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Abstract. Key-insulated cryptography is an important technique to protect private keys in identity-
based (IB) cryptosytems. Despite the flurry of recent results on IB key-insulated encryption
(IBKIE) and signature (IBKIS), a problem regarding the security and efficiency of practicing
IBKIE and IBKIS as a joint IB key-insulated signature/encryption scheme with a common set
of parameters and keys remains open. To deal with the above question, we propose an identity-
based key-insulated signcryption (IBKISC) scheme. Compared with the Sign-then-Encrypt (StE)
and Encrypt-then-Sign (EtS) using IBKIE and IBKIS in the standard model, our proposed IBKISC
scheme is the fastest with the shortest ciphertext size.
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1. Introduction

In CRYPTO 1984, Shamir (1984) introduced a novel cryptography primitive named an
identity-based cryptosystem in order to remove public key certificates. Since then, many
identity-based encryption and signature schemes have been proposed. However, none
of them are fully functioning until Boneh and Franklin put forward an identity-based
encryption based on the Weil pairing over elliptic curves (Boneh, 2001).

Dodis et al. (2002) introduced a key insulation mechanism, which can protect private
keys in public key cryptosystems. In a key-insulated cryptosystem, a physically-secure
but computationally-limited device, named a helper, is involved. A private key is split
into two parts: a temporary private key hold by the user and a helper key stored in the
helper. The key-insulated cryptosystem refreshes the temporary private keys at discrete
time periods via interaction between the user and the helper, and the public key remains
unchanged throughout the lifetime of the system. A compromise of some periods of a key-
insulated cryptosystem leaves the remaining time periods unharmed. Besides, a scheme



28 J. Chen et al.

is called strongly key-insulated when adversaries corrupting the helper remain unable to
perform private key operations on behalf of the user.

Privacy and authenticity are two of the most important aims offered by cryptogra-
phy. Encryption and signature can be used to achieve these aims. Zheng (1997) proposed
a primitive called signcryption in order to combine encryption and signature. A sign-
cryption scheme can be more efficient than a composition of an encryption scheme and
a signature scheme. In this paper, we propose an identity-based key-insulated signcryp-
tion (IBKISC) scheme.

1.1. Our Contributions

In this paper, we give a formal definition and security model for identity-based key-
insulated signcryption (IBKISC) schemes, and then we propose an IBKISC scheme from
bilinear pairings which is provably secure in the standard model. To the best of our knowl-
edge, this is the first IBKISC scheme up to now.

1.2. Related Work

Several identity-based signcryption (IBSC) schemes (Barreto, 2005; Boyen, 2003; Chen,
2005; Chow, 2003; Malone-Lee, 2002; Nalla, 2003; Yuen, 2005) have been proposed so
far. All the above schemes are provably secure in the random oracle model. Recently, Yu
et al. (2009) put forward an identity-based signcryption scheme without random oracles.
Then, Jin et al. (2010) improved it.

In identity-based key-insulated scenarios, identity-based hierarchical strongly key-
insulated encryption was introduced by Hanaoka et al. (2005). Then, Zhou et al. (2006)
put forward an identity-based key-insulated signature (IBKIS) scheme. However, their
scheme is not strongly key-insulated. Weng et al. re-formalized the definition and security
notions for IBKIS schemes and proposed a strongly key-insulated and perfectly key-
insulated scheme (Weng, 2006). Then an IBKIS scheme without random oracles was
given in Weng (2008).

1.3. Organization

In the upcoming sections, we first recall some preliminaries for an IBKISC scheme. Sec-
tions 3 and 4 give the syntax definition and security notions of the scheme respectively.
Our scheme and its security are analyzed in Sections 5 and 6 repectively. We compare
our IBKISC scheme with the related schemes in Section 7. We draw our conclusions in
Section 8.

2. Preliminaries

Throughout this paper, we let Zp denote the set {0, 1, 2, . . . , p − 1} and Z∗
p denote

Zp\{0}. In addition, we often equate a user with her/his identity u.
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2.1. Bilinear Pairings

Our IBKISC scheme uses a bilinear map, which is often called a “pairing”. We describe
bilinear maps and related mathematics in a more general format here.

Let G and GT be two cyclic multiplicative groups with the same prime order p.
Let e: G × G → GT be a pairing which satisfies the following conditions:

• Bilinear: For all g1, g2 ∈ G and for all a, b ∈ Z∗
p , we have e(ga

1 , gb
2) = e(g1, g2)ab.

• Non-degenerate: There exists g1, g2 ∈ G such that e(g1, g2) �= 1.
• Computable: There is an efficient algorithm to compute e(g1, g2) for all g1, g2 ∈ G.

2.2. Decisional Bilinear Diffie–Hellman (DBDH) Assumption

DEFINITION 1. Let G and GT be two cyclic multiplicative groups with the same prime
order p, and e: G × G → GT be a bilinear pairing. Let a, b, c ∈ Zp be chosen at random
and g be a generator of G. The DBDH assumption (Waters, 2005) is that no probabilis-
tic polynomial-time algorithm B can distinguish the tuple (g, A = ga, B = gb, C =
gc, e(g, g)abc) ∈ G4 × GT from the tuple (g, A = ga, B = gb, C = gc, e(g, g)z) with
more than a negligible advantage.

2.3. Computational Diffie–Hellman (CDH) Assumption

DEFINITION 2 (Computational Diffie–Hellman (CDH) problem). The CDH problem is,
given g, ga, gb ∈ G for unknown a, b ∈ Z∗

p , to compute gab.

DEFINITION 3. We say that the (t, ε)-CDH assumption holds in a group G if no algo-
rithm running in time at most t can solve the CDH problem in G with probability at
least ε.

