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Abstract. The most classical visualization methods, including multidimensional scaling and its
particular case – Sammon’s mapping, encounter difficulties when analyzing large data sets. One
of possible ways to solve the problem is the application of artificial neural networks. This paper
presents the visualization of large data sets using the feed-forward neural network – SAMANN.
This back propagation-like learning rule has been developed to allow a feed-forward artificial neu-
ral network to learn Sammon’s mapping in an unsupervised way. In its initial form, SAMANN
training is computation expensive. In this paper, we discover conditions optimizing the compu-
tational expenditure in visualization even of large data sets. It is shown possibility to reduce the
original dimensionality of data to a lower one using small number of iterations. The visualization
results of real-world data sets are presented.
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1. Introduction

It is often desirable to visualize a data set which items are described by more than three
features. Therefore, we have multidimensional data and our goal is to make some visual
insight into the analyzed data set. For human perception, the data must be represented in a
low-dimensional space, usually of two or three dimensions. The goal of the visualization
methods is to represent the input data items in a lower-dimensional space so that certain
properties (e.g., clusters, outliers) of the structure of the data set were preserved as faith-
fully as possible. Such visualization is highly important in data mining, because recent
applications produce large amount of data that need specific means for the knowledge
discovery and dimensionality reduction or visualization methods are recent techniques to
discover knowledge hidden in large multidimensional data sets.

This paper focuses on dimensionality reduction (or visualization) methods as the tool
for the analysis of large multidimensional data sets. Today’s large multidimensional data
sets contain huge amount of data that becoming almost impossible to manually analyse
them and to extract valuable information. As data sets become increasingly large, we
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require more effective ways to display, analyse and interpret the information contained
within them. A deep review of the dimensionality reduction methods (classical projection
methods, artificial neural networks based methods, nonlinear manifold learning methods,
etc.) may be restored from Borg and Groenen (2005), Dzemyda et al. (2007), Jolliffe
(2004), Karbauskaitė and Dzemyda (2009).

Classical projection methods include the linear principal component analysis (PCA)
and the multidimensional scaling (MDS). PCA seeks (Jackson, 2003) to reduce the di-
mensionality of the data by finding a orthogonal linear combinations (the principal com-
ponents, PCs) of the original variables (features) with the largest variance. The inter-
pretation of the PCs can be difficult at times. PCA can be used to display the data as a
linear projection on such a subspace of the original data space that best preserves the vari-
ance in the data. The PCA cannot embrace nonlinear structures, consisting of arbitrarily
shaped clusters or curved manifolds, since it describes the data in terms of a linear sub-
space. An alternative perspective on dimensionality reduction is offered by MDS (Borg
and Groenen, 2005). MDS is another classical nonlinear approach that maps the original
high dimensional data set to a lower dimensional data set, but does so in an attempt to
preserve distances of the corresponding data points.

In Fig. 1 visualization results of Housing data set (Asunction and Newman, 2007;
the number of items (objects) is 506, the number of features is 14) using two different
methods (PCA and MDS) have been presented.

Projection accuracy of PCA is limited by its global linearity. MDS, which does a
nonlinear projection of data, attempts to avoid from such a drawback. However, the com-
putational complexity of the most classical metric MDS methods is O(m2), where m is
the number of items (objects) forming the data set. Thus, the MDS method is unsuitable
for large data sets: it requires much computational resources. Therefore, the combinations
of different data visualization methods are under a rapid development. The combination
of different methods can be applied to make more efficient data analysis, while minimiz-
ing the shortcomings of individual methods [see, e.g., integration of the self organizing
map and some particular case of MDS (Sammon’s mapping) in Dzemyda and Kurasova

a) b)

Fig. 1. Visualization results of Housing data set using: (a) PCA and (b) MDS.
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(2006); integration of the self-organizing map and neural gas with MDS in Kurasova and
Molytė (2011)].

