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Abstract. In this paper, a piecewise uniform quantizer for input samples with discrete amplitudes
for Laplacian source is designed and analyzed, and its forward adaptation is done. This type of
quantizers is very often used in practice for the purpose of compression and coding of already
quantized signals. It is shown that the design and the adaptation of quantizers for discrete input
samples are different from the design and the adaptation of quantizers for continual input samples.
A weighting function for PSQNR (peak signal-to-quantization noise ratio), which is obtained based
on probability density function of variance of standard test images is introduced. Experiments are
done, applying these quantizers for compression of grayscale images. Experimental results are very
well matched to the theoretical results, proving the theory. Adaptive piecewise uniform quantizer
designed for discrete input samples gives for 9 to 20 dB higher PSQNR compared to the fixed
piecewise uniform quantizer designed for discrete input samples. Also it is shown that the adaptive
piecewise uniform quantizer designed for discrete input samples gives higher PSQNR for 1.46 to
3.45 dB compared the adaptive piecewise uniform quantizer designed for continual input samples,
which proves that the discrete model is more appropriate for image quantization than continual
model.
Keywords: piecewise uniform quantizer, input samples with discrete amplitude, forward adaptation,
grayscale image.

1. Introduction

Quantization is one of the main steps in digitalization of analog signals (Jayant and Noll,
1984). Very often, quantization is done in two phases. In the first phase, quantization with
large number of levels is done, with the aim of A/D conversion. In such way quantized
samples, which have discrete amplitudes, are further quantized in the second phase, using
quantizer with much smaller number of levels, with the aim of compression. Quantizers
in the first and in the second phase are different, because the quantizer in the first phase
has continual input samples (i.e., samples with continual amplitudes) while the quantizer
in the second phase has discrete input samples (i.e., samples with discrete amplitudes).
Quantizers in the first phase, for the continual input samples, have been analyzed in many
papers (Na, 2001, 2008). The aim of this paper is the design and adaptation of the quan-
tizer in the second phase, for discrete input samples. In the paper Savic et al. (2010), the
uniform quantizer for discrete input samples was considered.
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In this paper, the piecewise uniform quantizer for discrete input samples is consid-
ered, for signals with Laplacian distribution. The piecewise uniform quantizer (Nikolic
et al., 2011) joins good characteristics of both uniform and nonuniform quantizers: it
can achieve SQNR (signal-to-quantization noise ratio) near to SQNR of the nonuniform
quantizer but with much less complexity. The piecewise uniform quantizer can be con-
sidered as generalized quantized whose special cases are the uniform and the nonuniform
quantizer. It will be shown that the design of the quantizer for discrete input samples is
different from the design of the quantizer for continual input samples, because discrete
samples have bounded amplitudes and therefore the overload distortion does not exist.

The forward adaptation (Nikolic and Peric, 2008) of the piecewise uniform quantizer
for discrete input samples is also done in this paper. It is shown that the adaptation of
the quantizer for discrete input samples is different from the adaptation of the quantizer
for continual input samples. Namely, the adaptation of the quantizer for discrete input
samples limited in amplitude should be done only if one condition (that the maximal
amplitude of the adaptive quantizer is smaller than the maximal amplitude of the fixed
quantizer) is fulfilled, while the adaptation of quantizers for continual input samples can
be done without any conditions.

Experiments are done, applying the previously defined fixed and adaptive piecewise
uniform quantizers for discrete input samples for grayscale image compression. Three
standard test images are analyzed (Lena, Street and Boat). The grayscale image (whose
pixels have discrete integer values) is divided into blocks, for each block the mean value
is calculated and the difference between the pixel value and the quantized mean value of
the block is quantized using the piecewise uniform quantizer for discrete input samples.
This quantizer can be applied because the difference has integer (i.e., discrete) values
with Laplacian distribution (Jayant, 1984; Salomon, 2007). The standard deviation of the
difference, denoted as σd, is calculated. A weighted function for σd, obtained experi-
mentally, based on three previously mentioned test images, is introduced in this paper.
As a measure of quality of the reconstructed image, PSQNR (peak signal-to-quantization
noise rat io) is used (Sayood, 2006). PSQNR is calculated for all values of σd. The aver-
age value of PSQNR is calculated in two ways: by classic averaging (where each value
of σd has the same weight) and by weighted averaging (where the weighting function for
σd is used).