3. Syntax of Identity-Based Key-Insulated Signcryption

An IBKISC scheme consists of six algorithms:

• Setup: Given a security parameter κ, the private key generator (PKG) uses this key
generation algorithm to generate a set of public parameters, cp, and a master secret
key msk.

• Extract: Given a user identity u, the PKG uses this key extraction algorithm to
compute an initial private key du,0 and a helper key HKu corresponding to u. The
helper key is kept by the helper and the user u keeps the initial private key.

• HelperUpt: Given period indices t′ and t, an identity u and its helper key HKu, the
helper uses this helper key-update algorithm to compute the key-update informa-
tion for u from period t′ to period t, UIu,t′,t.

• UserUpt: Given an identity u, the temporary private key du,t′ corresponding to u
and t′, and the key-update information for u from period t′ to period t, UIu,t′,t, the
user uses this user key-update algorithm to compute the temporary private key du,t

corresponding to u and t.
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• Signcrypt: In period t, to send a message m to Bob whose identity is b, Alice with
identity a obtains a ciphertext (t, σ) by computing Signcrypt(t,m, da,t,b).

• Unsigncrypt: After Bob receives the ciphertext (t, σ), he computes Unsigncrypt

((t, σ), db,t) and obtains the message m or the symbol ⊥ indicating that the ci-
phertext is invalid.

4. Security Notions

In this subsection, we formalize the security notions for IBKISC schemes. This is based
on the security definitions in key-insulated cryptography (Dodis, 2002) and IBSC systems
(Boyen, 2003).

4.1. Key-Insulated Security

DEFINITION 4. For an IBKISC scheme, its semantic security against an adaptive cho-
sen ciphertext attack under key-exposure (IND-IBKISC-KI-CCA) can be defined via the
following game between an adversary A and a challenger B:

• Setup: B runs algorithm Setup to generate a set of public parameters, cp, and a
master secret key msk. B gives cp to A and keeps msk to itself.

• Phase 1: A issues a series of queries in an adaptive fashion. The following queries
are allowed.

− Extract Queries. Upon receiving a user’s identity u, B runs algorithm Extract

and obtains an initial private key du,0 and a helper key HKu. B then sends
du,0 and HKu to A.

− Temporary Private Key Queries. Upon receiving a tuple 〈u, t〉 consisting of
identity u and period t, B responds by running algorithms HelperUpt and
UserUpt to generate du,t. B then returns it to A.

− Signcrypt Queries. Upon receiving a tuple 〈m,a,b, t〉 consisting of a mes-
sage m, two identities, a and b, and period t, B generates a ciphertext (t, σ).

− Unsigncrypt Queries. Upon receiving a tuple 〈(t, σ),a,b〉 consisting of a ci-
phertext (t, σ) and two identities, a and b, B outputs the decryption outcome
and the verification result.

• Challenge: At the end of Phase 1, A outputs two identities, a∗ and b∗, a period
index t∗ and two equal-length messages, m0 and m1. A knows da∗,t∗ and must not
have made an extract query on b∗. B picks a random bit γ ∈ {0, 1} and computes
Signcrypt(t∗, mγ , da∗,t∗ ,b∗) to obtain (t∗, σ∗). B sends (t∗, σ∗) to A.

• Phase 2: A continues to issue additional queries as in Phase 1, and B responds
these queries as in Phase 1.

• Guess: Eventually, A outputs γ′ as the guess of γ. B ignores the answer. A wins
the game if γ′ = γ.
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A’s advantage is defined to be

Adv IND-IBKISC -KI -CCA(A) =
∣∣∣∣Pr[γ′ = γ] − 1

2

∣∣∣∣.

We say that adversary A wins in this game if the following conditions are satisfied: (1) the
target identity b∗ does not appear in extraction queries; (2) 〈b∗, t∗ 〉 does not appear in
temporary private key queries; (3) the unsigncrypt query for ciphertext (t∗, σ∗) is disal-
lowed; (4) A can not obtain the sender Alice’s identity; (5) the sender is honest (i.e., the
sender does not launch inner attacks).

DEFINITION 5. We say that an IBKISC scheme in the standard model is said to be exis-
tentially unforgeable against chosen-message attacks under key-exposure (EU-IBKISC-
KI-CMA) if no PPT adversary A has a non-negligible advantage against a challenger B
in the following game:

• Setup: The same as Definition 4.
• Queries: A issues queries to the same oracles as those in Definition 4.
• Forgery: Eventually, A outputs a tuple ((t∗, σ∗),a∗,b∗) (i.e., a tuple that was

not produced by the signcryption oracle) and wins the game if the result of
Unsigncrypt((t∗, σ∗),a∗, db∗,t∗ ) is not the ⊥ symbol.

A’s advantage is defined to be

AdvEU -IBKISC -KI -CMA(A)

= Pr[A wins the EU -IBKISC -KI -CMA game ].

We say that adversary A wins in this game if the following conditions are satisfied:
(1) the target identity a∗ does not appear in extraction queries; (2) 〈a∗, t∗ 〉 does not appear
in temporary private key queries; (3) (t∗, σ∗) should not be computed by signcrypt queries
oracle; (4) A can not obtain the sender Alice’s identity; (5) the sender is honest (i.e., the
sender does not launch inner attacks).

4.2. Strongly Key-Insulated Security

DEFINITION 6. For an IBKISC scheme, its semantic security against an adaptive chosen
ciphertext attack under strong key exposure (IND-IBKISC-SKI-CCA) can be defined via
the following game between an adversary A and a challenger B:



32 J. Chen et al.

• Setup: The same as Definition 4.
• Phase 1: A issues a series of queries in an adaptive fashion. The following queries

are allowed.

− Extract Queries. The same as Definition 4.
− Helper Key Queries. Upon receiving a user’s identity u, B runs algorithm

Extract to generate HKu and sends it to A.
− Signcrypt Queries. The same as Definition 4.
− Unsigncrypt Queries. The same as Definition 4.

