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Abstract. The concentration of a substrate in a solution can be measured using amperometric sig-
nals of biosensors: in fact the maximum (steady state) current is measured which is calibrated in
the units of concentration. Such a simple method is not applicable in the case of several substrates.
In the present paper, the problem of evaluation of concentrations of several substrates is tackled by
minimizing the discrepancy between the observed and modeled transition processes of the amper-
ometric signal.
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1. Introduction

We are interested in the establishment of the quantitative structure of a mixture, using
observations of its properties and the known properties of its components. The problem
is related to the measurement of concentrations of several known substrates in a solu-
tion, and can also be formulated as a problem of the evaluation of indirectly observable
parameters (see, e.g., Baronas et al., 2004, 2007).

We assume that the structure of the function z(t, x) is known: z(t, x)=
∑k

j=1yj(t, xj),
0 � t � tmax, x = (x1, . . . , xk) ∈ X where functions yj(t, xj) are supposed to be given.
The parameter vector x should be evaluated using the observed values wi = z(ti, x),
0 � ti � tmax, i = 1, . . . , n. A large variety of subproblems of the general prob-
lem stated can be specified, and different methods can be appropriate for the solution of
concrete subproblems. We focus on the problem related to the evaluation of concentra-
tions of k substrates (components) in a mixture using a recorded signal of the biosensor
wi, i = 1, . . . , n, and records of similar signals of the biosensor yj(t, xj) applied to the
liquid that contains only a single known substrate.

Biosensors are analytical devices made of a biologically active substance, usually an
enzyme, and a physico-chemical transducer that converts the biochemical reaction result
to a measurable quantity (Gutfreund, 1995; Turner et al., 1987; Scheller and Schubert,
1992). Amperometric biosensors measure the current change on the working electrode
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due to the direct oxidation or reduction of chemical reaction products. Such biosen-
sors are relatively cheap, sensitive and reliable devices for clinical diagnostics, drug
detection, food analysis and environment monitoring (Wollenberger et al., 1997; Rapp
et al.; Viswanathan et al.; Wanekaya et al., 2008).

Mathematical models of biosensor action are very helpful for designing new biosen-
sors and optimizing their characteristics (Amatore et al., 2006; Liu, 2010; Lyons,
2006; Mell and Maloy, 1975; Kulys, 1981; Bartlett and Whitaker, 1987). A comprehen-
sive review of modelling amperometric biosensors has been presented in Schulmeister
(1990) and more recently in Baronas et al. (2010).

This model is briefly described in the next section to facilitate the references for the
readers who are experts in biochemistry. Other readers, who are interested in general
problems of evaluation of the quantitative structure of a mixture of the known compo-
nents, can consider the model being a slightly transparent "black box".

This paper is devoted to commemorate the 80th anniversary of Professor Jonas
Mockus.

2. Mathematical Model

The amperometric biosensor is an electrode with a relatively thin layer of enzymes (multi-
enzyme membrane) applied onto the electrode surface. The enzyme-catalyzed reaction
occurs in the enzyme layer of a biosensor. We consider a mixture of substrates (compo-
nents) participating in the biochemical reaction network

Sj
Ej−→ Pj , j = 1, . . . , k, (1)

where the substrate (Sj , combines with the enzyme (Ej) to issue the product (Pj),
j = 1, . . . , k) (Gutfreund, 1995; Scheller and Schubert, 1992). The rate of growth of
the amount of the product is called the rate of reaction. No interaction between separate
enzyme reactions is considered. The reactions in the biosensor are described by Flick’s
law which leads to the following equations:

∂sj

∂t
= DSj

∂2sj

∂τ2
− Vjsj

Kj + sj
,

∂pj

∂t
= DPj

∂2pj

∂τ2
+

Vjsj

Kj + sj
, 0 < τ < d, 0 < t � tmax, j = 1, . . . , k, (2)

where sj(τ, t) and pj(τ, t) are the substrate and product concentrations in the enzyme
layer, DSj , DPj are substrate and product diffusion coefficients respectively, Vj , is the
maximal enzymatic rate attainable with that amount of enzyme completely saturated with
the substrate Sj , j = 1, . . . , k. Kj (j = 1, . . . , k) is the Michaelis constant, t is time, tmax

