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Abstract. In this paper a forward–backward basis function approach for instantaneous frequency
estimation of the frequency-modulated signal in noisy environment is presented. At first, a forward–
backward prediction approach is applied for least squares estimation of time-varying autoregressive
parameters. A time-varying parameters are expressed as a summation of constants multiplied by ba-
sis functions. Then, the time-varying frequencies are extracted from the time-varying autoregressive
parameters by calculating the angles of the estimation error filter polynomial roots. The experimen-
tal results are presented, which shows the superiority of the proposed method against the covariance
(forward prediction) approach.
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1. Introduction

Frequency-modulated (FM) signal estimation in a noisy environment is important for
many commercial and military applications. These signals are analyzed in engineering
applications such as telecommunications, biomedical engineering, radar, sonar, and sig-
nal processing. The instantaneous frequency estimation is based on system identifica-
tion methods (Atanosov and Ichtev, 2011). The instantaneous frequency (IF) character-
izes important properties of the signal. The concept of IF estimation was reviewed in
Boashash (1991). Several methods have been proposed for this task. One approach is
based on the wavelet shrinkage technique (Donoho et al., 1995), which denoises data in
the wavelet domain. Another approach is to represent the data by using a time-frequency
Gabor transform (Qian, 1993). However, these methods works poorly when signal to
noise ratio (SNR) is lower than 0 dB. IF estimation methods have been developed for
multicomponent signals embedded in additive noise (Peleg, 1996). Parametric methods
use a polynomial phase representation of the frequency modulated signals for IF esti-
mation. In Hussain et. al. (2002) a method for IF estimation is based on quadratic time-
frequency distributions of the signal. An iterative algorithm using the cross Wignes–Ville
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distribution (WVD) is presented in Boashash et al. (1993). An adaptive algorithm for IF
estimation using WVD was presented in Katkovnik (1998). The IF estimate depends on
the fact that the WVD has a maximum around the IF law of the signal. A parametric
approach for IF estimation of multicomponent signal was presented in Francos (1999).
However, the parametric approaches in time-frequency analysis suffer from the computa-
tional complexity (Chi, 1989). For a multicomponent time-varying harmonic model, par-
ticle filtering approaches have been analyzed in Dubois (2005), Tsakonas et al. (2008).
In Dubois (2005), a Gaussian random walk model is employed for the evoliution of the
parameters. In Tsakonas et al. (2008), the problem of tracking the time-varying parame-
ters of a harmonic or chirp signal using particle filtering tools is considered. It is shown,
that the optimal importance function that minimizes the variance of the particle weights
can be computed in closed form.

In this paper a new forward–backward prediction approach based on basis functions
for time-varying frequency estimation of the frequency-modulated signal in a noisy envi-
ronment is proposed.

The paper is organized as follows. We briefly describe the forward–backward predic-
tion method for estimating the parameters of the autoregressive processes in Section 2.
In Section 3, we propose a forward–backward basis function approach to estimate the
signal time-varying frequency. The experimental results of estimating the time-varying
frequencies are presented in Section 4. Concluding remarks are given in Section 5.

2. Forward–Backward Prediction for Estimation of Autoregressive Parameters

To derive the estimator of the autoregressive (AR) parameters suppose, that we are given
the complex-valued signal x(n), n = 1, . . . , N , and let us consider the forward and
backward linear prediction (LP) estimates of order p, given as Proakis et al. (1996)

x̂(n) = −
p∑

k=1

ak(n)x(n − k), (1)

x̂(n − p) = −
p∑

k=1

bk(n)x(n + k − p). (2)