• Challenge: The same as Definition 4.
• Phase 2: The same as Definition 4.
• Guess: The same as Definition 4.

A’s advantage is defined to be

Adv IND-IBKISC -SKI -CCA(A) =
∣∣∣∣Pr

[
u′ = u

]
− 1

2

∣∣∣∣.
We say that adversary A wins in this game if the following conditions are satisfied:

(1) the target identity b∗ does not appear in extraction queries; (2) An unsigncrypt query
for ciphertext (t∗, σ∗) is disallowed; (3) A can not obtain the sender Alice’s identity;
(4) the sender is honest (i.e., the sender does not launch inner attacks).

DEFINITION 7. We say that an IBKISC scheme in the standard model is said to be ex-
istentially unforgeable against chosen-message attacks under strong key-exposure (EU-
IBKISC-SKI-CMA) if no PPT adversary A has a non-negligible advantage against a
challenger B in the following game:

• Setup: The same as Definition 4.
• Queries: A issues queries to the same oracles as those in Definition 6.
• Forgery: The same as Definition 5.

A’s advantage is defined to be

AdvEU -IBKISC -SKI -CMA(A)

= Pr[A wins the EU -IBKISC -SKI -CMA game].

We say that adversary A wins in this game if the following conditions are satisfied:
(1) the target identity a∗ does not appear in extraction queries; (2) (t∗, σ∗) should not be
computed by signcrypt queries oracle; (3) A can not obtain the sender Alice’s identity;
(4) the sender is honest (i.e., the sender does not launch inner attacks).

5. Our Construction

We will use the notation x
U← S as a short-hand for choosing a value x uniformly at

random from the set S. Inspired by the cryptographic applications of pseudo-random
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function (PRF) (Goldreich, 1985), we also use a PRF F such that given a κ-bit seed
s and a κ-bit argument x, it outputs a κ-bit string Fs(x). Let a bitstring of length nu

represent an identity for some nu ∈ Z. Let a bitstring of length nm represent a message
for some nm ∈ Z. Our construction follows.

• Setup: Choose groups G and GT of prime order p of size κ such that an ad-
missible pairing e: G × G → GT can be constructed and pick a generator g

of G. Let Hu: {0, 1}∗ → {0, 1}nu be a collision-resistant hash function. Let
Hv: {0, 1}nm → {0, 1}nv be a collision-resistant hash function for some nv ∈ Z.

Then, pick a secret α
U← Zp, compute g1 = gα and pick g2

U← G. Let
Y = e(g1, g2). Next, define Γ to be a subset of {0, 1}nu+nm+nv with p elements,
and define V : Γ → GT to be a bijective function while V −1 is its inverse map-

ping. In addition, pick elements u′, m′ U← G and vectors �U = (ui), �M = (mi)
of length nu and nv , respectively, whose entries are random elements from G. The
public parameters and the master secret key are

cp =
(
G, GT , e, g, g1, g2, Y, u′,

−→
U , m′,

−→
M, Hu, Hv, V

)
, msk = gα

2 .

• Extract: Let u be a bitstring of length nu representing an identity and let u[i] be the
ith bit of u. Define Uu ⊆ {1, . . . , nu} to be the set of indices i such that u[i] = 1.
Let wu,0 be the output of Hu(u‖0) and let wu,0[i] be the ith bit of wu,0. Define
Wu,0 ⊆ {1, . . . , nu}to be the set of indices i such that wu,0[i] = 1. Pick a helper

key HKu
U← {0, 1}κ and compute ku,0 = FHKu(0). To construct the initial private

key, du,0, of the identity u, pick ru
U← Zp, and compute:

du,0 =
(
d

〈1〉
u,0, d

〈2〉
u,0, d

〈3〉
u,0

)

=
(

gα
2

(
u′

∏
i∈Uu

ui

)ru(
u′

∏
i∈Wu,0

ui

)ku,0

, gku,0 , gru

)
.

Therefore, the sender Alice’s helper key is HKa and her initial private key is

da,0 =
(
d

〈1〉
a,0, d

〈2〉
a,0, d

〈3〉
a,0

)

=
(

gα
2

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,0

ui

)ka,0

, gka,0 , gra

)
.

The receiver Bob’s helper key is HKb and his initial private key is

db,0 =
(
d

〈1〉
b,0, d

〈2〉
b,0, d

〈3〉
b,0

)

=
(

gα
2

(
u′

∏
i∈Ub

ui

)rb(
u′

∏
i∈Wb,0

ui

)kb,0

, gkb,0 , grb

)
.



34 J. Chen et al.

• HelperUpt: As in the Extract algorithm, let wu,t be the output of Hu(u‖t), let
wu,t[i] be the ith bit of wu,t and define Wu,t ⊆ {1, . . . , nu}to be the set of indices
i such that wt[i] = 1. Likewise, let wu,t′ be the output of Hu(u‖t′), let wu,t′ [i]
be the ith bit of wu,t′ and define Wu,t′ ⊆ {1, . . . , nu}to be the set of indices i

such that wu,t′ [i] = 1. Compute ku,t = FHKu(t) and ku,t′ = FHKu(t′). To con-
struct the key-update information for identity u from period t′ to period t, UIu,t′,t,
compute:

UIu,t′,t =
(
UI〈1〉

u,t′,t, UI〈2〉
u,t′,t

)

=
((

u′
∏

i∈Wu,t

ui

)ku,t/(
u′

∏
i∈Wu,t′

ui

)ku,t′

, gku,t

)
.