is the duration of the time interval in which the biosensor is analyzed, d is the thickness of
the enzyme layer. During the substrates interaction with the biosensor the mass transport
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by diffusion takes place, and the biochemical reactions start when the substrates appear
on the enzyme layer because of the diffusion. Initial conditions (t = 0) in the biosensor
model are defined as follows:

sj(τ, 0) =
{

0, 0 � τ < d,

S0 · xj , τ = d,

pj(τ, 0) = 0, 0 � τ � d, j = 1, . . . , k, (3)

where S0 · xj is the concentration of substrate Sj , S0 = 10−8 mol/cm3. During the
experiment the diffusion layer is constantly contiguous to the substrate solution; this fact
in the batch mode is expressed by the following boundary conditions (0 < t � tmax) :

∂sj

∂τ

∣∣∣∣
τ=0

= 0, (4)

sj(d, t) = S0 · xj , t � tmax, (5)

pj(0, t) = pj(d, t) = 0, j = 1, . . . , k. (6)

In the injection mode the substrate appears in the bulk solutions only for short period
of time, known as injection time (TF ). Later the substrate concentration is set to zero.
Boundary conditions in the injection mode are defined as follows:

∂sj

∂τ

∣∣∣∣
τ=0

= 0, (7)

sj(d, t) =
{

S0 · xj , t � TF ,

0, t > TF ,
(8)

pj(0, t) = pj(d, t) = 0, j = 1, . . . , k. (9)

The current, measured as a result of a physical experiment, is proportional to the
gradient of the reaction product concentration at the electrode surface, i.e., on the border
x = 0. The density yj(t, xj) of the biosensor current at time t can be obtained explicitly
from Faraday’s and Fick’s laws (Schulmeister, 1990),

yj(t, xj) = neFDPj

∂pj

∂τ

∣∣∣∣
τ=0

, j = 1, . . . , k, (10)

where ne is the number of electrons involved in the charge transfer, and F is the Faraday
constant.

We assume that the system reaches the equilibrium as t → ∞. The steady-state
current is the main characteristic in commercial amperometric biosensors acting in the
batch mode (Gutfreund, 1995; Turner et al., 1987; Scheller and Schubert, 1992). The en-
tire biosensor response z(t, x) is the sum of individual biosensor currents yj(t, xj),
j = 1, . . . , k.

In the present paper, the mathematical model described above was used to model real-
world processes corresponding to the following parameters: 10−10 mol/(cm3 s) � Vj �
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10−7 mol/(cm3 s), Kj = 10−7 mol/cm3, 0 � t � 300 s, 0.01 cm � d � 0.03 cm,
and 0 � S0 · xj � 64 × 10−8 mol/cm3, j = 1, . . . , k, k = 4. The data for modeling are
chosen the same as in Baronas et al. (2004, 2007) where further details can be found.

3. A Prerequisite for the Statement of a Numerically Tractable Problem

Biosensors are successfully applied to measure the concentration of a single known sub-
strate in a presented liquid. The signal of the biosensor is measured in the steady state
(i.e., for large enough t) for different specified concentrations, and the signal values are
calibrated in units of concentration. A linear dependency between the concentration and
the value of the signal is desirable, and for many important applications biosensors with
linear characteristics are available. When the presented liquid contains a mixture of sub-
strates, the concentration measurement problem is more complicated since the linearity of
that characteristic for the all considered substrates in the ranges of the concentrations of
interest normally is difficult (or even impossible) to achieve. The same value of the signal
in the steady state can be observed for different concentrations of substrates. Therefore
the measurement of the signal value at the steady state only is not sufficient to establish
concentrations for the mixture of components. We intend here to extract the information
on concentrations from the observations over the transition process of the signal, i.e., dur-
ing the time interval which starts from the moment when the biosensor contacts with the
liquid of interest, and finishes at the steady state.