Artificial neural networks may be used for dimensionality reduction and data visual-
ization. The MDS got some attention from neural network researchers (Lowe and Tip-
ping, 1996; Mao and Jain, 1995; van Wezel and Kosters, 2004). The back propagation-
like learning rule, SAMANN, has been developed to allow a feed-forward artificial neu-
ral network to learn Sammon’s mapping in an unsupervised way (Mao and Jain, 1995;
de Ridder and Duin, 1997; Ivanikovas et al., 2008; Medvedev and Dzemyda, 2006). Sam-
mon’s mapping is a particular case of the MDS. In its initial form, SAMANN training
is computation expensive. In this paper, we discover conditions optimizing the computa-
tional expenditure in visualization even of large data sets. It is shown possibility to reduce
the original dimensionality of data to a lower one using a small number of iterations.

2. The Neural Network Implementation for Data Visualization

The goal of projection in the metric MDS is to optimize the representations so that the
distances between the points in the lower-dimensional space would be as close to the
original dissimilarities (distances) as possible. Let the initial dimensionality is n: the
analysed data set is {Xi = (x1i, . . . , xni), i = 1, m}. The resulting dimensionality (de-
note it by d) is 2 or 3: the resulting data set is {Yi = (y1i, . . . , ydi), i = 1, m}. Denote
the distance between the points Xi and Xj in the feature (input) space Rn by d∗

ij , and the
distance between their projections Yi and Yj in the projected (output) space Rd by dij .
The metric MDS tries to approximate dij by d∗

ij . Ideally, the distances between points
in the projected data space should be identical to the distances between corresponding
points in the reduced data space. A particular case of the metric MDS is Sammon’s map-
ping (Sammon, 1969). It tries to optimize a projection error that describes how well the
pairwise distances in a data set are preserved:

ES =
1∑m

i,j=1
i<j

d∗
ij

m∑

i,j=1
i<j

(d∗
ij − dij)2

d∗
ij

. (1)

In the error function ES , the smaller the error value, the better projection we get.
Sammon’s mapping places greater emphasis on smaller distances rather than on larger
distances. In contrast to PCA, Sammon’s mapping is a nonlinear transformation of the
data set Xi = (x1i, . . . , xni), i = 1, m. Sammon (1969) applied a gradient steepest
descent procedure to find a configuration of m points in the d-dimensional space that
minimizes ES .

The application of original Sammon’s mapping (and MDS in general) becomes im-
practical for large data sets. Another disadvantage of Sammon’s mapping is that when
a new data point has to be mapped, the whole mapping procedure has to be repeated.
To solve this problem, some methods have been proposed: triangulation algorithm (Lee,
1977), standard feed-forward neural network (de Ridder and Duin, 1997).



510 V. Medvedev et al.

Mao and Jain (1992, 1995) have suggested a neural network implementation of Sam-
mon’s mapping which is able to project new points after training. It has been concluded in
Mao and Jain (1995) that SAMANN neural network preserves the data structure, cluster
shape, and interpattern distances well. A drawback of using SAMANN is that it is rather
difficult to train and the training process is extremely slow.

The architecture of the SAMANN network is a multilayer perceptron where the num-
ber of input nodes is set to be the input space dimensionality, n, and the number of output
nodes is specified as the projected space dimensionality, d.

The classical way of training the SAMANN network is described in Mao and Jain
(1995). The general weights updating rule that minimizes Sammon’s error for all hidden
layers, l = 1, . . . , L − 1 and for the output layer (l = L) is:

Δw
(l)
jt = −η

∂ES(μ, ν)

∂w
(l)
jt

, (2)

where w
(l)
jt is the weight between the unit j in the layer l − 1 and the unit t in the layer

l, η is the learning rate.
The sigmoid activation function g(x) whose range is (0.0, 1.0) is used for each unit:

g(x) =
1

(1 + e−kx)
, (3)

k is the slope parameter of the sigmoid function. By varying the parameter k, it is possible
to obtain sigmoid functions of different slopes.

