2006). Extensible Markup Language
(XML) 1.0, 4th edn. W3C.

Bruno, N., Koudas, N., Srivastava, D. (2002). Holistic twig joins: optimal XML pattern matching. In: Proceed-
ings of ACM SIGMOD’02. ACM Press, New York, pp. 310–321.

Chen, T., Lu, J., Ling, T.W. (2005). On boosting holism in XML twig pattern matching using structural indexing
techniques. In: Proceedings of ACM SIGMOD’05. ACM Press, New York, pp. 455–466.

Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S. (2006). Twig2stack: bottom-up
processing of generalized-tree-pattern queries over XML documents. In: Proceedings of VLDB’06. VLDB
endowment, pp. 283–294.

Chien, S.-Y., Vagena, Z., Zhang, D., Tsotras, V.J., Zaniolo, C. (2002). Efficient structural joins on indexed XML
documents. In: Proceedings of VLDB’02. VLDB endowment, pp. 263–274.

Chung, C.-W., Min, J.-K., Shim, K. (2002). APEX: an adaptive path index for XML data. In: Proceedings of
ACM SIGMOD’02. ACM Press, New York, pp. 121–132.

Clark, J., DeRose, S. (1999). XML Path Language (XPath) Version 1.0. W3C.
http://www.w3.org/TR/xpath.

Cohen, E., Kaplan, H., Milo, T. (2002). Labeling dynamic XML trees. In: Proceedings of PODS’02. ACM
Press, New York, pp. 271–281.

DB2 Product Family. IBM. http://www-01.ibm.com/software/data/db2/.
Dietz, P.F. (1982). Maintaining order in a linked list. In: Proceedings of STOC’82. ACM Press, New York,

pp. 122–127.
Document Object Model (DOM). W3C. http://www.w3.org/DOM/.
Du, F., Amer-Yahia, S., Freire, J. (2004). ShreX: managing XML documents in relational databases. In:

Proceedings of VLDB’04. Morgan Kaufmann Publishers Inc., Toronto, pp. 1297–1300.
eXist Native XML Database. http://exist.sourceforge.net/.
Florescu, D., Kossmann, D. (1999). Storing and querying XML data using an RDMBS. IEEE Computer Society

Data Eng. Bull., 22(3), 27–34.
Govert, N., Kazai, G. (2002). Overview of the initiative for the evaluation of XML retrieval (INEX) (2002). In:

Proceedings of INEX’02. INEX, Dagstuhl, pp. 1–17.
Haustein, M., Harder, T. (2003). taDOM: A tailored synchronization concept with tunable lock granularity for

the DOM API. In: Proceedings of ADBIS’03. Springer, Berlin, LNCS, Vol. 2798, pp. 88–102.
ISO/IEC 9075-14:2003 (2003). Part 14: XML-Related Specifications (SQL/XML). Int. Organization for Stan-

dardization.
Jiang, H., Wang, W., Lu, H., Yu, J.X. (2003a). Holistic twig joins on indexed XML documents. In: Proceedings

of VLDB’03. VLDB endowment, pp. 273–284.
Jiang, H., Lu, H., Wang, W., Ooi, B.C. (2003b). XR-tree: indexing XML data for efficient structural joins. In:

Proceedings of ICDE’03. IEEE Computer Society, Washington, pp. 253–263.
Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q., Che, D. (2007). Efficient processing of XML twig pattern: a novel

one-phase holistic solution. In: Proceedings of DEXA’07. Springer, Berlin, LNCS, Vol. 4653, pp. 87–97.
Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F. (2002). Covering indexes for branching path queries.

In: Poceedings of ACM SIGMOD’02. ACM Press, New York, pp. 133–144.
Klettke, M., Meyer, H. (2001). XML and object-relational database systems – enhancing structural mappings

based on statistics. In: Selected Papers from WebDB’00. Springer, London, pp. 151–170.



Storing XML Data – The ExDB and CellStore Way 279

Kuckelberg, A., Krieger, R. (2003). Efficient structure oriented storage of XML documents using ORDBMS. In:
Proceedings of VLDB’02 Workshop EEXTT and CAiSE’02 Workshop DTWeb. Springer, London, pp. 131–
143.

Li, J., Wang, J. (2008a). Fast matching of twig patterns. In: Proceedings of DEXA’08. Springer, Berlin, LNCS,
Vol. 5181, pp. 523–536.

Li, J., Wang, J. (2008b). TwigBuffer: avoiding useless intermediate solutions completely in twig joins. In:
Proceedings of DASFAA’08. Springer, Berlin, LNCS, Vol. 4947, pp. 554–561.