Likewise, Alice and Bob’s key-update information from t′ to t are

UIa,t′,t =
(
UI〈1〉

a,t′,t, UI〈2〉
a,t′,t

)

=
((

u′
∏

i∈Wa,t

ui

)ka,t/(
u′

∏
i∈Wa,t′

ui

)ka,t′

, gka,t

)
,

UIb,t′,t =
(
UI〈1〉

b,t′,t, UI〈2〉
b,t′,t

)

=
((

u′
∏

i∈Wb,t

ui

)kb,t/(
u′

∏
i∈Wb,t′

ui

)kb,t′

, gkb,t

)
.

• UserUpt: Parse the temporary private key for identity u and period t′ as (du,t′ =
d

〈1〉
u,t′ , d

〈2〉
u,t′ , d

〈3〉
u,t′ ). Parse the key-update information for identity u from period t′

to period t as UIu,t′,t = (UI〈1〉
u,t′,t, UI〈2〉

u,t′,t). To construct the temporary private key
for identity u and period t, du,t, the user u computes:

du,t =
(
d

〈1〉
u,t′ · UI〈1〉

u,t′,t, UI〈2〉
u,t′,t, d

〈3〉
u,t′

)
.

Note that at time period t, du,t is always set to be

du,t =
(

gα
2

(
u′

∏
i∈Uu

ui

)ru(
u′

∏
i∈Wu,t

ui

)ku,t

, gku,t , gru

)
.

Likewise, Alice and Bob’s temporary private keys for period t are

da,t =
(

gα
2

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,t

ui

)ka,t

, gka,t , gra

)
,

db,t =
(

gα
2

(
u′

∏
i∈Ub

ui

)rb(
u′

∏
i∈Wb,t

ui

)kb,t

, gkb,t , grb

)
.
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• Signcrypt: Let m ∈ {0, 1}nm be a bitstring representing a message. In period t, to
signcrypt a message m to Bob, Alice parses her temporary private key as da,t =

(d〈1〉
a,t , d

〈2〉
a,t , d

〈3〉
a,t ), picks rm, r′

t
U← Z∗

p , lets rt = r′
t + ka,t, picks r U← {0, 1}nv such

that a‖m‖r ∈ Γ . Let Mm ⊆ {1, . . . , nv } be the set of indices j for which the jth
bit of Hv(m) is different from that of r, i.e., Mm = {j ∈ Z: Hv(m)[j] ⊕ r[j] =
1}. Then, Alice computes:

σ〈1〉 = Y rm · V (a‖m‖r), σ〈2〉 = grm ,

σ〈3〉 =
(

u′
∏

i∈Ub

ui

)rm

, σ〈4〉 =
(

w′
∏

i∈Wb,t

wi

)rm

,

σ〈5〉 = d
〈1〉
a,t ·

(
u′

∏
i∈Wa,t

ui

)r′
t

·
(

m′
∏

i∈Mm

mi

)rm

= gα
2

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,t

ui

)r′
t+ka,t

(
m′

∏
i∈Mm

mi

)rm

= gα
2

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,t

ui

)rt
(

m′
∏

i∈Mm

mi

)rm

,

σ〈6〉 = d
〈2〉
a,t · gr′

t = gr′
t+ka,t = grt , σ〈7〉 = d

〈3〉
a,t = gra .

Alice outputs a ciphertext (t, σ) = (t, (σ〈1〉, σ〈2〉, σ〈3〉, σ〈4〉, σ〈5〉, σ〈6〉, σ〈7〉)) and
sends it to Bob.

• Unsigncrypt: Bob receives the ciphertext (t, σ) = (t, (σ〈1〉, σ〈2〉, σ〈3〉, σ〈4〉, σ〈5〉,

σ〈6〉, σ〈7〉)), parses his temporary private key as db,t = (d〈1〉
b,t, d

〈2〉
b,t, d

〈3〉
b,t) and de-

crypts the ciphertext as follows.

1. Compute V −1(σ〈1〉 · e(d〈3〉
b,t, σ

〈4〉)e(d〈2〉
b,t, σ

〈3〉)/e(d〈1〉
b,t, σ

〈2〉)) → a‖m‖r.
2. Generate {j ∈ Z: Hv(m)[j] ⊕ r[j] = 1} → Mm.
3. Accept the message if the following equality holds:

e
(
σ〈5〉, g

)
= Y · e

(
σ〈7〉, u′

∏
i∈Ua

ui

)
e

(
σ〈6〉, u′

∏
i∈Wa,t

ui

)

× e

(
σ〈2〉, m′

∏
i∈Mm

mi

)
.

It is easy to see that the above Unsigncrypt algorithm is consistent.

6. Proof of Security

Theorem 1. Our IBKISC scheme is IND-IBKISC-KI-CCA secure in the standard model,
assuming that the DBDH assumption holds in groups (G, GT ), the hash function H

is collision-resistant, F is a pseudo-random function and V is a bijective function.
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Concretely, if there exists an IND-IBKISC-KI-CCA adversary A that is able to dis-
tinguish two valid ciphertexts during the game defined in Definition 4 with advantage
at least ε when running in time at most t and asking at most qe extract queries, qt

temporary private key queries, qs signcryption queries and qu unsigncryption queries,
there exists a challenger that can solve an instance of the DBDH problem in time
t′ < t + O((qe + qs + qt + qu)nutm + (qe + qt + qs)te + qutp) with advantage

ε′ >
ε

54qs(qe + qt + qs)2(nu + 1)2(nv + 1)
,

where tm, te and tp denote the time for a multiplication, an exponentiation in G and a
pairing computation respectively.

Proof. We build a simulator B running in polynomial time that solves the DBDH
problem with a non-negligible advantage ε′. B will take BDH challenge (g, A = ga,
B = gb, C = gc, Z). B simulates a challenger for A in the following way:

• Setup: B sets lu = 3(qe+qt+qs)
2 and lm = 2qs, and randomly chooses two integers

ku and km, with 0 < ku < nu and 0 < km < nv . We will assume that lu(nu+1) <

p and lm(nv +1) < p for the given values of qe, qs, nu and nv . The simulator then

chooses x′ U← Zlu and a vector �X = (xi) of length nu with xi
U← Zlu for all i.