The network takes a pair of input points each time in the training. The outputs of each
neuron are stored for both points. The distance between the neural network output points
can be calculated and a projection error measure can be defined in terms of this distance
and the distance between the points in the input space. The weights of neural network are
updated according to the update rule (2) using the error measure ES . After training, the
network is able to project previously unseen data generalising the mapping rule.

3. Large Data Sets Visualization Using SAMANN

Visualization of the large data set requires huge computational resources and time. That
is why the most classical visualization methods are unsuitable for large data sets. In spite
of some limitations, we’ll show in this paper that SAMANN neural network can be suc-
cessfully used for the large multidimensional data set visualization.

One of the ways to minimize the computational expenditure for the neural network
training is working with a subset of the primary data set. The results of the experiments
showed Ivanikovas et al. (2007) that it is possible to find such a subset of the analyzed
data set that the lower projection errors are obtained faster while training the SAMANN
network with this subset than by training with all the points of the set.
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Fig. 2. Scheme of the visualization process: (a) selection of the subset of the primary data set; (b) projection of
the subset using SAMANN; (c) projection of the remaining points.

We suggest the following algorithm for the visualization of large multidimensional
data set:

(a) at first, it is necessary to form the subset B of the primary data set A = {Xi =
(x1i, . . . , xni), i = 1, m}, B ⊂ A. The subset B consists of the points chosen
randomly (or using some deterministic way) from the primary data set;

(b) the points of the subset are mapped on Rd (d < n) using SAMANN neural network
where the weights of the network are calculated using iteration weights updating
process (2);

(c) all the remaining points from A\B are projected using the calculated weights of
the network.

In Fig. 2, the scheme of visualization process is presented.
The training process of the SAMANN network depends on some control parameters,

such as learning rate, activation function, momentum term, the range of the initial network
weights and etc. Looking for the optimal control parameters, we can speed up the training
process of the network and apply it for the large data set.

One training iteration of the neural network is complete if all possible pairs of points
from the subset B are shown to the neural network at once. If the optimal values of the
control parameters are chosen, one can expect that good projection is obtained even after
a small number of training iterations. This hypothesis is confirmed below.

4. The Background for the Experiments

Control parameters that are associated with the neural network in general can be divided
into two main groups. The first group involves control parameters of the neural network
training: learning rate, momentum term, initial network weights. The second group in-
volves parameters of neural network’s architecture: number of hidden layers, number of
units in each hidden layer, weights, type and parameters of activation function, etc. The
dependence of the projection error on the learning rate and momentum term was investi-
gated in Dzemyda et al. (2007), Medvedev and Dzemyda (2006).

In this paper, we perform the experiments to evaluate how the SAMANN network
training process (visualizing the large data set) depends on:

• the initial range of the weights,
• the slope parameter of the sigmoid activation function.
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The SAMANN network in our experiments (Section 5) was trained by a subset (10%
of the primary data set) of the analyzed data set to speed up the training process and to
make the network suitable to visualize large data set because of possible computational
economy. Such reduction (10%) of the primary data set was selected quite empirically;
see Ivanikovas et al. (2007). This parameter in some cases may be smaller as well.

For experiments, the SAMANN neural network was constructed to map the primary
data set to a plane (d = 2). The network with one hidden layer of units (neurons) has
been used.

The experiments in Dzemyda et al. (2007) and Medvedev and Dzemyda (2006)
demonstrate that with an increase of the learning rate value η to some rather high ex-
tent, a better projection error is obtained. That is why the learning rate η was set to 10.

Before applying the dimensionality reduction, it is useful to preprocess the data. The
preprocessing consists of the data normalization. We normalize all input points as fol-
lows:

X ′
i =

Xi

S
, i = 1, m, (4)

where S = maxi,j ‖Xi −Xj ‖ is the maximal distance between all input points. Such nor-
malization changes all distances between the points proportionally, but does not change
interlocation of points in Rn. The maximal distance between the normalized points
X ′

i = (x′
1i, . . . , x

′
ni), i = 1, m is equal to 1. The points X ′

i, i = 1, m are assumed
to form the primary data set.