Let wi, i = 1, . . . , n, be a sequence of the recorded values of the biosensor signal at
discrete time moments; technically the electric current, defined by (10), is recorded. Us-
ing the software implementation of the mathematical model of reactions in the biosensor,
the signal z(t, x) can be modeled in the form of a of time t ∈ T function, and of con-
centrations x = (x1, . . . , xk), where T is the set of time moments ti when the biosensor
signal was recorded. If the measurements were precise, the model were ideally adequate,
and the substrate concentrations in the model were the same as in the experiment, then wi

and z(ti, x) would be coincident. A natural idea is to evaluate unknown concentrations
by fitting wi with z(ti, x), ti ∈ T , i.e., to accept the minimizer in the following problem
as an estimate

x̃ = arg min
x∈X

f
(
W, Z(x)

)
, (11)

where f(·) denotes a measure of difference between W = (w1, . . . , wn) and Z(x) =
(z(t1, x), . . . , z(tn, x)). The following expression could be considered, for example, as a
possible measure of difference

f2

(
W, Z(x)

)
=

n∑
i=1

(
wi − z(ti, x)

)2
. (12)

The structure of minimization problem (11) corresponds to that of problems of non-
linear regression (Seber and Wild, 2003). However, the formulated minimization prob-
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lem is difficult to analyze, since analytical properties of z(t, x) are not known; more-
over, computation of z(t, x) is time consuming. The most serious difficulty here may
be caused by the multimodality of the objective function. Another potential challenge is
non-differentiability of z(·, x). In the least favorable case, where the functions z(t, x) can
coalesce for some different x, any method (not only optimization-based) for evaluating
concentrations, using information on z(t, x), would be challenged by the multiplicity of
solutions. The problem should be considered as ill-defined if, for considerably different
x(1), x(2), (| |x(1) − x(2)| | > Δ), z(·, x(1)) and z(·, x(2)) would either coincide or differ
but insignificantly. Doe to these properties, (11) is a difficult global optimization problem.
For the general discussion on global optimization we refer to Törn and Žilinskas (1989),
and for the global optimization methods in nonlinear regression we refer to Křivý et al.
(2000), Žilinskas (2011), Žilinskas and Žilinskas (2010).

To state the considered practical problem in the form of an optimization problem
which was numerically tractable, the establishment of favorable properties of the objec-
tive function is crucial. Because of difficulties in the application of analytical methods
to analyze the solutions of (2)–(10), in the present paper the properties of z(t, x) are
investigated experimentally, using software implementation of the mathematical model
developed in Baronas et al. (2010). The measurements of the biosensor signal are sub-
stituted by those modeled. The errors of measurements are not taken into account, and
computations are assumed ideally precise. The investigation of the influence of measure-
ment errors and of the precision of computations would follow, if the results obtained
in the idealized case were promising. By the replacement of experimental data with that
generated according to a mathematical model we somewhat ignore the complexities of
the original real-world problem. But that seems inevitable since such a replacement en-
ables us to generate large amounts of data with desirable characteristics which would be
impossible to collect experimentally because of the expensiveness and duration of exper-
iments.

4. Analysis of the Properties of the Mathematical Model

Let us start from a graphical illustration of signals of the biosensor modeled in both
measurement modes: batch and injection; we refer to Baronas et al. (2004, 2007) for
details. The graphs of the biosensor signals in both modes are presented in Fig. 1 for four
substrates with parameter Vj equal to 10−6−j , j = 1, . . . , 4, d = 0.02 cm, and of the
maximum concentration (xj = 64) .

From the left graphs in Fig. 1 it is obvious that the evaluation of concentrations in the
batch mode is difficult (no matter which method would be used) because of two reasons at
least: the scale similarity between the signals (especially corresponding to V1 = 10−7 and
V2 = 10−8), and relatively small values of the biosensor signal corresponding to V4 =
10−10 (the ratio of the signal values corresponding to V1 = 10−10 and V1 = 10−7 at
t = 300 is equal to 8.8934 × 10−4). The latter difficulty, caused by potentially negligible
influence of the fourth substrate, can also challenge the evaluation of concentration in the
injection mode. However, the scale similarity in this case is not so evident.
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Fig. 1. Signals of the biosensor in the batch mode on the left, and in the injection mode on the right. Each curve
represents a measurement for a single substrate with Vj = 10−6−j , and xj = 64, j = 1, . . . , 4.