The corresponding forward and backward errors are h(n) = x(n) − x̂(n), and g(n) =
x(n − p) − x̂(n − p), where ak(n) and bk(n) are time-varying prediction coefficients in
the forward and backward estimators, respectively. The method is based on the concept
of forward and backward finite impulse response (FIR) filters of the signal x(n)

h(n) =
p∑

k=0

ak(n)x(n − k) = xT (n)a(n) = aT (n)x(n), (3)

g(n) =
p∑

k=0

bk(n)x(n − p + k) = xT (n)Jb(n) = bT (n)Jx(n), (4)
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where xT (n) = [x(n), x(n−1), . . . , x(n−p)], aT (n) = [1, a1(n), . . . , ap(n)], bT (n) =
[1, b1(n), . . . , bp(n)], “T ” represents the matrix transposition transformation. J is an ma-
trix with zeros except ones along the anti-diagonal and reverse in time a signal vector.
The forward filter output h(n) and backward filter output g(n) depend on the (p + 1)-
dimensional vector x(n). Note that a(0) = b(0) = 1. We assume that x(n) is avail-
able over the range 1 � n � N and FIR outputs can only be formed over the interval
p+1 � n � N . It was shown in Marple (1987), Manolakis et al. (2005) that the forward
and backward linear prediction parameters for a stationary random process are simply
complex conjugates ak(n) = b∗

k(n), so the output g(n) of the backward FIR filter in (4)
may be expressed as

g(n) =
p∑

k=0

a∗
k(n)x(n − p + k) = xT (n)Ja∗(n) = aH(n)Jx(n), (5)

where sign “*” means complex conjugate, and “H” represents the matrix conjugate trans-
position operation.

For non-stationary signals, the forward and backward parameters are not time-
invariant, and they may not be equal to the complex conjugate of each other. We consider,
that ak(n) ∼= b∗

k(n), and (5) is valid.
In contrast to the Burg approach (Kazlauskas, 2011; Zaknich, 2005), we use an uncon-

strained least-squares algorithm to determine the AR parameters. We form the forward
and backward linear prediction estimates (1) and (2), and their corresponding forward and
backward errors h(n) and g(n). Then, we combine both forward and backward variances
normalized by 1/(2(N − p)) to form the total variance estimate, which is

e =
1

2(N − p)

N∑
n=p+1

[∣∣h(n)
∣∣2 +

∣∣g(n)
∣∣2]. (6)

Since |g(n)|2 = |g∗(n)|2, then

e =
1

2(N − p)

N∑
n=p+1

[∣∣h(n)
∣∣2 +

∣∣g∗(n)
∣∣2], (7)

which is the same performance index as in Burg method. However, we do not impose
the Levinson–Durbin recursion for the AR parameters. Substituting equations (3) and (4)
into (7), we obtain

e =
1

2(N − p)

N∑
n=p+1

[∣∣∣∣
p∑

k=0

ak(n)x(n − k)
∣∣∣∣
2

+
∣∣∣∣

p∑
k=0

ak(n)x∗(n + k − p)
∣∣∣∣
2
]
. (8)
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3. The Proposed Approach

The adaptive methods for time-varying AR parameter estimation may be used if the pa-
rameters of a signal change slowly. Adaptive systems are sensitive to noise level. We
could reduce the sensitivity to the noise increasing the forgetting factor or step size of
adaptive algorithms, but it decreases the convergence rate of the adaptive algorithms
and ability of tracking the parameter change. Instead of using the adaptive algorithms
for time-varying parameter estimation, we expressed ak(n) as a summation of constants
multiplied by basis time functions (Niedzwiecki and Klaput, 2002).

ak(n) =
m∑

i=0

akiϕi(n), n = 1, . . . , N, (9)

where aki, k = 1, . . . , p; i = 0, 1, . . . , m, are constants, m is the expansion dimension,
and ϕi(n) are basis time functions.

In the basis function approach not only the model order p, but also the basis functions
ϕi(n), and the expansion dimension m must be chosen. The time-varying parameters of
a signal are changed to the summation of a set of unknown constants multiplied by pred-
ifined time-functions. The estimation by the basis function approach is to calculate not
the time-varying parameters ak(n), but the unknown constant coefficients aki. The calcu-
lation is the same as for a stationary signal. If computational complexity and time are not
restricted, the length of the block for the basis function approach can be of any length.

The functions ϕi(n) must be independent and non-zero for n = 0, 1, . . . , N − 1, and
ϕi(n) = 1, if n = 0. If a priori information about the signal variation is known, the basis
functions should be chosen such that the trends in parameter change is retained. In case,
when a priori information is unavailable, the basis function most commonly used are time
polynomial, the Fourier, or cosine functions.