Likewise, it chooses z′ U← Zlm and a vector �Z = (Zj) of length nv , with zj
U← Zlm

for all j. Lastly, B chooses y′, w′ U← Zp and two vectors, �Y = (yi) and �W = (wj),

of length nu and nv , respectively, with yi, wj
U← Zp for all i and j. To make the

notation easier to follow, the following two pairs of functions are defined for an
identity u and a message m‖r respectively:

I(u) = x′ +
∑
i∈Uu

xi − luku and J(u) = y′ +
∑
i∈Uu

yi, (1)

K(m‖r) = z′ +
∑

j∈Mm

zj − lmkm and L(m‖r) = w′ +
∑

j∈Mm

wj . (2)

For wu,t, the output of Hu(u‖t), we have

I(wu,t) = x′ +
∑

i∈Wu,t

xi − luku and J(wu,t) = y′ +
∑

i∈Wu,t

yi.

Now, B constructs a set of public parameters for the IBKISC scheme by making
the following assignments:

g1 = ga, g2 = gb,

u′ = g−luku+x′

2 gy′
, ui = gxi

2 gyi , 1 < i < nu,

m′ = g−lmkm+z′

2 gw′
, mj = g

zj

2 gwj , 1 < j < nv.
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Note that these public parameters will have the same distribution as in the game
between the challenger and A. Furthermore, this assignment means that the master
secret will be gα

2 = ga
2 = gab and that for any identity u and message m‖r, the

equations

u′
∏

i∈Uu

ui = g
I(u)
2 gJ(u) and m′

∏
j∈Mm

mj = g
K(m‖r)
2 gL(m‖r)

hold. Hence, the equation

u′
∏

i∈Wu,t

ui = g
I(wu,t)
2 gJ(wu,t)

holds. All public parameters are passed to A.
• Phase 1: When running the adversary, extract, temporary private key, signcryption

and unsigncryption queries can occur. B answers these in the following way:

− Extract Queries. B maintain two lists, HK list and rlist, which are initially
empty. Consider a query for the helper key and the initial private key of an
identity u. B searches HK list for tuple (u, HKu) (if HK list does not contain

this tuple, it chooses HKu
U← {0, 1}κ and adds (u, HKu) into HK list). B

does not know the master secret, but assuming I(u) �= 0 mod p, it can con-
struct an initial private key by searching rlist for tuple (u, ru) (if rlist does not

contain this tuple, it chooses ru
U← Zp and adds (u, ru) into rlist), computing

ku,0 = FHKu(0) and setting the initial private key du,0 = (d〈1〉
u,0, d

〈2〉
u,0, d

〈3〉
u,0)

as follows.

d
〈1〉
u,0 = g

−J(u)/I(u)
1

(
u′

∏
i∈Uu

ui

)ru(
u′

∏
i∈Wu,0

ui

)ku,0

,

d
〈2〉
u,0 = gku,0 , d

〈3〉
u,0 = g

−1/I(u)
1 gru .

Writing r̂u = ru − a/I(u), it can be verified that defining du,0 in this manner
yields a valid initial private key of u. Therefore, to A, all initial private keys
computed by B will be indistinguishable from the keys generated by a true
challenger. If, on the other hand, I(u) = 0 mod p, the above computation
cannot be performed and the simulation will abort. To make the analysis of
the simulation easier, we will force the simulation to abort whenever I(u) =
0 mod lu. Given the assumption lu(nu +1) < p which implies 0 < luku < p

and 0 < x′ +
∑

i∈Uu
xi < p, it is easy to see that I(u) = 0 mod p implies

that I(u) = 0 mod lu according to (1). Hence, I(u) �= 0 mod lu implies
I(u) �= 0 mod p, so the former condition will be a sufficient requirement to
ensure that an initial private key for u can be constructed.

− Temporary Private Key Queries. Consider a query for the temporary private
key of an identity u and period t. B does not know the master secret, but
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assuming that I(u) ≡ I(wu,t) ≡ 0 mod p does not hold, it can construct
a temporary private key by searching rlist for tuple (u, ru) (if rlist does not

contain this tuple, it chooses ru
U← Zp and adds (u, ru) into rlist), picking

ku,t
U← Z∗

p (B can freely define ku,t since ku,t is the output of a PRF and
A does not know HKu) and computing the temporary private key du,t =
(d〈1〉

u,t, d
〈2〉
u,t, d

〈3〉
u,t) as follows.

* If I(u) �= 0 mod p,

d
〈1〉
u,t = g

−J(u)/I(u)
1

(
u′

∏
i∈Uu

ui

)ru(
u′

∏
i∈Wu,t

ui

)ku,t

,

d
〈2〉
u,t = gku,t , d

〈3〉
u,t = g

−1/I(u)
1 gru ;

* else if I(wu,t) �= 0 mod p,

d
〈1〉
u,t = g

−J(wu,t)/I(wu,t)
1

(
u′

∏
i∈Uu

ui

)ru(
u′

∏
i∈Wu,t

ui

)ku,t

,

d
〈2〉
u,t = g

−1/I(wu,t)
1 gku,t , d

〈3〉
u,t = gru .

Therefore, to A, all temporary private keys computed by B will be indistin-
guishable from the keys generated by a true challenger. If, on the other hand,
I(u) ≡ I(wu,t) ≡ 0 mod p, the above computation cannot be performed and
the simulation will abort. To make the analysis of the simulation easier, we
will force the simulation to abort whenever I(u) ≡ I(wu,t) ≡ 0 mod lu. As
Extract Queries, it is easy to see that I(u) ≡ I(wu,t) ≡ 0 mod lu implies that
I(u) ≡ I(wu,t) ≡ 0 mod p. Hence, I(u) �= 0 mod p or I(wu,t) �= 0 mod p

implies I(u) �= 0 mod lu or I(wu,t) �= 0 mod lu, so the former condition
will be a sufficient requirement to ensure that a temporary private key for u
can be constructed.