The considered problem has been tackled in Baronas et al. (2004, 2007) by approxi-
mating the straightforward mapping

Φ: (w1, . . . , wn) → x. (13)

An approximation of Φ(·) was constructed as the inverse of the mapping x →
(w1, . . . , wn). The latter was defined according to (2)–(10) for x ∈ C where C was a
four-dimensional cubic mesh based on the following set of values of the components of x:
C = {1, 2, 4, 8, 12, 16, 32, 64}. The set of 4096 biosensor signals was considered, where
the signals were modeled for the mixtures of four substrates with concentrations defined
by xj ∈ C. Let us analyze the batch mode signals. If it were known a priori that xj ∈ C,
and were possible to measure the values of the signal wi = z(ti, x) precisely, then x

could be traced from the observation of a single value w300. Such a conclusion is implied
by the fact that the difference between the values w300, corresponding to different x, is
no less than 2.1 × 10−13. However, to distinguish between these values, a super-precise
equipment is needed with the measurement error no larger than 6.8 × 10−6%. In the
case of measurement precision 0.1%, there are 374 indistinguishable pairs of signals, i.e.,
there exist 374 pairs x(m) ∈ C4, x(r) ∈ C4 such that

max
i=1,...,300

|z(ti, x(m)) − z(ti, x(r))|
min{z(t300, x(m)), z(t300, x(r))} < 0.001. (14)

For example, two graphs of the signals, corresponding to the concentration vectors
x = (2, 64, 16, 32) and x = (1, 64, 32, 12), practically coalesce; see the left graph of
Fig. 2. However, if the signals are modeled for the same concentrations in the injection
mode, they are still distinguishable as seen from the right graph of Fig. 2.

The set of 4096 biosensor signals in Baronas et al. (2004, 2007) was randomly bi-
sected, and one part was used to train an artificial neural network which was used as
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Fig. 2. Two signals, modeled in the batch mode, coalesce, but can be vaguely distinguished if modeled in the
injection mode.

an approximant of (13). The second part was used as an examination set. Several ex-
periments have been done with different model parameters, corresponding to the various
conditions of measurement, and some conclusions have been drawn about the precision
of evaluations of x for the data related to x ∈ C4. A qualitative conclusions in Baronas
et al. (2004, 2007) can be briefly formulated as follows: concentrations can be evaluated
more precisely in the injection mode than in the batch mode, and the precision increases
with increasing d. The quantitative estimates obtained for the data corresponding to C4,
which is rather a rough discretization of X , are not necessarily applicable to the biosensor
signals corresponding to arbitrary x ∈ X . It would be of interest to see whether the evalu-
ations in Baronas et al. (2004, 2007) failed for the data similar to illustrated in Fig. 2, how-
ever the authors of these papers have not commented the cases of failures. A disadvantage
of the artificial neural network-based method is in the implicit tackling of the difficulties
mentioned above, since an optimization algorithm is hidden in the training procedure.

The analysis of biosensor signals corresponding to the rough discretization of X indi-
cates that the considered problem is likely to be ill-defined. An other serious difficulty is
caused by the time consuming computations needed to model a biosensor signal; it takes
approximately 56 seconds for HP Compaq 6710 with Intel(R) Core(TM) Duo CPU/2.20
GHz/2.00 GB.

5. Statement of the Relevant Optimization Problem

The minimization of f(W, Z(x)), where Z(x) were modeled in every call of the sub-
routine of computation of an objective function value, would be very time-consuming
as indicated above. Therefore the computation of y(·) is replaced by the computation
of interpolant ỹ(·), where the value ỹj(ti, xj) is obtained by interpolation of values
yj(ti, k), k = 1, 2, . . . , 64 using a cubic spline. The values of ỹ(·) are computed by
a subroutine which uses the coefficients of splines evaluated in advance. For the lat-
ter evaluation, a set of 264 biosensor signals was modeled: yj(ti, k), j ∈ {1, 2, 3, 4},
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ti ∈ T, k = 1, 2, . . . , 64. The approximation precision has been evaluated statistically:
1000 vectors x were generated randomly with a uniform distribution over X and a relative
error of approximating y(·) by ỹ(·) was computed similarly to (14). The mean value of
the relative error (computed as by a formula simila r to (14)) was equal to 6.1158 × 10−7,
and its standard deviation was equal to 5.3274 × 10−6.