It may be shown that such preprocessing does not change optimal values of Yi =
(y1i, . . . , ydi), i = 1, m and the error function ES .

5. Experiments on Real Data Sets

5.1. Real Data Sets

Four real data sets from UCI Machine Learning Repository (Asunction and Newman,
2007) were used to investigate the ability to visualize large data set using SAMANN:

• Dataset1. Shuttle data set. The shuttle data set contains 9 attributes all of
which are numerical. 58 000 data points in 9-dimensional input space, 7 classes
(m = 58 000, n = 9). Approximately 80% of the data belongs to class 1.

• Dataset2. MAGIC Gamma Telescope. The MAGIC Gamma Telescope reads data
from the cosmic rays striking Earth’s atmosphere. These results include both
gamma rays and hadronic showers. It is important to determine between these for
experimental purposes, therefore this project will mine the given data set of 11 at-
tributes and 19 020 items to find association rules which can be used to classify
future readings from this telescope (m = 19 020, n = 10).

• Dataset3. Page blocks classification. The data set consists of 5473 10-dimensional
points from five classes (m = 5473, n = 10).
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Table 1

Real data sets

Data set No. of No. of No. of

items attributes classes

Dataset1 58 000 9 7

Dataset2 19 020 10 2

Dataset3 5 473 10 5

Dataset4 10 992 16 10

• Dataset4. Pen-based recognition of handwritten digits. The data set consists of
10 992 16-dimensional items from ten classes (m = 10 992, n = 16). The classes
are pen-based handwritten digits with ten digits 0 to 9.

All data sets and their main properties are listed in Table 1.

5.2. Dependence of Projection Error on the Control Parameters

For the each analyzed data set, series of experiments have been performed. The
SAMANN neural network was trained by choosing different values of the range of initial
weights W of the neural network and the slope parameter k of the sigmoid function:

1. The network was initialized with random values of the uniformly distributed
weights (W ) from the ranges: W ∈ [−1, 1], [−0.1, 0.1], [−0.01, 0.01], [−0.001,

0.001].
2. Different values of the slope parameter of the sigmoid function g(x) (3) have been

used: k = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000.

Usually the sigmoid function with the slope parameter k = 1 is used, and the range of
initial weights is not presented in references on the SAMANN realization. We performed
the experiments to evaluate how the SAMANN network training process depends on
these parameters.

All possible combinations of the ranges of the initial weights and values of the slope
parameter have been examined seeking to find the best their combination for the data set
visualization (minimizing the projection error ES). Thus, for each data set, 44 experi-
ments have been performed.

We assume that good projection can be obtained even after a small number of training
iterations. Therefore, in our experiments, only one iteration of the network training was
performed: all possible pairs of points from the subset B of the primary data set A have
been shown to the network at once. In order to evaluate the mapping efficiency of whole
data set, the projection error ES is calculated using all points from the primary data set.

All the experiments with fixed combinations of slope parameter k and the range of
initial weights W have been performed several times and the results were averaged. In
this way, the experiments with several different random subsets of each data set and fixed
combination of slope parameter and the range of initial weights have been performed.
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The least and the average values of the projection error ES after one iteration of the
network training have been measured and presented below for different cases.

In Figs. 3–6, the projection error dependence ES = ϕ(W, k) on the range of the initial
weights W and the slope parameter k of the activation function is presented graphically
for different data sets. Figures 3a, 4a, 5a, 6a show the best (least) projection errors for each
analyzed data set over several different random subsets. The average projection errors are
presented in Figs. 3b, 4b, 5b, 6b. The filled area in the figures and tables shows the
projection errors that are smaller than 0.1.

a) b)

W W 

k k 

Fig. 3. The least (a) and the average (b) projection errors for Dataset1.

a) b)

W W 

k k 

Fig. 4. The least (a) and the average (b) projection errors for Dataset2.

a) b)

W W 

k k 

Fig. 5. The least (a) and the average (b) projection errors for Dataset3.

a) b)

W 

k 

W 

k 

Fig. 6. The least (a) and the average (b) projection errors for Dataset4.
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Figures 3–6 illustrate the fact that the different values of control parameters of the
network can give so different projection results after the one iteration and there are zones
of a small projection error. Moreover, the results in Figs. 3–6 lead to the idea that the
projection error is the multiextremal function and some special methods (Mockus, 1989;
Horst et al., 2000) may be used for its minimization, if needful.

