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Abstract. In some cases of using multi-criteria decision making methods for solving real-world
problems ratings of alternatives cannot be determined precisely, and that is why they are expressed
in the form of intervals. Therefore, the aim of this paper is to extend the MOORA method for solv-
ing decision making problems with interval data. By extending the ratio system part of MOORA
method, an algorithm to determine the most preferable alternative among all possible alternatives,
when performance ratings are given as intervals, is presented. Finally, an example is shown to
highlight the proposed procedure, at the end of this paper.
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1. Introduction

The multi-criteria decision making (MCDM) can be generally described as the pro-
cess of selecting one from a set of available alternatives, which meets the objectives
of choice most efficiently. In the multi-criteria decision making, problems can be clas-
sified as multi-objective or multi-attribute problems. This classification is based on the
number of alternatives in a given problem. When the decision space is continuous, multi-
objective decision making (MODM) methods are used, while multi-attribute decision
making (MADM) involves selecting the best alternative among a finite number of prede-
termined alternatives.

In a number of published papers, different authors propose several ways for decompo-
sition of MADM process and thereby identify the different stages and different number
of stages (Jahanshahloo et al., 2006b) in this process. In the simplest form of decom-
position, MADM can be divided into four stages: (1) identification and formulation of
the problem; (2) construction of MADM model; (3) normalization stage; (4) aggregation
stage; and (5) choice.
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The MADM process begins with the identification of the problem followed by its
formulation. Over the first stage of this process: objectives/goals to be achieved, set of
available alternatives, set of relevant criteria/attributes and their weights are defined. As
a consequence of performing these activities the initial decision-making matrix can be
constructed, as shown below:

C1 C2 . . . Cn

D =

A1

A2

...
Am

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n

x12 x22 . . . x2n

...
...

...
...

x1n x2n . . . xmn

⎤
⎥⎥⎥⎦ ,

W = [w1, w2, . . . , wn],

where A1, A2, . . . , Am are available alternatives, C1, C2, . . . , Cn are criteria, xij is per-
formance rating of ith alternative with respect to jth criterion/attribute, wj is weight (sig-
nificance) of jth criterion, m is the number of alternatives, and n is the number of criteria.

At the same time, during construction of a decision-making matrix, the corresponding
MADM model is also formed.

In MADM models, ratings for different criteria are usually expressed by using differ-
ent units of measures. In order to transform various units into dimensionless comparable
units, the normalization procedure is used.

The next stage in MADM is the aggregation stage. The purpose of this stage is to
transform the multi-criteria problem in the corresponding single-criterion problem (Guo
and Tanaka, 2000). Aggregation procedure, which performs the specified transformation,
collects the information available in decision-making matrix, ratings and weights, in the
overall performance index, for each alternative.

In the final stage of MADM, on the basis of the overall performance indexes, ranking
or selecting the most appropriate alternative, from available alternatives, can be done.

The most preferable conditions for using the multi-attribute decision making is when
all ratings and weights are known precisely. Based on this subject, literature proposes sev-
eral MADM methods that can be applied under the above mentioned conditions, the so
called classical MADM methods. The concise overview of these methods, their character-
istics and applicability are presented in Hwang and Yoon (1981), Triantaphyllou and Lin
(1996) and Yoon and Hwang (1995). As a widely used the following MADM methods can
be stated: Simple Additive Weighting (SAW) method (MacCrimon 1968), Technique for
Ordering Preference by Similarity to Ideal Solution (TOPSIS) method (Hwang and Yoon,
1981), Analytic Hierarchy Process (AHP) method (Saaty, 1980), ELimination and Choice
Expressing REality (ELECTRE) method (Roy, 1991), Preference Ranking Organisation
Method for Enrichment Evaluations (PROMETHEE) method (Brans and Vincke, 1985),
COmplex PRoportional ASsessment (COPRAS) method (Zavadskas et al., 1994, 2009a;
Kaklauskas et al., 2010), VIKOR (VIsekriterijumska optimizacija i KOmpromisno Re-
senje – in Serbian) method (Opricovic, 1998), a newly-proposed Additive Ratio Assess-
ment (ARAS) method (Zavadskas and Turskis, 2010; Zavadskas et al., 2010a) and many
years applied Game theory (Peldschus et al., 2010, 2009).
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However, many real-world decision making problems take place in environments in
which the ratings and weights are not known precisely. In such environments classical
MADM methods, which use crisp numbers to express the ratings and weights, do not
provide adequate and effective decision making.