The quadratic measure of difference (12) seems to be suited for application of gradient
local descent methods. However, some experimentation has shown that for such an objec-
tive function the well recognized local descent algorithm from the MATLAB Optimiza-
tion toolbox terminates not necessarily close to the solution. Since in these experiments
the first-order necessary optimality conditions have been satisfied with a high precision,
the objective function should be recognized as multimodal. The results of some experi-
ments with local non-differentiable minimization algorithms for the objective function,
defined as the measure of difference corresponding to the Chebyshev norm, were also not
promising. Therefore, a global optimization method is needed for the considered problem.

The minimization problem (11)–(12), where the summands of z(·, x) are approxi-
mated by cubic polynomials, seems favorable to apply an interval arithmetic-based global
optimization methods. However, the solution time for this type of problems is exceedingly
high as shown in Žilinskas and Žilinskas (2010).

In this paper, we do not have intention to select the global optimization algorithm
most suitable for the minimization problem considered. Our goal is to investigate the
suitability of the optimization-based approach to evaluate the concentrations of compo-
nents of a mixture, and to establish the properties of the optimization problem that could
be important in a further real-world implementation in the form of an embedded system.
The experimental investigation of properties of the objective function has shown that its
hypersurface can be characterized as a deep valley with a flat bottom, where first-order
optimality conditions are fulfilled with rather a high precision. Therefore a simple com-
bination of the global random search with a local descent seems promising to find a point
at the bottom of the valley with the objective function value close to the global minimum.

A global search algorithm was developed taking into account the experimentally es-
tablished features of z(t, x). The first summand, y1(t, κ) is linear with respect to the
concentration variable κ during the entire transition process; see the left side of Fig. 3
where 64 graphs of y1(t, κ)/κ, κ = 1, . . . , 64 are presented which, however, all coin-
cide. The forth summand y4(t, κ) is highly nonlinear with respect to κ, and the range
of y4(t, κ) is a small fraction of the range of y1(t, κ); see the right side of Fig. 3. The
linearity of y1(t, κ) can be exploited to simplify the minimization of (12):

arg min
x1

f2

(
W, Z̃(x)

)
= arg min

x1

300∑
i=1

(
wi − x1ỹ1(ti, 1) −

4∑
j=2

ỹj(ti, xj)

)2

=

∑300
i=1(wi −

∑4
j=2 ỹj(ti, xj)) · ỹ1(ti, 1)∑300
i=1 ỹ2

1(ti, 1)
. (15)

Replacing x1 by its optimal value x1opt we reduce the four-dimensional optimization
problem to a three-dimensional one. The global search was performed by generating
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Fig. 3. Graphs of normalized biosensor signals yj(t, κ)/κ (j = 1 on the left side, and j = 4 on the right
side) drawn for κ = 1, . . . , 64, t = 0, . . . , 300. These graphs show that y1(t, κ),, is linear with respect to the
concentration κ during the whole transition time interval, while the signal y4(t, κ) is nonlinear

Ng random vectors (x2, x3, x4) with a uniform distribution over the three-dimensional
feasible region, and selecting g best points (x1opt, x2, x3, x4). The latter were used as
the starting points for local descent. As seen in Fig. 3, the influence of y4(t, κ) to the
objective function values can be relatively weak, therefore termination conditions of the
local descent should be set sufficient to guarantee the computation of a local minimizer
with a high accuracy.

6. Numerical Experiments

To investigate the precision of evaluation of concentrations, the biosensor signals were
modeled under the conditions discussed above. The mixture contained four substrates
characterized by Vj = 10−6−j , j ∈ {1, 2, 3, 4}. The concentration of each substrate
could vary in the interval 1 � xj � 64, and for each experiment below 1000 random vec-
tors x with a uniform distribution over that region were generated to model the biosensor
signals.