Substituting ak(n) from (9) into (8), we obtain

e =
1

2(N − p)

N∑
n=p+1

{∣∣∣∣
p∑

k=0

m∑
i=0

akiϕi(n)x(n − k)
∣∣∣∣
2

+
∣∣∣∣

p∑
k=0

m∑
i=0

akiϕi(n)x∗(n + k − p)
∣∣∣∣
2
}

. (10)

Taking derivatives of e with respect to alj , l = 1, 2, . . . , p; j = 0, 1, . . . , m, we have

∂e

∂alj
=

1
(N − p)

N∑
n=p+1

{[
x(n) +

p∑
k=1

m∑
i=0

akiϕi(n)x(n − k)
]
ϕ∗

j (n)x∗(n − l)

+
[
x∗(n−p)+

p∑
k=1

m∑
i=0

akiϕi(n)x∗(n+k −p)
]
ϕ∗

j (n)x(n+l−p)
}

. (11)
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Equating (11) to zero, we get

p∑
k=1

m∑
i=0

aki

N∑
n=p+1

[
ϕi(n)ϕ∗

j (n)x(n − k)x∗(n − l)

+ ϕi(n)ϕ∗
j (n)x(n + l − p)x∗(n + k − p)

]

= −
N∑

n=p+1

[
ϕ∗

j (n)x(n)x∗(n − l) + ϕ∗
j (n)x∗(n − p)x(n + l − p)

]
. (12)

Define

rij(k, l) =
N∑

n=p+1

[
ϕi(n)ϕ∗

j (n)x(n − k)x∗(n − l)

+ ϕi(n)ϕ∗
j (n)x(n + l − p)x∗(n + k − p)

]
. (13)

Then, (12) has the form

p∑
k=1

m∑
i=0

akirij(k, l) = −r0j(0, l), l = 1, 2, . . . , p; j = 0, 1, . . . , m. (14)

Equation (14) is a set of p(m + 1) linear equations and can be solved to get aki. After
that, the time-varying coefficients ak(n) are computed using (9).

We can write (14) in a matrix form

R a = −h, (15)

where p(m + 1) × p(m + 1) size matrix RT = {Ψ(k, l)}, k, l = 1, 2, . . . , p,
in which (m + 1) × (m + 1) size matrices ΨT (k, l) = {rij(k, l)}, i, j =
0, 1, . . . , m; aT = (a1, . . . , ak, . . . , ap), in which ak = (ak0, . . . , aki, . . . , akm)T and
hT = (γ1, . . . , γl, . . . , γp), in which γl = (r00(0, l), . . . , r0j(0, l), . . . , r0m(0, l))T .

The direct or iterative methods are available for solving the matrix (15). In the direct
methods some number of calculation steps are needed, which require a number of calcu-
lations of order q3, where q is the size of matrix R. In case, when q is large, the number
of computatations may be huge. The iterative methods calculates an approximations of
the solution a. The iterations are stopped if a desired accuracy is achieved or a number
of iterations are completed. The computatational complexity of iterative methods is of
order q2.

The algorithm computes the AR coefficients by (15). The time-varying frequency can
be extracted from the time-varying autoregressive parameters ak(n). The nonstationary
signal is modeled as the output of the time-varying AR process with a zero mean white
noise input w(t). From the estimates of AR parameters, we form the power spectrum
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estimate (Proakis and Manolakis, 1996)

P (f, n) =
σ2

w

|1 +
∑p

k=1 ak(n) exp(−j2πfk)|2 , (16)

where σ2
w is the variance of the white noise w(n), f is the frequency. The variance of the

white noise can be approximated by

σ2
w ≈ σ2

e =
1

N − p

N∑
n=p+1

[
x(n) +

p∑
k=1

ak(n)x(n − k)
]2

, (17)

where σ2
e is the variance of the parameter estimation error.

