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Abstract. This paper considers a new method for reconstructing deliberately-corrupted pixels in
raster images. Firstly, a faster approach for reconstructing corrupted pixels is proposed by applying
a processing-circle instead of a processing-square. It is shown that the obtained quality of the re-
constructed image is no worse because of this. The quality of the reconstruction is further improved
by controlling the pixel corrupting process within the input image. It is shown that a combination
of the processing-circle approach and data-dependent corruption reduces the reconstruction time,
and the mistakes of the reconstructed pixels.
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1. Introduction

This paper considers the following problem: Let’s take a raster image Ω1 defined by n×m

pixels. Then, k pixels (k < n × m) are deliberately corrupted. The positions (x, y) of
these k pixels are known. Two possibilities are considered on how to select these k pixels.
Firstly, they are determined randomly, and secondly, a data-dependent approach is ap-
plied, i.e., more pixels are corrupted within those areas where the pixel values are similar.
During the reconstruction phase, an image Ω2 of n × m pixels is obtained by calculating
the values of each k corrupted pixel using the Radial-basis function. The surrounding
non-corrupted pixels are used for this, in such a way that Ω2 ≈ Ω1. Unfortunately, the re-
construction process is numerically rather intensive. The computational time depends on
the number of known pixels within the neighbourhood of the corrupted pixels, because
they affect the size of the system of linear equations. The amount of the neighbouring
pixel’s quantity is determined by the neighbourhood area, and the corruption ratio. Be-
cause of this, less non-corrupted neighbouring pixels need to be considered. The experi-
ments showed that instead of a processing-square, as used to date, a processing-circle can
be applied. In this way, the processing time is noticeably reduced without decreasing the
qualities of the reconstructed pixels. It is reasonable to control the corruption process re-
garding image content in order to achieve better reconstruction. A simple data-dependent
approach is suggested, for this purpose.
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There are several applications within which the considered problem can be used. For
example, images in an internet archive can be previewed when being corrupted and recon-
structed after purchasing, or, images being sent through various communication channels
can be accessed by an intruder. The useful values of such images are considerably smaller
when deliberately corrupted.

This paper is organised as follows: Section 2 gives a brief overview of the pixel recon-
struction techniques. Section 3 considers a reconstruction technique with the Radial-basis
function using a processing-circle. The results are presented in Section 4 and discussed
in Section 5. Finally, the paper concludes in Section 6.

2. Related Work

There are several techniques for the reconstruction of corrupted pixel values within an
image. Texture synthesis techniques attempt to find those areas on an image that are sim-
ilar to the area where pixels are damaged. The information from this area is then used
to set the value of the wrong pixel. Efros and Leung (1999) tried to find the similar area
by using a Markov random field model, and probability distribution. The new image was
created outward from the initial seed using the square around the corrupted pixel. A sim-
ilar technique was proposed by Bornard et al. (2002) and Demanet et al. (2003). The
squared-window is used to choose the best replacement candidate from the corrupted
pixel’s neighbourhood. They used the normalised mean-squared distance between the
similar pixels and the damaged ones. Sprott (2004) applied stochastic cellular automa-
ton to produce fictitious fractal data that mimics the features of the actual pattern. This
technique is suitable for those images that expose fractal features, such as landscapes.