The use of inaccurate or unreliable data, i.e., performances and/or weights, also re-
quire the use of some form of fuzzy or interval numbers. Bellman and Zadeh (1970) were
the first researchers in the field of decision making using fuzzy sets, who also initiated the
fuzzy multi-attribute decision making (FMADM) methodology. FMADM methodology
is developed to resolve the lack of precision in assigning weights of criteria/attributes
and the ratings of alternatives regarding evaluation criteria (Chen and Klein, 1997). This
approach helps decision makers to solve complex decision making problems in a system-
atic, consistent and productive way (Carlsson and Fuller, 1996). Therefore, the ability and
application of multi-attribute methods with fuzzy set theory has been published in many
professional journals in various disciplines (Wang and Chang, 2007).

Classical MADM methods do not have the ability to use fuzzy numbers. In order to
extend their application with fuzzy numbers, two options are available: (1) the transfor-
mation of fuzzy numbers into crisp numbers, before performing the aggregation stage; or
(2) extension of the classical MADM methods, with the aim of using fuzzy numbers.

The use and transformation of fuzzy numbers into crisp numbers in earlier stages of
MADM process does not provide significant benefits. More benefits from the use of fuzzy
numbers can be achieved if they are transformed into crisp numbers in the later stages of
MADM process.

The use of fuzzy numbers in the later stages of fuzzy MADM process requires the use
of aggregation procedures that also have the ability to perform arithmetic operations on
fuzzy numbers. Therefore, it is necessary that the aggregation procedure used in fuzzy
MADM methods implement the extension principle (Zadeh, 1965) to determine the over-
all performances. As a result of performing operations on fuzzy numbers, overall perfor-
mances are still fuzzy numbers. Therefore, fuzzy MADM methods must also be able to
perform the ranking of alternatives on the basis of fuzzy overall ratings, or perform their
defuzzification before performing ranking. For this purpose, different methods are pro-
posed such as: α-cut concept (Buckley and Qu, 1990), Vertex method (Dong and Shah,
1987; Chen, 2000) and Best Nonfuzzy Performance (Opricovic and Tzeng, 2003).

The ability to solve many real-world decision making problems has led to the devel-
opment of fuzzy extensions of some known MADM methods, such as SAW, TOPSIS
and AHP (Triantaphyllou and Lin, 1996; Wang and Chang, 2007; Yang and Hung, 2007;
Saremi et al., 2009; Zavadskas et al., 2010b).

Fuzzy set theory provides several forms of fuzzy numbers, such as trapezoidal, trian-
gular and interval fuzzy numbers. Trapezoidal fuzzy numbers are the most general form
of fuzzy numbers and triangular fuzzy numbers are probably the most frequently used
ones. Interval fuzzy number is a special class of fuzzy numbers and a powerful tool to
deal with uncertainty. Particularly, if there is not enough data to get a valid probability
distribution, then the interval method is more applicable (Bao et al., 2010).

The MADM methods are often extended to allow the use of triangular or trapezoidal
fuzzy numbers (Wang and Chang, 2007; Ertugrul and Karakasoglu, 2009), but there are
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also extensions which are formed with the aim of using fuzzy interval numbers (Jahan-
shahloo et al., 2006a; Zavadskas et al., 2010b).

The Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) method
is newly proposed method introduced by Brauers and Zavadskas (2006). Although the
MOORA is a newly proposed method, it has been applied to solve many economic,
managerial and construction problems. Chakraborty (2010) uses the MOORA method
to solve different decision making problems in the real-time manufacturing environment.
Kracka et al. (2010) applies the MOORA method in construction in order to solve prob-
lems related to energy loss in heating buildings. The aim of his research is to create a
technique for the selection of external walls and windows of buildings. In the mentioned
field Brauers and Zavadskas (Brauers and Zavadskas, 2009; Brauers et al., 2008b) use the
MOORA method for evaluating contractors in the facilities sector. The MOORA method
has also been successfully used for determining the best road design alternative (Brauers
et al., 2008a).