− Signcrypt Queries. Upon receiving a signcrypt query 〈m,a,b, t〉, B aborts if
I(a) ≡ I(wa,t) ≡ 0 mod p. Otherwise, B searches rlist for tuple (a, ra) (if

rlist does not contain this tuple, it chooses ra
U← Zp and adds (a, ra) into

rlist), picking ka,t
U← Z∗

p and computes the temporary private key da,t =

(d〈1〉
a,t , d

〈2〉
a,t , d

〈3〉
a,t ) as follows.

* If I(a) �= 0 mod p,

d
〈1〉
a,t = g

−J(a)/I(a)
1

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,t

ui

)ka,t

,

d
〈2〉
a,t = gka,t , d

〈3〉
a,t = g

−1/I(a)
1 gra ;
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* else if I(wa,t) �= 0 mod p,

d
〈1〉
a,t = g

−J(wa,t)/I(wa,t)
1

(
u′

∏
i∈Ua

ui

)ra(
u′

∏
i∈Wa,t

ui

)ka,t

,

d
〈2〉
a,t = g

−1/I(wa,t)
1 gka,t , d

〈3〉
a,t = gra .

Then, B performs the Signcrypt algorithm to obtain the ciphertext (t, σ). As
Temporary Private Key Queries, to make the analysis of the simulation easier,
we will force the simulation to abort whenever I(a) ≡ I(wa,t) ≡ 0 mod lu.

− Unsigncrypt Queries. Upon receiving a unsigncrypt query 〈(t, σ),a,b〉,
B aborts if I(b) ≡ I(wb,t) ≡ 0 mod p. Otherwise, B searches rlist for tu-

ple (b, rb) (if rlist does not contain this tuple, it chooses rb
U← Zp and adds

(b, rb) into rlist), picking kb,t
U← Z∗

p and computes the temporary private

key db,t = (d〈1〉
b,t, d

〈2〉
b,t, d

〈3〉
b,t) as follows:

* If I(b) �= 0 mod p,

d
〈1〉
b,t = g

−J(b)/I(b)
1

(
u′

∏
i∈Ub

ui

)rb(
u′

∏
i∈Wb,t

ui

)kb,t

,

d
〈2〉
b,t = gkb,t , d

〈3〉
b,t = g

−1/I(b)
1 grb ;

* else if I(wb,t) �= 0 mod p,

d
〈1〉
b,t = g

−J(wb,t)/I(wb,t)
1

(
u′

∏
i∈Ub

ui

)rb(
u′

∏
i∈Wb,t

ui

)kb,t

,

d
〈2〉
b,t = g

−1/I(wb,t)
1 gkb,t , d

〈3〉
b,t = grb .

Then, B performs the Unsigncrypt algorithm to obtain the message m and the
verification result. As Temporary Private Key Queries, to make the analysis of
the simulation easier, we will force the simulation to abort whenever I(b) ≡
I(wb,t) ≡ 0 mod lu.

• Challenge: A next will submit a period index t∗, two messages m0,m1 ∈ GT and
two identities a∗,b∗ on which he wishes to challenge. B will flip a fair coin, γ,

and construct the signcryption ciphertext as follows. B picks r∗ U← {0, 1}nv such
that a∗ ‖mγ ‖r∗ ∈ Γ and generates {j ∈ Z: Hv(mγ)[j] ⊕ r∗[j] = 1} → Mm.
B will abort if I(b∗) = I(wb∗,t∗ ) = 0 mod p does not hold or I(a∗) �=
0 mod p ∧ I(wa∗,t∗ ) �= 0 mod p or I(a∗) = 0 mod p ∧ I(wa∗,t∗ ) = 0 mod p

or K(mγ ‖r∗) �= 0 mod p. Otherwise, B searches rlist for tuple (a∗, ra∗ ) (if

rlist does not contain this tuple, it chooses ra∗
U← Zp and adds (a∗, ra∗ ) into

rlist), picks ka∗,t∗
U← Z∗

p and sets the signcryption ciphertext as (t∗, σ∗) =
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(t∗, (σ∗ 〈1〉, σ∗ 〈2〉, σ∗ 〈3〉, σ∗ 〈4〉, σ∗ 〈5〉, σ∗ 〈6〉, σ∗ 〈7〉)), where

σ∗ 〈1〉 = ZV (a∗ ‖mγ ‖r∗), σ∗ 〈2〉 = C, σ∗ 〈3〉 = CJ(b∗), σ∗ 〈4〉 = CJ(wb∗ ,t∗ ).

If I(a∗) �= 0 mod p ∧ I(wa∗,t∗ ) = 0 mod p, set

σ∗ 〈5〉 = g
−J(a∗)/I(a∗)
1

(
u′

∏
i∈Ua∗

ui

)r∗
a
(

u′
∏

i∈Wa∗ ,t∗

ui

)ka∗ ,t∗

× CJ(wa∗ ,t∗ )CL(mγ ‖r∗),

σ∗ 〈6〉 = gka∗ ,t∗ , σ∗ 〈7〉 = g
−1/I(a∗)
1 gr∗

a .

If I(a∗) = 0 mod p
∧

I(wa∗,t) �= 0 mod p, set

σ∗ 〈5〉 = g
−J(wa∗ ,t)/I(wa∗ ,t∗ )
1

(
u′

∏
i∈Ua∗

ui

)r∗
a
(

u′
∏

i∈Wa∗ ,t∗

ui

)ka∗ ,t∗

× CJ(a∗)CL(mγ ‖r∗),

σ∗ 〈6〉 = g
−1/I(wa∗ ,t)
1 gka∗ ,t∗ , σ∗ 〈7〉 = gr∗

a .