It is shown by experiment that the adaptive piecewise uniform quantizer designed for
discrete input samples gives for 9 to 20 dB higher PSQNR compared to the fixed piece-
wise quantizer designed for discrete input samples. Also, the adaptive quntizer designed
for discrete input samples gives for 1.46 to 3.45 dB higher PSQNR compared to the adap-
tive quantizer designed for continual input samples. It proves that the discrete model is
more appropriate for image quantization than continual model.

It is shown that experimentally obtained PSQNR (averaged using the weighted func-
tion for σd) is matched very well with PSQNR theoretically obtained. In this way, theo-
retical analysis for the fixed and the adaptive piecewise uniform quantizers for discrete
input samples is proved. Also, the validity of the introducing of the weighted function
for σd is proved. Using the adaptive piecewise quantizer, the near lossless compression is
achieved.
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This piecewise uniform quantizer for discrete input samples can be used, besides for
the image compression, also for compression of all other signals with Laplacian distribu-
tion.

2. Construction of Fixed Piecewise Uniform Quantizer for Discrete Input

Quantization is often done in two phases. In the first phase, samples with contin-
ual amplitude are quantized with the uniform quantizer Q0 with N0 output levels
X = {x1, . . . , xN0 }. Continual amplitudes of the input samples are described with some
probability density function (pdf), denoted with p(x). In this paper, we will use Laplacian

pdf, which is defined as p(x) = ( 1√
2σ

)exp(−
√

2|x|
σ ) , where σ is the standard deviation of

the random variable x. The maximal amplitude of the uniform quntizer Q0 is denoted as
xmax, which depends on the range of the input signal. The design of the quantizer Q0 can
be described in another way: firstly, the uniform quntizer for the unit standard deviation
(σ = 1) is designed with the maximal amplitude xσ=1

max [Jayant] and after that the denor-

malization is done, by dividing all thresholds and representation levels with �0 = xσ=1
max

xmax
,

with the aim to map the range [−xσ=1
max, xσ=1

max] to the range [−xmax, xmax]. In the sec-
ond step, output samples from the quantizer Q0 (which have discrete amplitudes) are
further quantized with the second quantizer Q with N levels, N < N0. Input samples of
the quantizer Q can take N0 discrete values, which are equal to the output levels of the
quantizer Q0, defined with the set X . Probabilities of these discrete levels for Laplacian

distribution are P (xi) = p(xi)�0 = ( 1√
2σ

)exp(−
√

2|xi |
σ ) �0, i = 2, . . . , N0 − 1 and

P (x1) = P (xN0) = ( 1
2 )exp(−

√
2xmax

σ ).
The aim of this paper is design of the quantizer Q. Since this quantizer is used for

quantization of the samples with discrete amplitudes, its design is different from the de-
sign of the quantizers with continual amplitude samples. In this paper quantizer Q will be
realized as piecewise uniform quantizer with N levels grouped in L regions. The piece-
wise uniform quantizer can be considered as the generalized quantizer, since for L = N

the nonuniform quantizer is obtained and for L = 1 the uniform quantizer is obtained.
Each region has M = N/L uniform output levels. Ni denotes the number of the input
levels from the set X which belong to the ith region. Then, it holds that N0 =

∑L
i=1 Ni.

μi is the parameter of the ith region which represents the number of input levels that
are mapped to one output level, in the ith region. ϕi, i = 0, . . . , L, denote the bound-
aries between regions. The design of the piecewise uniform quantizer Q will be done
in the following way. Firstly, the piecewise uniform quntizer with N levels for the unit
standard deviation (σ = 1) is designed. The boundaries between the regions, denoted as
ϕσ=1

i , i = 0, . . . , L are obtained as ϕσ=1
i = tiM , where tj , j = 0, . . . , N represent

the thresholds of the optimal companding quntizer with N levels for σ = 1 which are
given with expression (4) in the paper Peric et al. (2009), which was derived for the op-
timal compression function defined in Judell and Scharf (1986), Na (2004). In this way,
the following expressions for ϕσ=1

i are obtained:
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ϕσ=1
i =

3√
2
log

(
2iM + (N − 2iM) exp(−

√
2

3 tσ=1
max(N))