Time-varying frequencies can be found by estimating the peaks of the power spectral
density P (f, n). If there are several spectral peaks in the power spectral density function,
a threshold must be set, and the peaks below this threshold belong to the noise. Another
method to estimate the time-varying frequency is to form the estimation error filter poly-
nomial zp + a1(n)zp−1 + · · · + ap(n), and to calculate the roots zi(n). The frequency
estimates are the angles of the roots

fi(n) =
1
2π

angle
(
zi(n)

)
fs, (18)

where fs is the sampling frequency.
If the signal is real, then the roots are compex conjugate. In that case, the roots in the

upper or lower half of a complex plane are selected.

4. Simulation Results

In this section we examine the performance of the proposed method and compare the
results with that of the covariance algorithm. To investigate the ability of the proposed
method, we generated a signal from the signal generator comprised of the sinusoid with
time-varying frequency f(n) embedded in a noise w(n)

x(n) = s(n) + w(n) = cos
(
2πf(n)n

)
+ w(n), (19)

for n = 1, . . . , N ; w(n) is a zero-mean white Gaussian noise with unit variance σ2
w = 1.

To get the desired signal-to-noise ratio (SNR) from the signal generator, the output signal
is defined by

x(n) = s(n) + kw(n), (20)

in which the coefficient k is computed such that

SNR = 10 log
Ps

k2Pw
, (21)
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where Ps = 1
N

∑N
n=1 s2(n) means the signal power, Pw = 1

N

∑N
n=1 w2(n) is the noise

power, and N is the length of the signal s(n) and noise w(n).
From (21) we obtain that for the desired SNR, coefficient k is calculated as follows

k =
√

Ps√
Pw

10− SNR
20 . (22)

We have used L = 200 Monte Carlo simulations in case of the additive noise.
The same signals were used to demonstrate the superiority of the forward–backward basis
function approach as compared with covariance algorithm.

We estimated the mean absolute frequency error (MAFE) as follows:

MAFE =
1
N

N∑
n=1

∣∣f(n) − f̂(n)
∣∣, (23)

where f(n) is the true frequency value at time n, and f̂(n) is the estimate of the true
frequency value at time n

f̂(n) =
1

Nr

Nr∑
r=1

f̂(n, r), (24)

where f̂(n, r) is the estimate of the frequency at time n and at the rth experiment; Nr is
the number of Monte-Carlo runs chosen here equal to 200.

The normalized power density spectrum (NPDS) estimate in dB is calculated accord-
ing to the expression (25)

NPDS(f̂ , n) = 10 log
P (f̂ , n)

Pmax(f̂ , n)
. (25)

By using the basis function approach, the time function ϕi(n) and the expansion
dimension m must be chosen. For the signal where frequency changes linearly , we have
used the basis which consists of powers of the time ϕi(n) = ni−1, i = 1, . . . , m and
m = 2. For the sinusoid with the periodically time-varying frequency, we have used the
cosine function ϕi(n) = cos(πin/N) with m = 10. The cosine function was also applied
for the case of the frequency jump.

4.1. Experimental Procedure

To evaluate the approach described in Section 3, we have employed the proposed proce-
dure as follows:

1. We have generated a signal with time-varying frequency f(n) according to (19).
2. To obtain the desired SNR, we have calculated coefficient k according to (22).
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3. We have expressed time-varying coefficients as a summation of constants multi-
plied by basis functions (9).

4. We have solved a set of (15), and have obtained aki.
5. We have computed the coefficients ak(n) according to (9).
6. Using the estimates of AR parameters, we have calculated the power spectrum

estimates (16).
7. We have estimated the time-varying frequencies using (18).
8. We have estimated the mean absolute frequency error according to (23) and the

normalized power density spectrum according to (25).

Table 1 illustrates the frequency error estimates averaged by L = 200 experiments
and their confidence intervals Δ = ±tα/2; L−1

σ̂√
L

, in which σ̂ is the estimate of the
standard deviation and α is the significance level. The value tα/2;L−1 is the point of
Student’s distribution with L − 1 degrees of freedom which cuts the α/2 part of the
distribution. In case α = 0.05 and L = 200, we find from Student’s distribution table
that t0.025; 199 = 1.9720.