Suppose that B was given a BDH tuple, that is Z = e(g, g)abc. Then we have

σ∗ 〈1〉 = e(g, g)abcV (a∗ ‖mγ ‖r∗) = e(g1, g2)cV (a∗ ‖mγ ‖r∗),

σ∗ 〈2〉 = gc,

σ∗ 〈3〉 = gcJ(b∗) =
(
g0
2gJ(b∗)

)c =
(
g

I(b∗)
2 gJ(b∗)

)c =
(

u′
∏

i∈Ub∗

ui

)c

,

σ∗ 〈4〉 = gcJ(wb∗ ,t) =
(
g0
2gJ(wb∗ ,t∗ )

)c =
(
g

I(wb∗ ,t∗ )
2 gJ(wb∗ ,t∗ )

)c
,

=
(

u′
∏

i∈Wb∗ ,t∗

ui

)c

.

If I(a∗) �= 0 mod p ∧ I(wa∗,t∗ ) = 0 mod p, let r̂a∗ = r∗
a − a/I(a∗)

and c′ = ka∗,t∗ + c. If I(a∗) = 0 mod p ∧ I(wa∗,t) �= 0 mod p, let
k̂a∗,t = ka∗,t∗ − a/I(wa∗,t∗ ) and c′ ′ = r∗

a + c. We see that (t∗, σ∗) is a valid
signcryption ciphertext of mγ . Otherwise, we have that Z is a random element
of GT . In that case the signcryption ciphertext will give no information about B’s
choice of γ.

• Phase 2: A issues the rest of queries as in Phase 1 with the restriction described in
Definition 4. B responds to these queries for A in the same way as Phase 1.

• Guess: Finally, the adversary A outputs a guess γ′ of γ. If γ′ = γ then B outputs
1 meaning Z = e(g, g)abc; otherwise, it outputs 0 meaning that Z is a random
element in GT .
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This completes the description of the simulation. The probability analysis is very similar
to Waters (2005).

Theorem 2. Our IBKISC scheme is EU-IBKISC-KI-CMA secure in the standard model,
assuming that the CDH assumption holds in groups G, the hash function H is collision-
resistant, F is a pseudo-random function and V is a bijective function. Concretely, if
there exists an EU-IBKISC-KI-CMA adversary A that is able to produce a forgery dur-
ing the game defined in Definition 5 with advantage at least ε when running in time at
most t and asking at most qe extract queries, qt temporary private key queries, qs sign-
cryption queries and qu unsigncryption queries, there exists a challenger that can solve
an instance of the CDH problem in time t′ < t + O((qe + qs + qt + qu)nutm + (qe +
qt + qs)te + qutp) with advantage

ε′ >
ε

27qs(qe + qt + qs)2(nu + 1)2(nv + 1)
,

where tm, te and tp denote the same quantities as in Theorem 1.

Proof. Suppose there exists an adversary, A, that can attack our scheme in the standard
model. We build a simulator B that solves the CDH problem. B will be given a group G,
a generator g and the elements ga and gb. To be able to use A to compute gab, B must
be able to simulate a challenger for A. Such a simulation can be created in the following
way:

• Setup: This algorithm is the same as that of Theorem 1 except that B assigns g1 =
ga and g2 = gb.

• Queries: Extraction Queries, Temporary Private Key Queries, Signcrypt Queries
and Unsigncrypt Queries are the same as those in the proof of Theorem 1.

• Forgery: Eventually, A returns two identities, a∗ and b∗, a forged ciphertext

(t∗, σ∗) =
(
t∗, (σ∗ 〈1〉, σ∗ 〈2〉, σ∗ 〈3〉, σ∗ 〈4〉, σ∗ 〈5〉, σ∗ 〈6〉, σ∗ 〈7〉)

)

on message m∗, some r∗ ∈ {0, 1}nv such that a∗ ‖m∗ ‖r∗ ∈ Γ , with the constraint
described in Definition 5. B generates {j ∈ Z: Hv(m∗)[j] ⊕ r∗[j] = 1} → Mm.
B outputs ⊥ and aborts if I(a∗) ≡ I(wa∗,t∗ ) ≡ K(m∗ ‖r∗) ≡ 0 mod p does not
hold. Otherwise, B can successfully derive gab as

σ∗ 〈5〉

σ∗ 〈7〉J(a∗)
σ∗ 〈6〉J(wa∗ ,t∗ )

σ∗ 〈2〉L(m∗ ‖r∗)

=
gα
2 (u′ ∏

i∈Ua
ui)ra(u′ ∏

i∈Wa,t
ui)rt(m′ ∏

i∈Mm
mi)rm

graJ(a∗)grtJ(wa∗ ,t∗ )grmL(m∗ ‖r∗)
= gab,

which is the solution to the given CDH problem.