The usage of the MOORA method in various fields of economy is proposed by
Brauers and Zavadskas (2010, 2008) and Brauers and Ginevicius (2010, 2009). For ex-
ample, Brauers and Zavadskas (2010) use the MOORA method for project management
in a transaction economy, and Brauers and Ginevicious (2009) use the MOORA method
to define the economic policy for balanced regional development in Lithuania.

According to the procedure used to rank alternatives, the MOORA method can be
positioned between the well known SAW method and the most widely used TOPSIS
method, which makes this method efficient and easy to use. However, since the MOORA
method is newly proposed method, there are no proposed extensions for it. For these
reasons, this paper proposes an extension of the MOORA method for its application with
interval numbers.

The paper is organized as follows. Section 2 reviews the basic definitions and notions.
Section 3 briefly introduces the MOORA method, where the ratio system part of the
MOORA method is considered in Section 3.1 and its extension to deal with interval data
is proposed in Section 3.2. Section 4 gives an example which illustrates the proposed
approach. The conclusions are given in the final section.

2. Basic Definitions and Notations

In the rest of this section, we review some basic definitions of fuzzy sets and fuzzy num-
bers for the purpose of representing the proposed algorithm in Section 3.

Fuzzy sets. In order to deal with vagueness of human thought, Zadeh (1965) intro-
duced the fuzzy set theory. In contrast to crisp sets that allow only full membership, an
element belongs or does not belong to a set, fuzzy sets allow partial membership. Partial
membership in fuzzy sets enables the formation of much realistic model of problems that
will be solved by using MADM methods.

Fuzzy number. A real fuzzy number A is described as a fuzzy subset of the real line
� with membership function μA that represents uncertainty. A membership function is
defined from universe of discourse to [0, 1].
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Fig. 1. Interval fuzzy number.

Interval Fuzzy Number (IFN). A interval fuzzy number is fully characterized by a
pair of real numbers (l, u), where l and u are the lower bound and the upper bound (l, u
∈ �; l < u). A interval fuzzy number Ā is shown on Fig. 1.

Membership function. The membership function μĀ(x) of interval fuzzy number Ā

is defined as:

μ(x) =
{

1, x ∈ [l, u],
0, otherwise.

(1)

Fuzzy arithmetic operations. There are various arithmetic operations on interval
fuzzy numbers. But here, the most important operations used in this study are illustrated.
Let Ā = [a1, a2] and B̄ = [b1, b2] be two positive interval fuzzy numbers. Then, the
arithmetic operations on intervals are defined as is shown below (Moore, 1966):

Addition: Ā ⊕ B̄ = [a1, a2] ⊕ [b1, b2] = (a1 + b1, a2 + b2). (2)

Multiplication: Ā ⊗ B̄ = [a1, a2] ⊗ [b1, b2] = (a1b1, a2b2). (3)

Multiplication by real number k: k ⊗ Ā = k ⊗ [a1, a2] = [ka1, ka2]. (4)

Inverse interval: (Ā)−1 = [a1, a2]−1 = [1/a2, 1/a1]. (5)

Signed distance. Let Ā = [a1, a2] and B̄ = [b1, b2] be two positive interval fuzzy
numbers. Then, distance between Ā and B̄ can be calculated as signed difference between
its centers (Eberly, 2007), as is shown below:

d(Ā, B̄) =
a1 + a2

2
− b1 + b2

2
=

1
2
[
(a1 − b1) + (a2 − b2)

]
. (6)

3. The MOORA Method

As earlier mentioned, the MOORA is newly proposed method introduced by Brauers and
Zavadskas (2006), after introducing its first part, the ratio system, in Brauers (2004).

The MOORA method consists of two components: the Ratio System and the Ref-
erence Point approach. The basic idea of the ratio system part of the MOORA method
is to calculate the overall performance of each alternative as the difference between the



146 D. Stanujkic et al.

sums of its normalized performances which belongs to benefit1 and cost2 criteria, by the
formula:

Si =
g∑

j=1

rij −
n∑

j=g+1

rij , (7)

where rij is the normalized performance of ith alternative with respect to jth attribute,
g is the number of benefit attributes and Si is the overall performance index of ith alter-
native with respect to all attributes.