In Table 1 there are some comparisons between the covariance method and the
forward–backward basis function approach about the ability to estimate the time-varying
frequency of two signals. The first signal is a unit amplitude sinusoidal signal with lin-
early time-varying frequency f(n) = n, and the second signal is a unit amplitude sinu-
soidal signal with periodically time-varying frequency f(n) = 250 + 150 cos(2πn/150)
in a noisy environment where SNR changes from 30 to −7 dB.

Figure 1 shows the instantaneous frequency estimates using the forward–backward
basis function approach where the frequency changes linearly (A), periodically (C), and
have two jumps (E). In (B), (D), and (F) are absolute differencies between true and es-
timated instantaneous frequencies in noisy SNR = 0 environment, in case where model
order p is equal to 4. As we can see in Fig. 1, algorithm can track the changes of the true
frequency.

Figure 2 shows the comparison of the covariance method with forward–backward
basis function approach when frequency changes periodically (see Table 1). Model order
is equal to 15, expansion dimensijon is equal to 10, and SNR changes from −8 to 10 dB.
MAFE of the proposed approach is smaller as compared with the covariance method,
especially in the [−8, 0] dB interval.

Remarks. The accuracy of the estimated frequency with time depends on signal length n:
if n � 70, MAFE between true and estimated frequencies are less as compared with the
case, when n < 70 (see Fig. 1). The MAFE of estimated frequency also depends on SNR:
for example, if SNR = 10, then MAFE = 1.0746, and if SNR = −3, then MAFE =
3.7101 and so on (see Table 1). Finally, the MAFE depends on method: for example, if
SNR = 0, for covariance method MAFE = 4.3465, and for forward–backward approach
MAFE = 1.5418 (see Table 1).
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Table 1

Mean absolute frequency errors (MAFE) and confidence intervals Δ of the covariance method and the forward–
backward basis function approach where frequency f(n) changes linearly and periodically. SNR is the signal-
to-noise ratio; p is the order of the predictive filter. Signal sampling rate fs is 1000 Hz.; n is the signal length.
Monte Carlo runs are equal to 200

SNR (dB) Mean absolute frequency estimation error (Hz) Notes
Covariance method Forward–backward approach

30 0.9799 ± 7.958 × 10−5 0.9683 ± 6.878 × 10−5 f(n) = n,
20 1.0028 ± 0.0010 0.9991 ± 0.0007 p = 4,
10 1.7561 ± 0.0123 1.7146 ± 0.0106 n = [30, 400]
5 3.8560 ± 0.0204 3.8231 ± 0.0181
0 7.6240 ± 0.0392 7.4163 ± 0.0364

− 3 13.1325 ± 0.1608 12.1841 ± 0.1232
− 5 21.1101 ± 0.2310 20.5430 ± 0.3102
− 7 38.7370 ± 0.3766 37.2391 ± 0.3456

30 1.3224 ± 0.0516 1.0240 ± 0.0231 f(n) = n,
20 1.4487 ± 0.0565 0.9804 ± 0.0012 p = 12,
10 1.8585 ± 0.0884 1.0746 ± 0.0285 n = [30, 400]
5 2.5586 ± 0.1235 1.1510 ± 0.0306
0 4.3465 ± 0.1409 1.5418 ± 0.0426

− 3 7.8959 ± 0.1732 3.7101 ± 0.1265
− 5 14.1029 ± 0.3134 9.1688 ± 0.2176

− 7 24.3140 ± 0.4021 19.5582 ± 0.3376

30 0.8897 ± 1.9965 × 10−5 0.8887 ± 1.4900 × 10−5 f(n) = 250+
20 0.8946 ± 2.7760 × 10−4 0.8923 ± 2.5757 × 10−4 150 cos(2πn/150)
10 1.1299 ± 0.0032 1.1096 ± 0.0025 p = 4,
5 2.3149 ± 0.0069 2.2149 ± 0.0067 n = [30, 400]
0 5.5340 ± 0.0351 5.4131 ± 0.0289

− 3 10.3270 ± 0.1063 9.4521 ± 0.0903
− 5 17.2110 ± 0.1770 16.0501 ± 0.1631
− 7 32.5211 ± 0.3581 30.6514 ± 0.2870