Li, Q., Moon, B. (2001). Indexing and querying XML data for regular path expressions. In: Proceedings of
VLDB’01. Morgan Kaufmann Publishers, Inc., San Francisco, pp. 361–370.

Loupal, P. (2006). Experimental DataBase (ExDB) Project Homepage. http://exdb.fit.cvut.cz.
Loupal, P. (2010). XML-λ: a functional framework for XML. PhD thesis, Department of Computer Science and

Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.
Lu, J., Chen, T., Ling, T.W. (2004). Efficient processing of XML twig patterns with parent child edges: a look-

ahead approach. In: Proceedings of CIKM’04. ACM Press, New York, pp. 533–542.
Microsoft SQL Server 2008. Microsoft Corporation. http://www.microsoft.com/.
Mlýnková, I. (2007). A journey towards more efficient processing of XML data in (O)RDBMS. In: Proceedings

of CIT’07. IEEE Computer Society, Los Alamitos, pp. 23–28.
OASIS. XACML 2.0. http://sunxacml.sourceforge.net/.
O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N. (2004). ORDPATHs: insert-friendly XML

node labels. In: Proceedngs of SIGMOD’04. ACM Press, New York, pp. 903–908.
Oracle Berkeley XML DB. http://www.oracle.com/technetwork/database/berkeleydb/

overview/ index.html.
Oracle Database 11g. Oracle Corporation. http://www.oracle.com/.
Pokorný, J. (2002). XML-λ: an extendible framework for manipulating XML data. In: Proceedings of BIS

2002. Poznan University of Economics, Poznan, pp. 160–168.
Pokorný, J., Richta, K., Valenta, M. (2007). CellStore: educational and experimental XML-native DBMS. In:

Proceedings of ISD’07. Springer, Berlin, pp. 989-1000.
Qin, L., Yu, J.X., Ding, B. (2007). TwigList: make twig pattern matching fast. In: Proceedings of DASFA’07.

Springer, Berlin, LNCS, Vol. 5181, pp. 850–862.
Runapongsa, K., Patel, J.M. (2002). Storing and querying XML data in object-relational DBMSs. In: Proceed-

ings of EDBT’02. Springer, London, pp. 266–285.
Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F. (1999). Relational databases

for querying XML documents: limitations and opportunities. In: Proceedings of VLDB’99. Morgan Kauf-
mann, San Francisco, pp. 302–314.

Schmidt, A. R., Waas F., Kersten, M. L., Florescu, D., Manolescu, I., Carey, M. J., Busse, R. (2001). The XML
Benchmark Project. http://xml-benchmark.org/.

Strnad, P., Valenta, M. (2009). On benchmarking transaction managers. In: Proceedings of BenchmarX’09
International Workshop, DASFAA. Springer, Berlin, LNCS, Vol. 5667, pp. 79–92.

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram J., Shekita, E. (2002). Storing and querying ordered
XML using a relational database system. In: Proceedings of ACM SIGMOD’02. ACM Press, New York,
pp. 204–215.

Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N. (2004). XML Schema Part 1: Structures, 2nd edn.
W3C. http://www.w3.org/TR/xmlschema-1/.

Toman, K. (2004). Storing XML data in a native repository. In: Proceedings of DATESO’04. CEUR Workshop
Proceedings, Vol. 98, pp. 51–62.

Valenta, M., Strnad, P. (2006). Object-oriented implementation of transaction manager in CellStore project. In:
Objekty 2006. Technická Universita Ostrava, Vysoká Škola Báňská, Ostrava, pp. 273–282.

Vraný, J., Bergel, A. (2008). Perseus Framework.
http://swing.fit.cvut.cz/projects/perseus.

Vraný, J., Bergel A. (2007). The Debuggable Interpreter Design Pattern. In: Proceedings of ICSOFT’07.
Springer, Berlin, pp. 1–17.

Vraný, J., Strnad, P., Valenta, M. (2008). CellStore. http://cellstore.felk.cvut.cz/.
webMethods Tamino.

http://www.softwareag.com/Corporate/products/wm/tamino/default.asp.



280 P. Loupal et al.

Wu, Y., Patel, J.M., Jagadish, H. (2003). Structural Join Order Selection for XML Query Optimization. In:
Proceedings of ICDE 2003. IEEE Computer Society, Washington, pp. 443–454.

Xiao-Ling, W., Jin-Feng, L., Yi-Sheng, D. (2003). An adaptable and adjustable mapping from XML data to
tables in RDB. In: VLDB’02 Workshop EEXTT and CAiSE’02 Workshop DTWeb. Springer, Berlin, LNCS,
Vol. 2590, pp. 117–130.