N

)
,

0 � i � L/2, (1)

ϕσ=1
i =

3√
2
log

(
N

2N − 2iM + (2iM − N)exp(−
√

2
3 tσ=1

max(N))

)
,

L/2 < i � L. (2)

tσ=1
max(N) denotes the maximal amplitude of the optimal companding quantizer for

the unit variance, which values can be found in Peric et al. (2009). The denormal-
ization, by dividing ϕσ=1

i with �0 is done. The range of the quantizer obtained in
this way [−tmax(N), tmax(N)], tmax(N) = tσ=1

max(N)/�0, is different from the range
[−xmax, xmax], since tσ=1

max(N) �= xσ=1
max . If tmax(N) < xmax, the overload distortion

will exist. If tmax(N) > xmax, the range [xmax , tmax(N)] will be unused, which leads
to higher granular distortion. To avoid these negative effects, the corrections of the quan-
tizer range will be done by dividing the boundaries between the regions with tmax/xmax.
In this way, the boundaries between the regions ϕi are obtained. The range of the quan-
tizer is [−xmax, xmax].

di, i = 1, . . . , L denotes the width of the ith region of the fixed piecewise uniform
quantizer Q and it can be calculated as

di =
ϕi − ϕi−1

M
. (3)

The output levels of the quantizer Q, denoted with yij , i = 1, . . . , L; j = 1, . . . , M

(i represents the region where the output level belongs and j represents the number of the
output level within that region) can be calculated as

yij = ti−1 +
(

2j − 1
2

)
di. (4)

During the quantization process, an irreversible error is made, which is defined with dis-
tortion D. Since input samples have discrete amplitudes which are limited with xmax, the
fixed quantizer Q has only the granular distortion Dg , which is defined as:

D = Dg =
L∑

i=1

M∑
j=1

μi∑
k=1

(xijk − yij)
2
P (xijk), (5)

where xijk ∈ X is one of μi input levels which are mapped to the output level yij .
The quality of the quantized signal is usually defined with the signal-to-quantization

noise ratio SQNR, which is defined in the following way:

SQNR [dB] = 10 log10

(
σ2

Dg

)
, (6)

where σ2 is a variance of the input signal with discrete amplitudes.
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Table 1

SQNR values of the piecewise uniform quantizer for the discrete input samples for different values of N and L

SQNR [dB]

N = 16, N = 32, N = 64,

tσ=1
max(N) = 6.01 tσ=1

max(N) = 7.41 tσ=1
max(N) = 8.85

L = 2 10.90 16.427 23.071

L = 4 14.962 20.90 26.098

L = 8 16.652 22.826 27.828

L = 16 17.417 23.454 29.069

SQNRopt [dB] 18.080 23.840 29.727

In Table 1, values of SQNR for piecewise uniform quantizer are given, for different
values of N and L, for the input signal with Laplacian distribution with unit variance
(σ2 = 1). Input samples have discrete amplitudes which have been already quantized
with the uniform quantizer with N0 = 512 levels and xσ=1

max = 7.9. In the last row of
Table 1, values of SQNR for the optimal nonuniform quantizer for samples with contin-
ual amplitudes is given, denoted with SQNRopt. These values are taken from the paper
Peric et al. (2009). Based on the results shown in Table 1, we can conclude that if the
number of regions L (L � N ) increases, performances of piecewise uniform quantizer
for the discrete input became more closer to the performances of the optimal nonuniform
quantizer for the continual input.

3. Design of the Adaptive Piecewise Uniform Quantizer for Discrete Input Samples

In this section, the forward adaptation of the piecewise uniform quantizer for discrete
input samples will be done. The adaptation is done on the frame-by-frame (or, block-by-
block for the image compression) basis. The standard deviation σ of the frame is found.
Quantized standard deviation of the frame σ̂ is transmitted to the receiver. The maximal
amplitude of the adaptive quantizer before denormalization, denoted as tadapt

max , is defined
as:

tadapt
max = kσ̂, (7)

where k is the loading factor of the adaptive quantizer, whose optimal value is found
numerically, as it will be described in the Section 5.2. The boundaries between the re-
gions ϕadapt

i of the piecewise uniform adaptive quantizer is defined with the following
expressions:

ϕadapt
i =

3σ̂√
2 �0

log
(2iM + (N − 2iM) exp(−

√
2

3
tadapt
max

σ̂
)

N

)
,

0 � i � L/2, (8)



130 M.S. Savić et al.

ϕadapt
i =

3σ̂√
2 �0

log
(

N

2N − 2iM + (2iM − N)exp(−
√

2
3

tadapt
max

σ̂
)

)
,

L/2 < i � L. (9)

Division with �0 in the previous expressions is done due to denormalization. The maxi-
mal amplitude of the adaptive piecewise uniform quantizer is xadapt

max = tadapt
max /�0 (after

denormalization). dadapt
i , i = 1, . . . , L, which denotes the width of the ith region of the

piecewise uniform adaptive quantizer, is defined as:

dadapt
i =

ϕadapt
i − ϕadapt

i−1

M
. (10)

The output levels of this quantizer, denoted as yadapt
ij , i = 1, . . . , L; j = 1, . . . , M , are

defined as:

yadapt
ij = ϕadapt

i−1 +
(

2j − 1
2

)
dadapt

i . (11)

Using adaptation, we adjust the amplitude range of the quantizer to the variance of
the input signal. In Fig. 1, the range I = (−xmax, xmax) of the uniform quantizer Q0,
which precedes to the adaptive piecewise uniform quantizer, is shown firstly. Recall that
input samples of the adaptive quantizer are bounded in amplitude with xmax. Also, in

Fig. 1, the range Iadapt = (−x
adapt

max , xadapt
max ) of the adaptive piecewise uniform quantizer

is shown for two cases: when xadapt
max < xmax (i.e., Iadapt becomes narrower than I) and

when xadapt
max > xmax (i.e., Iadapt becomes wider than I). The case when xadapt

max > xmax

will be deeply analyzed. In this case, since the input samples are amplitudely bounded by
xmax, the representation levels in the range (−x

adapt
max , −xmax)∪(xmax, x

adapt
max ) is unused.

But, as it was said earlier, input samples are bounded in amplitude with xmax. Therefore,
not all N representation levels are used, but only N1 (N1 is some number smaller than
N ). Because of that, higher distortion (i.e., lower SQNR) is obtained, compared to the

Fig. 1. The range of the fixed and the forward adaptive quantizers.
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fixed quantizer (without adaptation). We can conclude that if adaptation is done when
xadapt

max > xmax, worse performances are obtained. Therefore, adaptation should not be
done in this case. We can introduce the following rule: adaptation should be done only
when xadapt

max < xmax. If this condition is not fulfilled, the fixed quantizer should be used.
This is the main difference between adaptive quantizers for continual and for discrete
input samples, because for continual input samples adaptation gives good results in both
cases: xadapt

max < xmax and xadapt
max > xmax.

For the adaptive quantizer, input levels can take values from the range (−xmax, xmax)
and the output values can take values from the range (−x

adapt
max , xadapt

max ), xadapt
max < xmax.

The input levels from the range (xadapt
max , xmax), whose number is denoted as μL+1, are

mapped into the last output level yLM, which leads to the existence of the overload dis-
tortion Dov. Therefore, for the adaptive quantizer, we have the granular distortion given
with the expression (5) and the overload distortion given with the following expression:

Dov = 2
μL+1∑
k=1

(xLMk − yLM)2P (xLMk). (12)

The total distortion is equal to the sum of these two distortions, i.e.,:

D = Dg + Dov. (13)

4. Application of the Previous Models on the Grayscale Images

In this section, a weighting function for PSQNR calculation is introduced and an algo-
rithm for image processing is presented.

4.1. Weighting Function

As a measure of the quality of the piecewise uniform quantizer Q (fixed or adaptive) we
will use the peak signal-to-quantization noise ratio for the block B of the original image
pixels, defined as

PSQNR [dB] = 10log10

(
x2

max

D

)
= 10log10

(
x2

max

Dd

)
. (14)

Since the distortion Dd depends on σd, it follows that PSQNR [dB] also depend on σd

which can take values from 1 to xmax (xmax = 255). Actually, σd also can take value 0,
but this case will not be considered since if σd = 0 then block Bd does not contain any
information (in this case xav carries all information about block B). σd can be written in
the logarithmic domain as σd [dB] = σ̂d [dB] = 20log10

σd

σ0
, where σ0 is some referent

standard deviation. Without losing a generality, we can take that σ0 = 255. Then σd [dB]
can take values from 20log10

1
255 = −48.13 dB to 20log10

255
255 = 0 dB. As a measure

of the quality of the reconstructed block of the image, we will use the average PSQNR in
the range [−48.13 dB, 0 dB] of σd [dB]. The averaging will be done in two ways:
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Fig. 2. Weighting function: (a) in the linear domain and (b) in the logarithmic domain.