The majority of the corrupted pixel reconstruction techniques propagate information
from non-corrupted to corrupted areas. The corrupted region is filled with propagated in-
formation along the level lines from outside the corrupted area (Bertalmio et al., 2000).
As Partial Differential Equations (PDE) are used, it is difficult to achieve an implemen-
tation that is fast enough in practice. Telea (2004) and Bornemann and März (2007) used
a similar approach, however they applied the marching method, which is fast and simple
to implement. Their technique propagates colour information inward from the corrupted
region’s boundary and estimates smoothness along the image gradient using the weighted
average over the known pixels. Shih et al. (2004) applied a colour interpolation mecha-
nism. The pseudo squared window around the corrupted pixel is used to estimate whether
there is enough information on the image to calculate the mean value. If the image is se-
riously damaged, the global mean value is assigned to that corrupted pixel. Recently, Wu
et al. (2010) proposed a novel exemplar-based image completion model. They used bidi-
rectional diffusion PDE. Their experiments showed that they could properly reconstruct
the target region whilst preserving the geometrical structure within the image. Some tech-
niques combine structured region propagation with texture synthesising (Criminisi et al.,
2004). Firstly, the patch-priorities are calculated by using the best-filling strategy. Sec-
ondly, the texture and structure information are propagated to find the most similar patch.
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Finally, the confidence values are updated. These values are used during the first step
for priority determination. As reported by the authors, the algorithm is very efficient and
accurate for the synthesis of texture, and the propagation of a linear structure. Chen and
Reiter (2007a) and Chen et al. (2007b) presented an improvement of the previous ap-
proach. The efficiency and effectiveness of the exemplar-based method were improved
by a better search-strategy. Yamauchi et al. (2003) combined texture synthesis and im-
age inpainting. The image is decomposed into low and high-frequency parts. The texture
synthesis is used for the high-frequency part, and the fast image inpainting using discrete
cosine transformation for the low-frequency part.

Another type of image reconstruction technique interpolates the values of the known
pixels within the neighbourhood of the corrupted pixel. Oliveira et al. (2001) used convo-
lution with a diffusion kernel. They applied the Gaussian kernel to calculate the weighted
average of a pixel’s neighbourhoods. This method requires anisotropic diffusion to handle
the high-contrast edges. Several approaches use the Radial-basis function for determin-
ing the corrupted pixel from the known surrounding pixels. These approaches require
a solving of the system of linear algebraic equations that can be done in O(n3) time.
Savchenko et al. (2002), Kojekin and Savchenko (2002), Kozhekin et al. (2003) pre-
sented algorithms for image retouching. The corrupted image is restored by using the
space-mapping technique. Their algorithm is implemented in three-dimensional space.
The Cholesky decomposition is used for solving linear equations. The input image is
handled as three separated colour channels (R, G, B). Wang and Qin (2006) improved
their approach. Firstly, the two-dimensional image is converted to a three-dimensional
cloud of points. Then, an implicit surface is reconstructed from these points. Finally, the
Radial-basis function is applied to reconstruct the surface, and consequently, the dam-
aged parts of the image are restored. Uhlíř and Skala (2006) also applied this approach.
In their algorithm, the known pixels in the squared-window of constant size are used to
construct a system of linear equations.

3. Radial-Basis Function Interpolation Using the Processing-Circle

Our method follows the approaches based on Radial-basis function interpolation (Morse
et al., 2001; Savchenko et al., 2002; Kojekin and Savchenko, 2002; Kozhekin et al., 2003;
Wang and Qin, 2006; Uhlíř and Skala, 2006). These types of interpolation are important
techniques for data interpolation and approximation (Buhmann, 2003). Therefore, the
Radial-basis function could be used for interpolating a function f with n points and by
using n radial basis functions centered at these points. Wendland constructed compact,
locally-supported radial basis functions (CSRBF), which guarantee that the system of
linear equations (1) is positive-definite. Therefore, a solution for the linear system always
exists (Wethland, 1995; Morse et al., 2001). Compactly-supported radial basis functions
also reduce computational complexity.

In continuation, Radial-basis function interpolation is introduced together with its
use in the reconstruction of a corrupted pixel. Adopting Kojekin and Savchenko (2002),
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the following interpolation schema is needed:

f(x) =
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i=1

λiφ
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where [λ1 . . . , λn, a, b, c] is the solution of linear system of equations. λi represents
the weight of the radial basis function positioned at point ci. Parameters a, b, c repre-
sent the constant portion of f , and ensure a positive definiteness of the solution (Morse
et al., 2001). Equations (2) ensure the orthogonality of a solution (Uhlíř and Skala, 2006).
x = (x, y) are the coordinates of the corrupted pixel, φ are the Radial-basis functions,
and n is the number of known pixels within the neighbourhood of the corrupted pixel. It
also represents the number of Radial basis functions. The values of the basis functions
can be calculated in advance. The values of function f for input coordinates ci are known
pixel intensity values hi. In order to calculate intensity value of the corrupted pixel, we
have to find the solution for the following linear system of equations, as obtained from
(1) and (2):
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where φi,j = φ(|ci − cj |), i, j = 1, . . . , n and hi are the pixel intensity values at the
coordinates ci. The solution of linear system of equations is [λ1, λ2, . . . , λn, a, b, and c].
These parameters are used to calculate the function f(x), the values of which represent
the value of the corrupted pixel (in the case of the colour image, the calculation is done
separately for each component).