Formula (7) does not provide a way for expressing different significance of attributes.
However, when forming models that represent real-world problems, different attributes
may have different significances. In order to express the different significance of attributes
the Significance Coefficient was used (Brauers and Zavadskas, 2009; Brauers et al., 2010;
Chakraborty, 2010), and (7) gets the following form:

Si =
g∑

j=1

wjrij −
n∑

j=g+1

wjrij , (8)

where wj is significance coefficient (weight) of jth attribute.
The proposed procedure for determining the overall performance is slightly more

complex compared to the SAW method, which uses the following formula:

Si =
n∑

j=1

wjrij . (9)

However, the procedure applied in the SAW method does not distinguish between the
benefit and cost criteria and therefore during the normalization process the cost crite-
ria must be transformed into benefit criteria. That type of transformation is not always
comfortable.

In relation to the TOPSIS method, where the overall performance of each alternative
is calculated on its distance from the ideal and anti-ideal solution, the MOORA method
provides a much simpler procedure for determining overall performance indexes.

3.1. The Ratio System Part of the MOORA Method

As in the case of using other MADM methods, the MOORA problem-solving procedure
begins with the identification of available alternatives; by choosing the most important
criteria; and by determining the criteria weights (significances). As a result of performing
these activities the decision-making matrix D can be formed.

After that, the remaining part of the MOORA method can be expressed concisely
using the following steps:

1Criteria/attributes to be maximized, i.e., optimization direction is maximization.
2Criteria/attributes to be minimized, i.e., optimization direction is minimization.
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Step 1: Calculate the normalized decision-making matrix. The normalized perfor-
mance ratings rij (Brauers and Zavadskas, 2006) are calculated as:

rij =
xij√∑m
i=1 x2

ij

. (10)

Step 2: Calculate the weighted normalized decision-making matrix. Considering the
different importance of criteria the weighted normalized ratings vij are calculated as:

vij = wj · rij . (11)

Step 3: Calculate the overall ratings of benefit and cost criteria, for each alternative.
The overall ratings of benefit criteria S+

i are calculated as the sum of weighted normal-
ized ratings of benefit criteria, using the following formula:

S+
i =

n∑
j=1

vij |j ∈ Jmax . (12)

where Jmax is associated with benefit criteria.
Similarly, the overall ratings of cost criteria S−

i are calculated as:

S−
i =

n∑
j=1

vij

∣∣j ∈ Jmin . (13)

where Jmin is associated with cost criteria.
Step 4: Calculate the overall performance index Si for each alternative. The overall

performance index of each alternative can be expressed as the differences between overall
ratings of benefit and overall ratings of cost criteria, using the following formula:

Si = S+
i − S−

i . (14)

Step 5: Rank alternatives and/or select the most efficient one. The considered alterna-
tives are ranked by descending Si, i.e., the alternatives with greater values of Si have a
higher priority (rank). Determination of the most appropriate alternative A∗ can be done
with the following formula:

A∗ =
{

Ai| max Si
i

}
. (15)

3.2. Extension of Ratio System Part of the MOORA Method for Solving
Decision-Making Problems with Interval Data

A systematic approach to extend the MOORA method to use interval data is proposed
in this section. Suppose that A1, A2, . . . , Am are m possible alternatives among which
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decision makers have to choose, C1, C2, . . . , Cn are decision criteria used for evaluating
alternatives, xij is the performance rating of ith alternative with respect to the jth cri-
terion. Suppose, also, that the performance ratings are not known exactly and we only
know their minimum x′

ij and maximum x′ ′
ij values, which are also the lower and the up-

per boundaries of the closed intervals. Then xij ∈ [x′
ij , x

′ ′
ij ], and a MADM problem with

interval data can be concisely expressed in matrix format as:

D =

C1 C2 . . . Cn

A1

A2

...
Am

⎡
⎢⎢⎢⎣

[x′
11, x

′ ′
11] [x′

12, x
′ ′
12] . . . [x′

1n, x′ ′
1n]

[x′
21, x

′ ′
21] [x′

22, x
′ ′
22] . . . [x′

2n, x′ ′
2n]

...
...

...
...

[x′
m1, x

′ ′
m1] [x′

m2, x
′ ′
m2] . . . [x′

mn, x′ ′
mn]

⎤
⎥⎥⎥⎦ ,

W = [w1, w2, . . . , wn].