1. All values of σd [dB] in that range have the same weight. In that way we obtained
PSQNRav .

PSQNRav =
1

255

255∑
σdi

=1

PSQNR(σ̂di) [dB]. (15)

2. Since all of the input samples do not occur with the same probabilities we introduce
weighting function for σd [dB]. This weighting function is calculated based on the
three standard test images (Lena, Boat and Airplane) and it is shown in Fig. 2a in
the linear domain and in Fig. 2b in the logarithmic domain. In this way PSQNRwav

is obtained.

PSQNRwav =
255∑

σdi
=1

w
(
σ̂di

)
PSQNR

(
σ̂di

)
[dB]. (16)

4.2. An Algorithm for the Image Processing

In this section, we will explain the application of the previously described quantizers
(fixed and adaptive) on grayscale images. Pixels of the image can take integer values
from 0 to xmax. We consider the case whit xmax = 255 (each pixel is represented with 8
bits). The algorithm for the image processing starts with dividing the image into blocks,
whose size is m × m (we will use m = 4). Each block is processed separately. Now, an
algorithm will be described, where the fixed piecewise uniform quantizer is used for the
processing of one arbitrary block, which is denoted with B and whose pixels are denoted
with xi,j , i = 1, . . . , m; j = 1, . . . , m.

1. The average value xav of the block B is found, this value is quantized and obtained
quantized average value x̂av is transmitted to the receiver.
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2. The difference block Bd, which size is m × m is formed. Elements of that block,
denoted with di,j , i = 1, . . . , m; j = 1, . . . , m are obtained as the difference of
the pixel values of the block B and the quantized mean value x̂av, i.e.,

di,j = xi,j − x̂av. (17)

Elements di,j of the block Bd can take integer values from the interval [−xmax,
xmax]. di,j are integer because they are obtained as a difference between two in-
teger values. Elements of the block Bd have the Laplacian distribution (Jayant,
1984).

3. Since the elements of the block Bd are integers (i.e., they have discrete amplitudes),
fixed quantizer designed for discrete input should be used. Quantized elements of
the block Bd, denoted with d̂i,j are binary coded with R bits (log2N ) and transmit-
ted to the receiver. The distortion which is made by quantization of the elements
di,j can be expressed as:

Dd =
1

m ∗ m

m∑
i=1

m∑
j=1

(di,j − d̂i,j)
2
. (18)

4. In the receiver, after the reception of x̂av and d̂i,j , the reconstruction of the pixels
of the original image is done as

x̂i,j = d̂i,j + x̂av. (19)

The reconstructed block of the image, denoted as B̂ consists of the reconstructed
pixels x̂i,j . The difference between the original block B and the reconstructed block
B̂ is measured by distortion D = 1

m∗m

∑m
i=1

∑m
j=1 (xi,j − x̂i,j)

2. Based on (14),
(15) and (16), it follows that

D =
1

m ∗ m

m∑
i=1

m∑
j=1

(xi,j − x̂i,j)
2

=
1

m ∗ m

m∑
i=1

m∑
j=1

(di,j − d̂i,j)
2

= Dd. (20)

For the adaptive quantizer, the previous algorithm with the following changes is used.
The Step 2 is extended with the Step 2.1, where the standard deviation σd of the block Bd

is calculated as σd = [
√

1
m∗m

∑m
i=1

∑m
j=1 (xi,j − x̂av)

2] and transmited to the receiver.

[x] denotes the nearest integer for x. After that, in the Step 3, the adaptive piecewise
uniform quantizer, designed for σd, is used instead of the fixed quantizer.