3.1. Corrupted Pixel Reconstruction with a Processing-Circle

In our approach, the image is reconstructed from the middle of the image towards its
borders. Previous approaches have used a processing-square to select the known pixels
that surround the corrupted pixel. The processing-circle is applied in our approach. In
Fig. 1 the corrupted pixels are plotted in grey. The unknown pixel that is going to be
reconstructed, is in the centre of the circle and marked by ×. When the reconstructed pixel
becomes known, it is used to reconstruct the next corrupted pixels. During the processing-
circle approach, the distance d is used to determine whether the known pixel ci is inside
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Fig. 1. The processing-circle inside the processing-square.

the circle with radius r and centre x:

d = |ci − x|. (4)

If the distance d is smaller than radius r, the pixel at coordinate ci participates in the
process of determining the value of the corrupted pixel, i.e., it is used for constructing
a system of linear equations (3). The size and the computational time of this system of
linear equations depends on the number of input values (known pixel values within the
neighbourhood of the corrupted pixel). What this means in practise is given in Section 4.

3.2. Data-Dependent Pixel Corruption

Most photographic images contain areas with pixels that have the same or almost the
same values. This feature can be exploited to corrupt pixels in a data-dependent way,
i.e., more pixels are corrupted in these areas where more pixels have similar values. The
following approach is proposed for this. A squared-window of size w is formed (Fig. 2)
and the mean pixel value within this square is determined. Next, the differences between
each pixel’s value and the pixels’ mean value within the squared-window are calculated.
Firstly, those pixels that have smaller differences than the predefined threshold th are
identified. Then, the pixel with the smallest differences is found from among them and
is marked as non-corrupted, and the others as the opposite. Secondly, the pixel that has
a larger difference than th is marked as non-corrupted. The square is then moved for
distance m. If m <= w, the new square position could partially overlap with the previ
ous square position. For example, the grey square in Fig. 2 overlaps the black square. The
status of the pixel is then reconsidered within overlapping region. As a result, more pixels
from those areas where pixel intensity values change slowly are corrupted, and oppositely,
more pixels are left unchanged in those areas where the pixel values are diverse.
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Fig. 2. Data-dependent corrupting of pixels (w = 4).

4. Results

Several experiments have were carried out to evaluate the proposed method.

1. The influence of various Radial-basis functions was firstly evaluated. An artificial
and three standard photorealistic images were used for the tests (Fig. 3). 50% of the
image pixels were randomly damaged and then reconstructed using the processing-
circle approach. A processing-circle of size 5 was used during this experiment. This
circle-size was used because a symmetrical area was needed around the corrupted
pixel. Therefore, the circle-size need to be odd. A smaller circle-size, for exam-
ple 3, would have been insufficient because the number of known pixels within
the neighbourhood of the corrupted pixel would have been too small for its cor-
rect reconstruction. In contrast, a higher circle-size, for example 7, would have
increased the number of known pixel within the neighbourhood of the corrupted
pixel. Therefore, the the computational time increased (as shown in Table 2). In
order to compare the results, the same metric was used a s in the article (Uhlíř,
2006). The Mean Absolute Error (MAE) was used, i.e., the city-block metric:

δ =
1

m × n

m∑
i=1

n∑
j=1

∣∣Ω1(i, j) − Ω2(i, j)
∣∣. (5)

Table 1 shows reconstruction times and the differences between the Ω1 and Ω2

for different Radial-basis functions and standard testing images. The input param-
eter r was the normalised distance from the centre of the processing-circle. The
experiments were executed on a computer with an Intel Core2 2.66 GHz processor.
The results in Table 1 show that the different Radial-basis functions did not have
much influence on the reconstruction time and the quality of image reconstruction.
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Table 1