Then, the MOORA method can be expressed concisely using the following steps:
Step 1: Calculate the normalized decision-making matrix. The authors of MOORA

method (Brauers and Zavadskas, 2006) propose the use of the vector normalization pro-
cedure. The procedures used for normalizing the decision-making matrix whose values
are intervals are more complex compared to the procedures used for crisp values. For
normalization of the intervals, Jahanshahloo et al. (2006a) suggested using the following
formulas:

r′
ij =

x′
ij√∑m

i=1(x
′
ij)2 + (x′ ′

ij)2
, (16)

r′ ′
ij =

x′ ′
ij√∑m

i=1(x
′
ij)2 + (x′ ′

ij)2
, (17)

where r′
ij are the normalized lower and r′ ′

ij are the normalized upper performance ratings.
Step 2: Calculate the weighted normalized interval decision-making matrix. To calcu-

late the weighted normalized ratings, in the case of intervals, the following formulas are
used:

v′
ij = wj · r′

ij , (18)

v′ ′
ij = wj · r′ ′

ij . (19)

where v′
ij and v′ ′

ijare the lower and upper bounds of weighted normalized intervals.
Step 3: Calculate the overall ratings of benefit and cost criteria, for each alternative.

When intervals are used, the overall ratings are also intervals, limited with its smallest
and lowest values. Therefore, to calculate the lower and the upper limits of the intervals
which represent the overall rating of benefit criteria S+

i , the following formulas are used:

s+l
i =

n∑
j=1

v′
ij

∣∣j ∈ Jmax, (20)
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s+u
i =

n∑
j=1

v′ ′
ij

∣∣j ∈ Jmax. (21)

where s+l
i and s+u

i are the values of lower and upper limits of intervals respectively.
Similarly, the overall rating of cost criteria S−

i , or more precisely its lower and upper
limit, are calculated using the following formulas:

s−l
i =

n∑
j=1

v′
ij

∣∣j ∈ Jmin, (22)

s−u
i =

n∑
j=1

v′ ′
ij

∣∣j ∈ Jmin. (23)

where s−l
i and s−u

i are values of lower and upper bounds of intervals.
Step 4: Calculate the overall performance index Si, for each alternative. As a result

of performing the previous steps, overall performance ratings obtained on the basis of
benefit and cost criteria are intervals. Therefore, based on a formula (6) crisp valued
overall performance index Si, for each alternative, can be calculated using the following
formula:

Si

(
S+

i , S−
i

)
=

1
2
[(

s+l
i − s−l

i

)
+

(
s+u

i − s−u
i

)]
. (24)

Step 5: Rank alternatives and/or select the most efficient one. Ranking alternatives
and/or selecting the most efficient one is based on the values of Si, as well as in the
original MOORA method.

4. A Numerical Example

In this section, we consider a numerical example in order to explain the proposed ap-
proach. The numerical example of Contractors selection in construction, presented in
Zavadskas et al. (2009b), is applied to illustrate the feasibility of the proposed model.
The selected criteria, criteria weights and optimization directions are shown in Table 1.

The normalized values are calculated applying (16) and (17). Then normalized
decision-making matrix is presented in Table 2. In the normalized matrix all the values
are in the interval [0; 1].

The weighted normalized values (Table 3) are calculated applying (18) and (19).
The weighted-normalized decision-making matrix enables to calculate the overall per-

formances of benefit and overall performances of cost criteria for considered alternative.
The boundaries of the interval which represent the overall rating of benefit criteria are

calculated by (20) and (21). Similarly, the boundaries of the interval which represent the
overall rating of cost criteria are calculated by (22) and (23). Results obtained using these
formulas are presented in Table 4.
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Table 1