In Table 2, lower (xlow
i ) and upper (xup

i ) boundaries of intervals of the fixed and the
adaptive quantizers used in the Step 3 for quantization of the block Bd are shown, for
N = 16, L = 16 and for different values of σd. Due to the symmetry, only the positive
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Table 2

Boundaries of the intervals (thresholds) for the fixed and the adaptive piecewise uniform quantizer (designed
for discrete input samples), applied on the image compression, for N = 16, L = 16 and for different values
of σd

Fixed quantizer Adaptive quantizer

σd = 32 σd = 2 σd = 32 σd = 100

i xlow
i xup

i di xlow
i xup

i di xlow
i xup

i di xlow
i xup

i di

1 0 16 16 0 0 0 0 0 0 0 19 19

2 17 32 15 1 1 0 1 1 0 20 42 22

3 33 48 15 2 2 0 2 2 0 43 67 24

4 49 60 11 3 3 0 3 3 0 68 94 26

5 61 108 47 4 6 2 4 35 31 95 126 31

6 109 156 47 7 9 2 36 67 31 127 163 36

7 157 204 47 10 12 2 68 99 31 164 207 43

8 205 255 50 13 15 2 100 126 26 208 255 47

Table 3

Boundaries of the intervals (thresholds) for the fixed and the adaptive piecewise uniform quantizer (designed
for continual input samples), applied on the image compression, for N = 16, L = 16 and for different values
of σd

Fixed quantizer Adaptive quantizer

σd = 32 σd = 2 σd = 32 σd = 100

i xlow
i xup

i di xlow
i xup

i di xlow
i xup

i di xlow
i xup

i di

1 0 9 9 0 1 1 0 8 8 0 27 27

2 10 18 8 2 2 0 9 19 10 28 58 30

3 19 30 11 3 4 1 20 32 12 59 94 35

4 31 43 12 5 6 1 33 46 13 95 138 43

5 44 61 17 7 8 1 47 64 17 139 192 53

6 62 84 22 9 10 1 65 88 23 193 265 72

7 85 119 34 11 13 2 89 124 35 266 374 108

8 120 194 74 14 19 5 125 199 74 375 608 233

parts of the quantizers are shown. Also, the widths of the intervals di = xup
i − xlow

i are
given. Since the pixels of the images are integers, boundaries of the intervals are also
integers. For some intervals, lower and upper boundaries are the same. These intervals
have only one representation level, which is equal to the boundaries and the widths of
these intervals di are equal to 0. This case is specific for the discrete source; it does not
exist for the continual source.

In Table 3, decision thresholds xlow
i and xup

i and widths of the intervals di are given,
for fixed and adaptive piecewise uniform quantizers designed for the continual input sam-
ples. Due to the symmetry, only the positive parts of the quantizers are shown. Now, we
will consider the case when σd =100. From Table 3, we can see that the range of the
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Fig. 3. The range of the forward adaptive piecewise uniform quantizers designed for continual and for discrete
input for σd = 100.

adaptive quantizer designed for continual input is [−608, 608], which is much wider than
the range of the possible input values of discrete signal [−255, 255]. It means that the
levels in the range [−608, −255] ∪ [255, 608] are unused, i.e., the number of levels N1 in
the range [−255, 255] which are effectively used is smaller than total number of levels N .
This is shown in Fig. 3. In general, the same phenomenon occurs for large values of σd.
On the other side, the range of the adaptive quantizer for discrete input is limited with the
maximal input value (in our case [−255, 255]) and therefore all N representation levels
are effectively used. Due to unused levels, adaptive quantizer designed for continual in-
put samples has smaller PSQNR compared to the adaptive quantizer designed for discrete
input samples, which will be experimentally proved in the next section.

5. Numerical and Experimental Results

In this section numerical and experimental results are presented for fixed and adaptive
piecewise uniform quantizer for discrete and continual input samples.

5.1. Numerical Results for the Fixed Piecewise Uniform Quantizer

In Fig. 4, theoretically obtained (using the expression (5) for the distortion) dependences
of PSQNR on σd [dB] are shown for N = 16 and N = 32, for the fixed piecewise
uniform quantizer for discrete input samples. Two average values of PSQNR (PSQNRav

and PSQNRwav) are calculated in the way described in the Section 4.1 and these values
are given in Fig. 4. We can see that these values are quite different.