The results of reconstruction with different Radial-basis functions φ(r)

φ(r) Lenna Baboon Pepper

t(s) δ t(s) δ t(s) δ

r2 log r 1.7350 2.5240 1.7340 8.4167 2.4060 4.2491

(1 − r)3 1.6720 2.5410 1.7030 8.2863 2.4060 4.1020

1 − r 1.6720 2.5342 1.8600 8.2843 2.4060 4.4589
√

r2 + 10 1.734 3.4615 1.8120 10.7599 2.3910 6.8465

r3 1.718 2.6332 1.7650 8.7929 2.4060 4.4589

exp(−r2) 1.703 3.0789 1.7650 9.9363 2.3910 5.2985

(1 − r)2 1.656 2.5423 1.7500 8.2840 2.3900 4.1090

Table 2

The results of reconstruction using image from Fig. 4a

Noise ratio Size Method t(s) δ Δt (%) Δδ (%)

0.1 5 Square 0.640 1.006 36.6 98.3

Circle 0.406 0.989

7 Square 2.266 1.180 44.8 101.2

Circle 1.250 1.194

0.5 5 Square 1.625 7.530 34.6 100.1

Circle 1.063 7.538

7 Square 5.219 7.675 43.7 101.0

Circle 2.938 7.753

0.9 5 Square 2.563 30.441 25.6 101.1

Circle 1.906 30.763

7 Square 6.391 27.572 42.1 102.6

Circle 3.703 28.285

Therefore, it was decided to use the Radial-basis function r2 log r during the con-
tinuation. In the next experiments tested the influence of processing-circle against
the processing-square.

2. The method was also tested on an artificial image, as shown in Fig. 3a. The im-
age size was 400 × 400 pixels. Figure 4b shows the reconstructed image ob-
tained from the image with 50% of corrupted pixels (Fig. 4b). Table 2 presents
the numerical results. It also shows the reconstruction times for various noise ra-
tios, the processing-square or circle-sizes (tw and tc are the reconstruction times
for the square and the circle, respectively). The percentage of time reduction
Δt = 100(tw − tc)/tw was calculated, too. Similarly, the differences δc and δw
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Fig. 3. (a) Artificial image; (b) Lenna; (c) Baboon; (d) Pepper.

Fig. 4. Reconstruction of an artificially created image: (a) image with 50% randomly corrupted pixels; (b) the re-
sults of reconstruction.
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Table 3

The results of reconstruction from corrupted image Fig. 5a

Noise ratio Size Method t(s) δ Δt (%) Δδ (%)

0.1 5 Square 0.656 0.404 33.4 101.2

Circle 0.437 0.408

7 Square 0.437 0.405 45.4 100

Circle 1.219 0.405

0.5 5 Square 2.516 2.509 34.1 101.2

Circle 1.657 2.538

7 Square 8.000 2.445 44.0 99.8

Circle 4.484 2.441

0.9 5 Square 3.734 9.486 27.2 110.5

Circle 2.719 10.483

7 Square 9.765 7.826 42.1 105.5

Circle 5.656 8.253

between the original and reconstructed-images is given, together with the calcu-
lated percentage Δδ = 100(δc/δw).

3. The image of Lenna (Fig. 3b) was used in the next experiment. The reconstructed
image is presented in Fig. 5b. It was obtained from an image with 64.73% of cor-
rupted pixel (Fig. 5a). Table 3 shows the numerical results of the reconstruction for
the same parameter values as in the previous experiment.