The comparison of the results obtained while using only the subset of the primary
data set for SAMANN network training shows that it is possible to find such values of
control parameters (the intervals of initial weights and the slope parameter of the sigmoid
function) that can be used for the visualization of whole primary data set. The experiments
show that even after one iteration rather small projection error can be obtained when the
optimal values of parameters mentioned above are used.

When comparing Figs. 3–6 for different data sets, we observed the common tendency
that the smallest values of projection error are obtained for the following combination
of the initial weights range and the slope parameter of the sigmoid function: k = 10,
W ∈ [−0.1, 0.1]. Rather good results are obtained when k = 50 and W ∈ [−0.01, 0.01].

5.3. Visualization Results

The visualization results of two data sets (Dataset1 and Dataset4) using different slope
parameter’s values k and the initial weights range of W for the neural network training
are presented in Figs. 7, 10. Figures 7a, 10a illustrate the visualization results of Dataset1
and Dataset4 using k = 1 because the sigmoid function with the slope parameter k = 1
is usually used in references on the SAMANN realization.

Using k = 1 and W ∈ [−0.1, 0.1] (Figs. 7a and 10a illustrate results for Dataset1 and
Dataset4, respectively), the obtained projection error was quite high (bad):

• Dataset1: ES = 0.99027;
• Dataset4: ES = 0.98962.

Using k = 10, W ∈ [−0.1, 0.1] (Figs. 7b and 10b illustrate results for Dataset1 and
Dataset4), the obtained projection error was significantly smaller (better):

a) b)

Fig. 7. Visualization results of Dataset1: (a) k = 1, W ∈ [−0.1, 0.1], ES = 0.99027; (b) k = 10,
W ∈ [−0.1, 0.1], ES = 0.06979.
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a) b)

Fig. 8. Distribution (d∗
ij , dij) for Dataset1: (a) k = 1, W ∈ [−0.1, 0.1], ES = 0.99027; (b) k = 10,

W ∈ [−0.1, 0.1], ES = 0.06979.

Fig. 9. Visualization results of Dataset1 using PCA.

a) b)

Fig. 10. Visualization results of Dataset4: (a) k = 1, W ∈ [−0.1, 0.1], ES = 0.98962; (b) k = 10,
W ∈ [−0.1, 0.1], ES = 0.08890.
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a) b)

Fig. 11. Distribution (d∗
ij , dij) for Dataset4: (a) k = 1, W ∈ [−0.1, 0.1], ES = 0.98962; (b) k = 10,

W ∈ [−0.1, 0.1], ES = 0.08890.

Fig. 12. Visualization results of Dataset4 using PCA.

• Dataset1: ES = 0.06979;
• Dataset4: ES = 0.08890.

Also we compared the best obtained visualization results using SAMANN (one iter-
ation only) with PCA (Figs. 9, 12). Figures 7b, 10b (using SAMANN) and 9, 12 (using
PCA) for all four data sets show that visualization results of large data sets have similar-
ities. Using only 10% of the primary data set and optimal values of control parameters,
the computational time of the SAMANN algorithm is approximate to the computational
expenditure of PCA.

The experiments with remaining two data sets (Dataset2 and Dataset3) lead to similar
conclusions. In addition, it is noticed from the experiments with Dataset2 that some data
set analysis may require for more iterations to get rather good visualization results. Most
probably, the main reason of this is that the maximal distance between the points in the
input space is much larger than most remaining distances. However, if the optimal values
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of the control parameters are chosen, a good projection is obtained even after a small
number of training iterations.