In Table 4, experimental results, obtained by applying the fixed piecewise uniform
quantizer for discrete input samples for image compression (in Step 3 of the algorithm in
Section 4.1) of three previously mentioned standard test images, for different values of
N and L are shown. Values in Table 4 are averaged values for these three images. We can
see that experimentally obtained values of PSQNR (from Table 4) are matched very well
to theoretically obtained values of PSQNRwav (in Fig. 4), while they are quite different
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Fig. 4. PSQNR of fixed piecewise uniform quantizer for discrete input for: (a) N = 16 and (b) N = 32.

Table 4

Experimental results for the fixed piecewise uniform quantizer designed for discrete input samples

N = 16 N = 32

L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 16

PSQNR [dB] 25.358 33.037 35.817 33.272 40.058 42.380 42.640

from values of PSQNRav (in Fig. 4). It proves that the theory obtained in Section 2 is
correct. Also, it justifies the introduction of the weighting function for σd and shows that
PSQNRwav should be used instead of PSQNRav.

Experimental results for the fixed piecewise uniform quantizer designed for continual
input samples are similar with the results in Table 4, since the value of σd which was used
(σd = 32) is adjusted to the test images.

5.2. Numerical Results for the Adaptive Piecewise Uniform Quantizer

In this section, numerical results for the adaptive piecewise uniform quantizer for discrete
input samples are given. In Fig. 5, theoretically obtained (using the expressions (5), (12)
and (13) for the distortion) dependences of PSQNR on σd [dB] are shown for N = 16
and N = 32. PSQNRwav is also shown in this figure. PSQNRav is not considered, due to
the conclusion in the previous section. The optimal values of the parameter k, which are
numerically found to maximize PSQNRwav, are also given in Fig. 5.

From Fig. 5 we can see an interesting effect: PSQNR for adaptive quantizers increases
for small σd [dB]. Now, we will explain this effect considering one example with param-
eters N0 = 256, N = 32 and L = 8. For the fixed quantizer, we choose 32 output levels
from the set of 256 input levels, i.e., matching between input and output levels is 12.5%.
For the adaptive quantizer, if σd is small, xadapt

max also will be small. We consider the case:
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Fig. 5. PSQNR of adaptive piecewise uniform quantizer for discrete input for: (a) N = 16 and (b) N = 32.

Table 5

Experimental results for the adaptive piecewise uniform quantizer designed for discrete and continual input
samples

N = 16 N = 32

L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 16

PSQNR [dB] 45.029 45.483 45.785 49.998 50.221 50.310 51.125

PSQNRcont [dB] 41.929 42.883 44.345 46.548 47.085 48.685 49.665

xadapt
max = 1

4xmax. Therefore, inside the range of the adaptive quantizer (−x
adapt
max , xadapt

max )
there are N0/4 = 64 input levels and among them we choose N = 32 output levels.
So, for the adaptive quantizer, matching between input and output levels is 50%. If some
input level is equal to some output level, distortion for that input level is zero. There-
fore, if percentage of matching between input and output levels increases then distortion
decreases and then PSQNR increases. It is clear from the above example that matching
percentage increases when σd decreases.

In Table 5, experimental results for the adaptive piecewise uniform quantizer for dis-
crete input samples are given, for different values of N and L, obtained by applying this
quantizer in Step 3 of the algorithm in Section 4.2. Values in Table 5 are averaged values
for standard test images (Lena, Street and Boat). We can see that experimentally obtained
values of PSQNR in Table 5 are matched very well to theoretically obtained values of
PSQNRwav in Fig. 5. It proves the theory from Section 3.
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PSQNR values in Table 5 are very high, which means that high quality reconstructed
images are obtained, i.e., near lossless compression is achieved using this adaptive quan-
tizer.

In the aim of comparison, the average values of PSQNR (denoted as PSQNRcont) ob-
tained by application of the adaptive piecewise uniform quantizer designed for continual
input samples of three above mentioned standard test images are also given in Table 5.
We can see that the adaptive quantizer designed for discrete input samples gives higher
PSQNR for 1.46 to 3.45 dB compared the adaptive quantizer designed for continual input
samples, because of the reason explained at the end of Section 4.2.