4. The effect of the data-dependent corruption of pixels was observed using sev-
eral different threshold values th, square sizes w and square moving distances
m. The threshold value was the same for each processing-circle/square and was
not recalculated during the reconstruction process. The image was reconstructed
by using processing-circle of size 5. The image shown in Fig. 5c was obtained
after corrupting the original image (Fig. 3b) using the data-dependent approach.
Figure 5d presents the reconstructed image. Table 4 shows the numerical results,
where the data-dependent pixel corruption with different parameter values and the
tested-image of Lenna were applied. The value nc represents the number of cor-
rupted pixels within the tested image. The results for other standard testing im-
ages are showed in Table 5. The reconstruc ted images are presented in Figs. 6
and 7. The results were compared with the random pixel corruption when using the
same number of corrupted pixels nc and the reconstruction time as t. The differ-
ences between the reconstruction times were calculated as Δt = 100(tu − td)/tu,
where tu was the reconstruction time for random pixel corruption and td the time
for the data-dependent corrupted pixels. Similarly, the ratio Δδ was calculated as
Δδ = 100(δu/δd), where δu was the difference between the original and recon-
structed images for random pixel corruption, and δd was the same difference for
the data-dependent pixel corruption.
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Table 4

The results of reconstruction of Lenna, if the data-dependent pixel removal is used

Method th nc nc (%) t(s) Δt (%) δ Δδ (%)

w = 5, m = 3

Data 0.5 7222 2.94 0.219 −27.33 0.0492 237.44

Random − 0.1720 0.1167

Data 5 92, 690 37.72 1.3910 − 8.59 1.2811 137.23

Random − 1.2810 1.7581

Data 20 159, 069 64.73 2.0480 − 0.79 3.1853 116.83

Random − 2.0320 3.7214

w = 7, m = 3

Data 0.5 6687 2.72 0.1560 0.00 0.0501 211.65

Random − 0.1560 0.1061

Data 5 83, 517 33.98 1.2030 0.00 1.2201 128.11

Random − 1.2030 1.5630

Data 20 154, 517 62.87 1.8440 3.30 3.1694 111.89

Random − 1.9070 3.5462

w = 4, m = 2

Data 0.5 3983 1.62 0.1250 −14.68 0.0244 265.5

Random − 0.1090 0.0649

Data 5 68, 674 27.94 1.0620 − 4.53 0.8059 154.55

Random − 1.0160 1.2456

Data 20 119, 438 48.60 1.5630 5.62 2.1945 110.91

Random − 1.6560 2.4340

5. Discussion

The results from the first experiment show that the different Radial-basis functions have
very little influence on the reconstruction time and the quality of image reconstruction.
Therefore, the function φ(r) = r2 log r was applied during the rest of the experiments, as
used elsewhere (Savchenko et al., 2002; Kojekin and Savchenko, 2002; Uhlíř and Skala,
2006).

The results listed in Tables 2 and 3 show that when the processing-circle was used, the
reconstruction time was considerably reduced (from 25.6% up to 44% and from 27.2% up
to 45.4%, respectively). This percentage depended on the square-size and the noise-ratio.
Both methods needed more time when the noise ratio was higher. But, the processing-
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Table 5

The results of reconstruction for various testing images

Image Method nc nc(%) t(s) Δt (%) δ Δδ (%)

th = 20, w = 5, m = 3

Lenna Data 159, 069 64.73 2.048 − 0.78 3.1853 116.83

Random 2.032 3.7214

Baboon Data 118, 940 49.55 1.8280 3.39 6.3916 130.45

Random 1.8900 8.3379

Pepper Data 173, 673 66.25 2.7180 −10.89 3.6517 115.41

Random 2.4220 4.2143

th = 10, w = 5, m = 2

Lenna Data 98, 827 40.21 1.6720 − 6.58 1.5411 123.62

Random 1.5620 1.9051

Baboon Data 54, 315 22.63 1.0630 −10.35 2.2595 155.80

Random 0.9530 3.5203

Pepper Data 114, 422 43.65 1.8280 − 3.39 2.1859 116.73

Random 1.7660 2.5515

circle was relatively less demanding. The experiments showed that the image itself had a
negligible effect on the computational time. It could be concluded, that regardless of the
image, the processing time is always significantly lower than if the processing-square is
used without spoiling the quality of image reconstruction.

Tables 4 and 5 present the results of the image reconstruction when using the data-
dependent pixel corruption. After the reconstruction, the difference between the original
and the reconstructed image was smaller than when using the random pixel corruption.
The lower threshold values caused the reconstruction time to increase, but the difference
between the original and the reconstructed images was smaller. In contrast, the recon-
struction time decreased with higher threshold values and the difference was greatest
between the original and reconstructed images.