Initial decision-making matrix with values expressed in intervals

Criteria

Technical Financial Integrated contractual Time of

and administrative the project

Optimization max max max min

wi 0.15 0.4 0.2

C1 C2 C3 C4

Contractors l1 u1 l2 u2 l3 u3 l4 u4

A1 64 85 50 55 60 80 75 80

A2 57 81 52 56 62 76 70 75

A3 61 78 55 58 53 61 70 75

A4 59 93 54 62 55 72 80 90

A5 63 89 61 68 54 63 65 78

Table 2

Normalized decision-making matrix

Criteria

Optimization max max max min

wi 0.15 0.4 0.2 0.25

C1 C2 C3 C4

Contractors l1 u1 l2 u2 l3 u3 l4 u4

A1 0.273 0.363 0.276 0.303 0.295 0.394 0.312 0.333

A2 0.243 0.346 0.287 0.309 0.305 0.374 0.291 0.312

A3 0.260 0.333 0.303 0.320 0.261 0.300 0.291 0.312

A4 0.252 0.397 0.298 0.342 0.271 0.355 0.333 0.374

A5 0.269 0.380 0.337 0.375 0.266 0.310 0.270 0.324

Table 3

The weighted-normalized decision-making matrix

Criteria

Optimization max max max min

C1 C2 C3 C4

Contractors l1 u1 l2 u2 l3 u3 l4 u4

A1 0.041 0.054 0.110 0.121 0.059 0.079 0.078 0.083

A2 0.036 0.052 0.115 0.124 0.061 0.075 0.073 0.078

A3 0.039 0.050 0.121 0.128 0.052 0.060 0.073 0.078

A4 0.038 0.060 0.119 0.137 0.054 0.071 0.083 0.094

A5 0.040 0.057 0.135 0.150 0.053 0.062 0.068 0.081



Extension of Ratio System Part of MOORA Method 151

Table 4

The ranking results obtained using the MOORA method

Contractor S+ S− S Rank

l u l u

A1 0.210 0.255 0.078 0.083 0.152 3

A2 0.212 0.250 0.073 0.078 0.156 2

A3 0.213 0.238 0.073 0.078 0.150 5

A4 0.211 0.267 0.083 0.094 0.151 4

A5 0.228 0.269 0.068 0.081 0.174 1

And finally, the overall performance index Si for each alternative is calculated using
(24) and also presented in Table 4.

According to the calculation results, ranking order of alternatives is as follows: A5 �
A2 � A1 � A4 � A3.

This means that the last alternative, A5, is the best solution with the overall perfor-
mance index of 0.174, and the third alternative, A3, is the worst with the result of 0.150.

Results obtained using the proposed methodology is very similar to the results pub-
lished in the original paper Zavadskas et al. (2009b), when COPRAS-G method is used.
In mentioned paper, as the best alternative is also chosen alternative A5, and the ranking
order of alternatives was been as follows: A5 � A2 � A1 = A4 � A3.

These results confirm the correctness of the proposed methodology.

5. Conclusion

Solving many real-world problems requires the use of some form of fuzzy numbers.
Although they represent the simplest form of fuzzy numbers, interval fuzzy numbers

can be very useful for solving problems that manifest themselves in a semi structured or
unstructured areas, because this form of the interval fuzzy numbers requires only deter-
mination of minimum and maximum values, i.e., the boundaries of intervals.

The MOORA method is recently published method, which is characterized by a rela-
tively efficient and easy-to-understand approach, logically based procedure for selecting
the most appropriate alternative or ranking available alternatives. As shown in this paper
the Ratio system part of MOORA method can be easily extended to provide usage of the
interval fuzzy numbers, which would allow its use for solving a much larger number of
real problems.
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Sprendim ↪u priėmimas MOORA metodu papildant santyki ↪u sistemos
algoritm ↪a intervalais

Dragisa STANUJKIC, Nedeljko MAGDALINOVIC, Sanja STOJANOVIC,
Rodoljub JOVANOVIC

Kai kuriais atvejais naudojant daugiatikslius sprendim ↪u priėmimo metodus sprendžiant realias
pasaulio problemas alternatyv ↪u rangai negali būti apibrėžti tiksliai, todėl išreiškiami intervalais.
Šio straipsnio tikslas pritaikyti MOORA metod ↪a sprendžiant sprendim ↪u priėmimo problemas nau-
dojant intervalus. Straipsnyje praplečiamas MOORA metodo santyki ↪u sistemos algoritmas, kuris
nustato labiausiai pageidautin ↪a alternatyv ↪a tarp vis ↪u galim ↪u alternatyv ↪u, kai charakteringasis rangas
apibrėžiamas intervalu. Galiausiai, straipsnyje pateikiamas pavyzdys, kuriame apibrėžiama siūloma
procedūra.