6. Conclusion

Design of fixed and adaptive piecewise uniform quantizers for discrete input samples
with Laplacian distribution was considered in this paper. These quantizers have a great
practical importance since they are used for compression of already quantized signals.
Piecewise uniform quantizer was analyzed since it could be considered as generalized
quantizer. It was shown that the design of quantizers for discrete input samples is dif-
ferent from the design of quantizers for continual input samples. Since discrete input
samples are limited in amplitude, the overload distortion does not exist. Adaptation of
these quantizers should be done only under one condition: the maximal amplitude of the
adaptive quantizer should be smaller than the maximal amplitude of the fixed quantizer.
Also, for the adaptive quantizer, PSQNR increases for small input variances. An algo-
rithm for compression of grayscale images was presented, applying these quantizers for
discrete input samples. A weighting function for the standard deviation of the difference
of the pixel value and the quantized mean value of the block which pixels belong was
introduced. Average PSQNR was calculated in two ways: by classic averaging (without
using weighting function) and by weighted averaging (using weighting function). Exper-
iments were done, applying these fixed and adaptive quantizers for compression of three
test grayscale images (Lena, Street and Boat). It was shown that experimentally obtained
PSQNR was matched very well with theoretically obtained weighted PSQNR. In this way,
developed theory was proved. Also, it was shown that the average PSQNR obtained by us-
ing the weighting function should be used instead of the average PSQNR obtained without
using the weighting function. We have compared adaptive piecewise uniform quantizer
designed for discrete input samples with fixed piecewise uniform quantizer designed for
discrete input samples, in order to show that higher PSQNR of 9 to 20 dB is obtained.
Also it is shown that the adaptive piecewise uniform quantizer designed for discrete input
samples gives higher PSQNR for 1.46 to 3.45 dB compared the adaptive piecewise uni-
form quantizer designed for continual input samples. Capitalizing on this, the conclusion
arises, that the discrete model is more appropriate for image quantization than continual
model. With the adaptive piecewise uniform quantizer, the near lossless compression was
achieved.
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Kodavimo algoritmas pustoniams vaizdams, grindžiamas atkarpomis
tiesiniu, pastoviuoju dydži ↪u keitikliu

Milan S. SAVIĆ, Zoran H. PERIĆ, Milan R. DINČIĆ

Šiame straipsnyje atkarpomis tiesinis, pastovusis dydži ↪u keitiklis yra sudarytas ir išanalizuotas
Laplaso šaltinio ↪iėjimo atskaitoms su diskrečiosiomis amplitudėmis. Gauta jo tolimesnė adaptacija.
Tokio tipo keitikliai yra labai dažnai taikomi praktikoje jau kvantuot ↪u signal ↪u glaudinimui bei ko-
davimui. Parodyta, kad ši ↪u keitikli ↪u sudarymas bei j ↪u adaptacija diskrečioms ↪iėjimo atskaitoms
skiriasi nuo keitikli ↪u sudarymo bei j ↪u adaptacijos tolydinėms ↪iėjimo atskaitom. Pateikta svorinė
PSQNR (didžiausios signalo ir kvantavimo triukšmo reikšmi ↪u santykis) svorinė funkcija, kuri gauta
taikant standartinio testinio vaizdo nuokrypio tikimybin↪i tank↪i. Atlikti eksperimentai, šiais keitik-
liais glaudinant pustonius vaizdus. Eksperiment ↪u rezultatai patvirtina teorinius rezultatus. Adap-
tyvusis atkarpomis tiesinis, pastovusis keitiklis, sukurtas diskrečioms ↪iėjimo atskaitoms, duoda
nuo 9 iki 20 dB aukštesn↪i PSQNR lyginant su fiksuotuoju atkarpomis tiesiniu keitikliu, sudaryt ↪u
diskrečiosioms ↪iėjimo atskaitoms. Taip pat yra parodyta, kad adaptyvusis atkarpomis tiesinis,
pastovusis keitiklis, sudarytas diskrečioms ↪iėjimo atskaitoms duoda nuo 1.46 iki 3.45 aukštesn↪i
PSQNR, nei adaptyvusis atkarpomis tiesinis keitiklis, sudarytas tolydinėms ↪iėjimo atskaitoms. Šis
faktas ↪irodo, kad diskretusis modelis esti labiau tinkamas vaizdo kvantavimui nei tolydinis modelis.