Table 6 shows the results of the comparison between the data-dependent pixel cor-
ruption approach using the processing-circle and the random pixel corruption using the
processing-square. It can be seen that the reconstruction time of our method was shorter.
Similarly, the differences between the original and reconstructed images were smaller
when using our approach. Therefore, a combination of the processing-circle approach
and data-dependent corruption reduces both – the reconstruction time and the difference
between an original and a reconstructed image.
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Fig. 5. (a) The photograph of Lenna with 64.73% randomly corrupted pixels; (b) reconstructed image from
corrupted image (a); (c) the corrupted Lenna with 64.73% data-dependently corrupted pixels; (d) the results of
reconstruction, if the corrupted image in (c) is used.
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Fig. 6. Reconstruction of data-dependently corrupted pixel (th = 20, w = 5, m = 3): (a) the photograph
of Baboon with 49.55% data-dependently corrupted pixels; (b) reconstructed image from corrupted image (a);
(c) the photograph of Pepper with 66.25% data-dependently corrupted pixels; (d) the results of reconstruction,
if the corrupted image in (c) is used.
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Fig. 7. Reconstruction of data-dependently corrupted pixel (th = 10, w = 5, m = 2): (a) the photograph
of Baboon with 22.63% data-dependently corrupted pixels; (b) reconstructed image from corrupted image (a);
(c) the photograph of Pepper with 43.65% data-dependently corrupted pixels; (d) the results of reconstruction,
if the corrupted image in (c) is used.
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Table 6

The comparison between the data-dependent pixel corruption approach using the processing-circle and the
random pixel corruption using the processing-square

Method th nc nc (%) t(s) Δt (%) δ Δδ (%)

w = 5, m = 3

Data/circle 2 38, 833 15.80 0.75 6.25 0.3577 184.79

Random/square − 0.80 0.6610

Data/circle 15 151, 058 61.47 1.38 38.9 2.8666 116.52

Random/square − 2.26 3.3402

Data/circle 30 167, 317 68.08 1.66 33.3 3.6421 109.13

Random/square − 2.49 3.9747

6. Conclusion

An efficient modification of a method for reconstructing raster images with deliberately
corrupted pixels is presented. Instead of the processing-square, we have proposed the
processing-circle. The reconstruction time has been significantly reduced without affect-
ing the quality of the reconstructed image. In continuation, a simple data-dependent ap-
proach for pixel corruption is also proposed. Those areas within the image that have
similar pixel values have been corrupted more intensively. We have shown that a combi-
nation of the processing-circle and data-dependent pixel corruption gives superior results
regarding the time needed for the reconstruction and the quality of the reconstructed im-
age.
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Efektyvi skaitmenini ↪u vaizd ↪u rekonstrukcija esant tyčiniam vaizdo
tašk ↪u sugadinimui

Bogdan LIPUŠ, Borut ŽALIK

Šiame straipsnyje pristatomas naujas metodas, gebantis rekonstruoti tyčia sugandintus skait-
meninio rastrinio vaizdo taškus. Pristatomas metodas yra greitesnis lyginant su kitais, kadangi,
skirtingai nei kiti metodai, šis naudoja skritulio, o ne kvadrato formos rekonstrukcin↪i element ↪a.
Autoriai straipsnyje atskleidžia, kad pakeistus rekonstrukcinio elemento kvadrato form ↪a ↪i skritulio
rekonstrukcijos kokybė dėl to nenukenčia. Vaizdo rekonstrukcijos kokybė papildomai gerinama
analizuojant pradinio vaizdo tašk ↪u sugadinimo pobūd↪i. Straipsnyje parodyta, kad skritulio formos
rekonstrukcinis elementas ir žinios apie tašk ↪u sugadinim ↪a leidžia pagreitinti vaizdo rekonstrukcijos
proces ↪a bei sumažina klaidingai atstatyt ↪u skaitmeninio vaizdo tašk ↪u kiek↪i.