30 1.2110 ± 0.0493 0.9415 ± 0.0163 f(n) = 250+
20 1.2530 ± 0.0471 0.9540 ± 0.0242150 cos(2πn/150)
10 1.5161 ± 0.0608 0.9272 ± 0.0113 p = 12,
5 1.8160 ± 0.0613 1.1040 ± 0.0318 n = [30, 400]
0 2.9661 ± 0.0810 1.3996 ± 0.0298

− 3 5.6362 ± 0.1380 3.1611 ± 0.0879
− 5 10.0270 ± 0.2036 6.6560 ± 0.1664
− 7 19.7380 ± 0.2335 16.2961 ± 0.2760

30 3.2274 ± 0.1180 1.5550 ± 0.0598 f(n) = 250+
20 3.6661 ± 0.1136 1.5530 ± 0.0632150 cos(2πn/150)
10 4.4060 ± 0.1345 1.6261 ± 0.0641 p = 20,
5 5.3911 ± 0.1452 1.7160 ± 0.0611 n = [30, 400]
0 7.1910 ± 0.1633 2.4430 ± 0.0777

− 3 10.4280 ± 0.1911 3.2440 ± 0.0999
− 5 13.3150 ± 0.2189 6.7810 ± 0.1564
− 7 21.2340 ± 0.2727 13.1080 ± 0.2048
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Fig. 1. Time-varying frequency estimates using the forward–backward basis function approach. (A) Instanta-
neous frequency estimates where frequency changes linearly; (C) Instantaneous frequency estimates where fre-
quency changes periodically; (E) Instantaneous frequency estimates where frequency changes have two jumps.
In Figs. (B), (D), (F) are absoliute differencies between true and estimated instantaneous frequencies. Sampling
frequency of the signals fs = 1000 Hz, signal-to-noise level SNR = 0 dB, model order p = 4; Monte Carlo
runs are equal to 200.

Fig. 2. Results for comparative study between the covariance method (1) and the proposed forward–backward
basis function approach (2). MAFE versus SNR: sampling frequency fs = 1000 Hz; model order p = 15;
expansion dimension m = 10. Frequency changes periodically (see Table 1). Monte-Carlo runs are equal to
200.
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5. Conclusions

In the paper the approach has been developed to estimate the rate of frequency change of
a nonstationary signals with time-varying frequency. The time-varying frequencies of the
nonstationary signals are contained in the time-varying coefficients of the autoregressive
model. Extracting the frequency information consists of two steps, first, the time-varying
AR parameter estimation at time n, and then the frequency calculation. We used the basis
function approach utilizing the explicit model for the parameter variation. The basis func-
tion approach, in which the time-varying parameters are expanded as a summation of the
weighted time functions are capable of tracking both the fast and the slow time-varying
frequencies. The selection of the expansion dimension and the basis function depend on
the character of the frequency variation. The novelty of this approach is that it presents a
simple method for estimating a time-varying frequency derived from a forward–backward
prediction technique where time-varying parameters are expressed as a summation of
constants multiplied by basis functions. The simulation results confirm the theoretical
analysis and show the potential of the new approach in a noisy environment.
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Dažniu moduliuoto signalo stebimo triukšmuose momentinio dažnio

↪ivertinimas panaudojant tiesioginės ir atgalinės prognozės metod ↪a

Kazys KAZLAUSKAS, Rimantas PUPEIKIS

Straipsnyje pasiūlytas signalo stebimo triukšmuose momentinio dažnio ↪ivertinimas panau-
dojant tiesioginės ir atgalinės prognozės bazini ↪u funkcij ↪u metod ↪a. Pirmiausia tiesioginės ir at-
galinės prognozės metodu ↪ivertinami signalo autoregresijos modelio kintami laike parametrai, kurie
aprašomi konstant ↪u ir bazini ↪u funkcij ↪u sandaug ↪u suma. Po to pagal ↪ivertintus signalo parametrus
apskaičiuojami momentiniai dažniai. Eksperimento rezultatai parodė, kad šis metodas yra pranašes-
nis už tiesioginės prognozės metod ↪a.