The first experiment was performed to investigate the precision of the concentration
evaluation in the batch mode. The global search was performed with the following pa-
rameters of the algorithm: Ng = 1000, g = 5. For the local minimization, the MAT-
LAB subroutine fmincon was used with a user supplied gradient. Termination condition
was defined by the tolerances TolFun = 10−4 for the values of objective function (12)
multiplied by 107 (to accommodate the scale of the function values and the scale of
the parameters of the algorithm), and by TolX = 0.005. The results are presented in
Table 1, where Δxj denotes the difference between the actual xj and its evaluated value,
and fmin denotes the relative approximation error computed as in (14). The precision
of the evaluation of the concentrations of the first two substrates are quite good, but
the evaluation of the accuracy of the last two substrates is insufficient. The low accu-
racy obtained fo r the latter two substrates can be explained by their insignificant input
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Table 1

Precision of the evaluation of concentrations in the batch mode for the biosensor with the layer d = 0.02 cm
wide

fmin Δx1 Δx2 Δx3 Δx4

Mean 2.5520 × 10−4 0.6304 0.5139 9.3593 19.4844

Std. 4.0538 × 10−4 0.9354 0.6951 15.1093 15.3593

Table 2

Precision of the evaluation of concentrations in the injection mode for the biosensor with the layer d = 0.02 cm
wide

fmin Δx1 Δx2 Δx3 Δx4

Mean 2.8495 × 10−5 0.0041 0.0108 0.0408 0.0464

Std. 3.1573 × 10−4 0.0388 0.1663 0.8404 0.9755

Table 3

Precision of evaluation of concentrations in the injection mode for the biosensors with the layer width
d = 0.01 cm and d = 0.03 cm wide

d = 0.01

fmin Δx1 Δx2 Δx3 Δx4

Mean 6.2751 × 10−5 0.0024 0.0553 0.4929 0.4498

Std. 2.2811 × 10−4 0.0123 0.2489 2.0472 1.8462

d = 0.03

fmin Δx1 Δx2 Δx3 Δx4

Mean 1.8358 × 10−4 0.0945 0.1133 0.1106 0.3823

Std. 6.2409 × 10−4 0.3029 0.3506 0.3945 1.2043

to the biosensor signal; for the discussion about the significance of the inputs of the
considered substrates to the signal of a biosensor we refer to Section 3. This diversity
in precision is well illustrated also by the following example: the relative discrepancy
between two signals, corresponding to x = (44.5764, 62.3342, 16.0006, 38.7044) and
to x = 43.0724, 63.1362, 35.9738, 15.8452), computed according to (14) is negligible
since equal to 3.7361 × 10−4.

The second experiment was performed in the same conditions as above but in the
injection measurement mode. The results presented in Table 2 show that the accuracy of
this evaluation method is quite acceptable in the praxis. Similar conclusion can be drawn
from the results of the experiments presented in Table 3 where the constructive parameter
of the biosensor d is varied around the basic value.

The optimization-based evaluation of concentrations under general conditions of the
modeled experiment yields the results of acceptable to the praxis precision. Note that a
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very simple optimization algorithm has been used. The optimization precision could be
enhanced, but it does not seem reasonable because of an inevitably restricted precision of
the modeling algorithm. From the point of view of real-world applications, a further in-
vestigation of the problem is urgent, taking into account the interaction between separate
enzyme reactions, and measurement errors. Optimization in the presence of noise is con-
siderably more difficult than that without noise. On the other hand, in practical problems
optimization can possibly be facilitated by narrower intervals of the model parameters
(which define the measurement conditions) than that in the present paper. Selection of
the most suitable optimization algorithm is of especial interest taking into account the
requirements of the potential i mplementation in an embedded measurement system.

7. Conclusions

In the mathematical modeling setting the optimization-based approach is efficient to eval-
uate concentrations of several substrates in a liquid where the available data is modeled
as an amperometric signal of a biosensor. An urgent problem of further research is ex-
tension of the obtained results to the case where the interaction between separate enzyme
reactions is taken into account as well as complications caused by collecting data of real-
world experiments.
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Optimizacija pagr ↪istas koncentracij ↪u vertinimas biosensorinio
matavimo modeliavime

Antanas ŽILINSKAS, Darius BARONAS

Esant tirpale vienam substratui, jo koncentracija lengvai matuojama amperometriniais biosen-
soriais: matuojama srovė, kurios dydis yra kalibruotas srovės vienetais. Tačiau taip paprastai iš-
matuoti keli ↪u substrat ↪u, esanči ↪u tirpale koncentracijas nėra galimybės. Šiame straipsnyje koncen-
tracij ↪u nustatymo uždavinys sprendžiamas panaudojant optimizavimo metodus, kuriais minimizuo-
jamas skirtumas tarp matuojamo ir modeliuojamo biosensoriaus signalo.