Theorem 3. Our IBKISC scheme is IND-IBKISC-SKI-CCA secure in the standard
model, assuming that the DBDH assumption holds in groups (G, GT ), the hash function
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H is collision-resistant, F is a pseudo-random function and V is a bijective function.
Concretely, if there exists an IND-IBKISC-SKI-CCA adversary A that is able to distin-
guish two valid ciphertexts during the game defined in Definition 6 with advantage at
least ε when running in time at most t and asking at most qe extract queries, qs signcryp-
tion queries and qu unsigncryption queries, there exists a challenger that can solve an
instance of the DBDH problem in time t′ < t+O((qe+qs+qu)nutm+(qe+qs)te+qutp)
and asking at most qe extract queries, qs extract queries and extract queries with advan-
tage

ε′ >
ε

54qs(qe + qs)2(nu + 1)2(nv + 1)
,

where tm, te and tp denote the same quantities as in Theorem 1.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the standard model with advantage ε. We build a simulator B running in poly-
nomial time that solves the DBDH problem with a non-negligible advantage ε′. B will
take BDH challenge (g, A = ga, B = gb, C = gc, Z). To be able to use A to output
a guess, β′, as to whether the challenge is a BDH tuple, B must be able to simulate a
challenger for A. Such a simulation can be created in the following way:

• Setup: The same as Theorem 1.
• Phase 1: When running the adversary, extract, helper key, signcryption and unsign-

cryption queries can occur. B answers these in the following way:

− Extraction Queries, Signcrypt Queries and Unsigncrypt Queries are the same
as those in the proof of Theorem 1.

− Helper Key Queries. Consider a query for the helper key of an identity u. B
searches HK list for tuple (u, HKu) (if HK list does not contain this tuple, it

chooses HKu
U← {0, 1}κ and adds (u, HKu) into HK list).

• Challenge: The same as Theorem 1.
• Phase 2: A issues the rest of queries as in Phase 1 with the restriction described in

Definition 6. B responds to these queries for A in the same way as Phase 1.
• Guess: Finally, the adversary A outputs a guess γ′ of γ. If γ′ = γ then B outputs

1 meaning Z = e(g, g)abc; otherwise, it outputs 0 meaning that Z is a random
element in GT .

Theorem 4. Our IBKISC scheme is EU-IBKISC-SKI-CMA secure in the standard model,
assuming that the CDH assumption holds in groups G, the hash function H is collision-
resistant, F is a pseudo-random function and V is a bijective function. Concretely, if there
exists an EU-IBKISC-SKI-CMA adversary A that is able to produce a forgery during the
game defined in Definition 7 with with advantage at least ε when running in time at most
t and asking at most qe extract queries, qs signcryption queries and qu unsigncryption
queries, there exists a challenger that can solve an instance of the CDH problem in time
t′ < t + O((qe + qs + qu)nutm + (qe + qs)te + qutp) and asking at most qe extract
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queries, qs extract queries and extract queries with advantage

ε′ >
ε

27qs(qe + qs)2(nu + 1)2(nv + 1)
,

where tm, te and tp denote the same quantities as in Theorem 1.

Proof. Suppose there exists an adversary, A, that can attack our scheme in the standard
model. We build a simulator B that solves the CDH problem. B will be given a group G,
a generator g and the elements ga and gb. To be able to use A to compute gab, B must
be able to simulate a challenger for A. Such. Such a simulation can be created in the
following way:

• Setup: The same as Theorem 2.
• Queries: Extraction Queries, Signcrypt Queries and Unsigncrypt Queries are the

same as those in the proof of Theorem 1. Help Key Queries is the same as that in
the proof of Theorem 3.

• Forgery: Eventually, A returns a forged ciphertext (t∗, σ∗) with the constraint de-
scribed in Definition 7. B can derive the gab in the same way as Theorem 2.

7. Comparisons

In this section, we compare our scheme with other IBKISC schemes. The computation
time includes the number of pairings and exponential computation. We let tp be compu-
tation time of pairings and te be the exponential computation time. As for the ciphertext
size, we let |t| be the number of bits required to represent a time period, |ID| be the
number of bits required to represent an identity, |G| be the size of a G element and |GT |
be the size of a GT element.

In Table 1, we compare our scheme with the Sign-then-Encrypt(StE) and Encrypt-
then-Sign(EtS) using a CPA (chosen plaintext attack)-secure IBKIE scheme in the stan-
dard model (Weng, 2006) and an IBKIS scheme in the standard model (Weng, 2008).
Note that we can obtain a CPA-secure IBKIE scheme in the standard model from Weng
(2006) by letting the number of helpers be 1. As we can see in Table 1, our proposed
IBKISC scheme is the fastest with the shortest ciphertext size.

Table 1

A performance comparison with other IBKISC schemes

Scheme Ciphertext size Signcrypt time Unsigncrypt time

E(CPA)tS 1|t| + 7|G| + 1|GT | 8te 7tp

StE(CPA) 1|t| + 7|G| + 1|GT | 8te 7tp

Ours(CCA) 1|t| + 6|G| + 1|GT | + 1|ID| 7te 7tp



44 J. Chen et al.

8. Conclusion

Using Dodis et al. key-insulation mechanism, we propose an identity-based key-insulated
signcryption (IBKISC) paradigm. Furthermore, we present a concrete IBKISC scheme.
The proposed scheme is proved to be secure in the standard model.
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Tapatumu gr ↪istas padalinto rakto šifravimas su pasirašymu

Jianhong CHEN, Kefei CHEN, Yongtao WANG, Xiangxue LI, Yu LONG,
Zhongmei WAN

Padalinto ↪i dvi dalis rakto kriptografija patikimai apsaugo privačiuosius raktus tapatumu
gr↪istose šifravimo sistemose. Nepaisant s ↪amyšio kilusio dėl tapatumu gr↪isto padalinto rakto šif-
ravimo (IBKIE) ir parašo (IBKIS) saugumo, šio metodo saugumo problema yra neišspr ↪esta. Šios
problemos sprendimui straipsnio autoriai siūlo tapatumu gr↪ist ↪a padalinto rakto šifravimo su pasi-
rašymu schem ↪a (IBKISC). Lyginant su „pasirašyk, o po to užšifruok“ (StE) ir su „užšifruok, o po
to pasirašyk“ (EtS) schemomis, kurios naudojamos standartiniuose IBKIE ir IBKIS modeliuose,
pasiūlytoji schema yra spartesnė, o užšifruotas tekstas yra trumpesnis.