Comparing the results in general, natural question arises – which representation of
the data set is better: Figs. 7a or 7b of Dataset1, and Figs. 10a or 10b of Dataset4. Vi-
sually, results in Figs. 7a and 7b are similar in some extent. However, the projection
error ES values are quite different. In order to assess the quality of the visualization
results, we can study the differences between the distances d∗

ij and dij . If projection er-
ror ES is zero (in ideal case) then d∗

ij = dij for all i and j. Figures 8a and 8b show
experimental dependences of d∗

ij and dij for visualization results of Dataset1 that are
presented in Figs. 7a and 7b, respectively. The idea to analyze such dependences of d∗

ij

and dij (distributions of (d∗
ij , dij)) comes from Shepard diagram (Borg and Groenen,

2005).
Thus, we can conclude, the visualization results of Dataset1 in Fig. 7b (using k = 10,

W ∈ [−0.1, 0.1]) are better than in Fig. 7a (using k = 1 and W ∈ [−0.1, 0.1]) because
the points in Fig. 8b scatter around the bisector from the lower left-hand corner to the
upper right-hand corner.

Similar conclusions may be drawn comparing Figs. 10 and 11. The visualization re-
sults of Dataset2 in Fig. 10b (using k = 10, W ∈ [−0.1, 0.1]) are better than in Fig. 10a
(using k = 1 and W ∈ [−0.1, 0.1]).

6. Conclusions

This paper focuses on the visual analysis of large multidimensional data sets using dimen-
sionality reduction methods. The most classical visualization (data dimensionality reduc-
tion) methods, including multidimensional scaling and its particular case – Sammon’s
mapping, encounter difficulties when analyzing large data sets. One of possible ways
to solve the problem is the application of artificial neural networks. This paper presents
the visualization of large data sets with the feed-forward neural network SAMANN. In
its initial form, SAMANN training is computation expensive. In this paper we discover
conditions optimizing the computational expenditure in visualization even of large data
sets.

In the research, the neural network was trained by choosing the different values of
control parameters of the network: the interval of the initial weights of the neural network
and the slope parameter of the sigmoid function . It is shown that the different values of
control parameters of the network and its training can give so different projection results
after the one iteration. The experiments proved the hypothesis that good projection is
obtained even after a small number of training iterations if the optimal values of the
control parameters are chosen.

The obtained results enable us to visualize large data sets using the neural network
and to get good enough results. The recommendations for optimal values of control pa-
rameters are given.
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Efektyvi duomen ↪u projekcija didelės apimties duomenims
vizualizuoti naudojant neuroninius tinklus

Viktor MEDVEDEV, Gintautas DZEMYDA, Olga KURASOVA,
Virginijus MARCINKEVIČIUS

Dauguma klasikini ↪u vizualizavimo metod ↪u, ↪iskaitant daugiamates skales bei j ↪u atskir ↪a atvej↪i –
Sammono algoritm ↪a, nepajėgūs susidoroti su didelės apimties duomen ↪u aibėmis. Vienas iš galim ↪u
šios problemos sprendim ↪u būd ↪u – neuronini ↪u tinkl ↪u panaudojimas daugiamačiams duomenims
vizualizuoti. Šiame straipsnyje siūloma didelės apimties duomen ↪u aibes vizualizuoti naudojant
tiesioginio sklidimo neuronin↪i tinkl ↪a SAMANN. Specifinė „klaidos sklidimo atgal“ mokymo
taisyklė, pavadinta SAMANN, leidžia ↪iprastam tiesioginio sklidimo neuroniniam tinklui realizuo-
ti populiari ↪a Sammono projekcij ↪a mokymo be mokytojo būdu. Šiame straipsnyje analizuojami
didelės apimties duomen ↪u vizualizavimo būdai, minimizuojant skaičiuojam ↪asias s ↪anaudas. Paro-
dyta galimybė mažinti analizuojam ↪u duomen ↪u dimensij ↪a, naudojant mažesn↪i iteracij ↪u skaiči ↪u.