XML:DB (2003). XML:DB – Application Programming Interface for XML Databases. The XML:DB Initiative.
http://xmldb-org.sourceforge.net/xapi/.

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G. (2001). On supporting containment queries in
relational database management systems. In: Proceedings of ACM SIGMOD’01. ACM Press, New York,
pp. 425–436.

Zheng, S., Wen, J., Lu, H. (2003). Cost-driven storage schema selection for XML. In: Proceedings of DAS-
FAA’03. IEEE Computer Society, Washington, pp. 337–344.



Storing XML Data – The ExDB and CellStore Way 281

P. Loupal received his PhD degree in computer science in 2010 from the Czech Tech-
nical University in Prague, Czech Republic (CTU). He is an assistant professor at the
Department of Software Engineering of the Faculty of Information Technology at CTU.
His research interests cover particularly the area of native XML database systems, related
XML technologies, and formal methods of data processing based on functional approach.
Currently, he acts as the lead developer of the ExDB DBMS. He has published more than
20 papers.

I. Mlýnková received her PhD degree in computer science in 2007 from the Charles
University in Prague, Czech Republic. She is an assistant professor at the Department of
Software Engineering of the Charles University and an external member of the Depart-
ment of Computer Science and Engineering of the Czech Technical University. She has
published more than 50 publications, 4 gained the Best Paper Awards. She is a PC mem-
ber or reviewer of 15 international events and co-organizer of 3 international workshops
(X-Schemas@ADBIS, MoViX@DEXA, BenchmarX@DASFAA, all since 2009).

M. Nečaský received his PhD degree in computer science in 2008 from the Charles Uni-
versity in Prague, Czech Republic, where he currently works in the Department of Soft-
ware Engineering as an assistant professor. He is an external member of the Department
of Computer Science and Engineering of the Faculty of Electrical Engineering, Czech
Technical University in Prague. His research areas involve XML data design, integra-
tion and evolution. He is an organizer or PC chair of three international workshops. He
has published 15 refereed conference papers (two received Best Paper Award). He has
published 3 book chapters and a book.

K. Richta received his PhD degree in computer science in 1982 from the Czech Techni-
cal University in Prague, Czech Republic. He is an associate professor at the Department
of Software Engineering of the Charles University and an external member of the Depart-
ment of Computer Science and Engineering of the Czech Technical University. He has
published more than 100 publications, including 5 books. He is the president of Czech
ACM Chapter.

P. Strnad is a PhD student at the Department of Computer Science and Engineering
of the Faculty of Electrical Engineering of the Czech Technical University in Prague.
His research areas involve transaction processing in native XML databases, component
benchmarking, XML benchmarking and GPU processing in databases. He has published
5 conference papers.



282 P. Loupal et al.

XML duomen ↪u saugojimas: ExDB ir CellStore sprendimai kit ↪u esam ↪u
sprendim ↪u kontekste

Pavel LOUPAL, Irena MLÝNKOVÁ, Martin NEČASKÝ,
Karel RICHTA, Pavel STRNAD

Straipsnyje nagrinėjama, kaip saugoti XML duomenis, kad po to juos būt ↪u patogu apdoroti.
Vienas iš populiari ↪u būd ↪u yra patalpinti juos kokioje nors jau esamoje duomen ↪u bazėje, pavyzdžiui,
reliacinėje arba reliacinėje objektinėje bazėje. Straipsnyje nagrinėjami ↪ivairūs XML duomen ↪u vaiz-
davimo reliacinėse duomen ↪u bazėse būdai. Parodyta, kad, nepaisant plačiai paplitusio reliacini ↪u
duomen ↪u bazi ↪u valdymo sistem ↪u naudojamos patiems ↪ivairiausiems tikslams, taip pat ir XML
duomenims tvarkyti, tokie būdai nėra perspektyvūs, nes originalūs XML duomenys turi ne lenteli ↪u,
bet medži ↪u pavidal ↪a. Todėl pagrindinis dėmesys straipsnyje skirtas originalioms XML duomen ↪u
bazėms. Nagrinėjamos XML duomen ↪u bazi ↪u valdymo sistem ↪u realizavimo problemos, aprašomi
siūlom ↪u t ↪u problem ↪u sprendimo būd ↪u eksperimentini ↪u tyrim ↪u rezultatai, atlikti panaudojant au-
tori ↪u ir j ↪u bendradarbi ↪u suprojektuotas, realizuotas ir optimizuotas eksperimentines XML duomen ↪u
bazi ↪u valdymo sistemas ExDB ir CellStore.


