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Abstract. Copositivity plays an important role in combinatorial and quadratic optimization since
setting up a linear optimization problem over the copositive cone leads to exact reformulations
of combinatorial and quadratic programming problems. A copositive programming problem may
be approached checking copositivity of several matrices built with different values of the variable
and the solution is the extreme value for which the matrix is copositive. However, this approach
has some shortcomings. In this paper, we develop a simplicial partition algorithm for copositive
programming to overcome the shortcomings. The algorithm has been investigated experimentally
on a number of problems.
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1. Introduction

Copositivity plays an important role in combinatorial and quadratic optimization. Set-
ting up a linear optimization problem over the copositive cone leads to exact reformu-
lations of combinatorial problems, for example, maximum clique (Bomze et al., 2000),
stable set (de Klerk and Pasechnik, 2002; Dukanovic and Rendl, 2010), quadratic as-
signment (Povh and Rendl, 2009) and graph-partitioning (Povh and Rendl, 2007). Any
quadratic problem with linear constraints and binary variables can be equivalently formu-
lated as a linear optimization problem over the cone of copositive matrices (Burer, 2009).
Optimization of linear function over copositive cone is called copositive programming,
which is a relatively young field in mathematical optimization (Dür, 2010).

The problems listed above are not polynomially solvable. This property is preserved
when the problem is formulated as a copositive program. The complexity is moved to
the cone constraint: checking whether a given matrix is copositive, is a co-NP-complete
problem (Murty and Kabadi, 1987). Most of proposed methods to check copositivity
are linear algebraic and rely on checking properties of exponentially many principal sub-
matrices (Väliaho, 1986; Andersson et al., 1995; Kaplan 2000, 2001; Yang and Li, 2009).

An algorithm for copositivity detection by simplicial partition (Bundfuss and Dür,
2008) reduces the problem to that of verifying non-negativity of a quadratic form over the
standard simplex and iteratively scans finer and finer simplicial partitions. The features
of this partitioning algorithm is similar to a branch and bound algorithm with simpli-
cial partitions for global optimization (Žilinskas, 2008). It is well known that branch and
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bound algorithms require much less computations practically than in the worst case. Sim-
ilarly, copositivity detection by simplicial partition is much faster than traditional linear
algebraic algorithm (Žilinskas and Dür, 2011).

A copositive programming problem may be approached checking copositivity of sev-
eral matrices built with different values of the variable and the solution is the extreme
value for which the matrix is copositive. This was illustrated for the maximum clique
problem (Bundfuss and Dür, 2008; Žilinskas and Dür, 2011). However, this approach has
some shortcomings. It is necessary to check copositivity of several matrices. Although
ε-copositivity may be checked, the tolerance is not directly related to the accuracy of
solution of a copositive problem. Such an approach does not provide extremizer to the
underlying problem, for example, it only provides the clique number, not the optimal
clique. In this paper we propose the way to overcome these shortcomings.

2. Copositive Programming and Conditions for Copositivity

An n × n real symmetric matrix A is called copositive if xT Ax � 0 for all x ∈ R
n
+,

where R
n
+ := {x ∈ R

n : xi � 0 for all i} denotes the non-negative orthant.
We consider copositive programming problem formulated as

max{y: Q − yD ∈ C }, (1)

where y ∈ R is a variable, Q and D are n × n real symmetric matricess, and C is the cone
of copositive matrices. This problem is dual of a quadratic programming problem

min〈Q, X〉 s.t. 〈D, X〉 = b, X = xxT , x � 0.

In the case D = J , where J is the n × n matrix with all ones, the problem may be
formulated as

max{y: Q − yJ ∈ C }, (2)

which is dual of the standard quadratic programming problem – optimization of a
quadratic function over the standard simplex (Bomze, 2009).

The maximum clique problem may be formulated as the copositive programming
problem (Bomze, 2009)

ω(G) = min{t: tQ − J ∈ C }, (3)

where ω(G) is the clique number of a graph G, t ∈ N is a variable, and Q = J − AG is a
matrix derived from the adjacency matrix AG of the graph G. The goal of this copositive
programming problem is to find the smallest value of t that tQ − J is copositive.

As it is shown by Bundfuss and Dür (2008)

A is copositive ⇔ xT Ax � 0 for all x ∈ R
n
+ with ‖x‖1 = 1.
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This follows from the definition by using appropriate scaling. The set ΔS := {x ∈ R
n
+:

‖x‖1 = 1} is called the standard simplex whose vertices are the unit vectors e1, . . . , en.
The approach relies on the observation that A is copositive iff the quadratic form xT Ax �
0 on the standard simplex. If v1, . . . , vn denote the vertices of a simplex, we can write a
point x in barycentric coordinates as x =

∑n
i=1 λivi with

∑n
i=1 λi = 1. This gives

xT Ax =

(
n∑

i=1

λivi

)T

A

(
n∑

j=1

λjvj

)
=

n∑
i,j=1

vT
i Avjλiλj .

Hence, a necessary condition for xT Ax to be nonnegative on the simplex is that

vT
i Avj � 0 for all i, j = 1, . . . , n. (4)

This condition can be refined by studying simplicial partitions of the standard simplex.
As the partition gets finer, stronger and stronger necessary conditions are derived, which,
in the limit, capture all strictly copositive matrices.

Therefore the following algorithm for copositivity detection can be formulated: start
with P = {ΔS }. Check if vT

i Avj � 0 for all vertices vi, vj of all simplices in the
partition P . If yes, stop: the matrix is copositive. If no, select a simplex from Δ ∈ P and
subdivide it into Δ = Δ1 ∪ Δ2. Iterate this process.

The algorithm starts with the standard simplex whose vertices are the unit vectors
e1, . . . , en. Simplices are subdivided until either the candidate list is empty (i.e., A is
copositive), or vT Av < 0 for one vertex v of one of the simplices which means that A is
not copositive.

Observe that simplices for which vT
i Avj � 0 for all pairs of vertices vi and vj can

be discarded: it is clear that xT Ax � 0 on those simplices. Therefore, we can prune the
search tree at the nodes corresponding to these simplices.

For numerical reasons the notion of ε-copositivity was introduced by Bundfuss and
Dür (2008): a matrix is called A ε-copositive, if xT Ax � −ε for all x ∈ ΔS .

It is possible to search for the solution of a copositive programming problem by check-
ing copositivity of several matrices built with different values of the variable (y or t) and
the solution is the extreme value for which the matrix is copositive. In the case of the
maximum clique problem, start with t = 2, check copositivity of tQ − J , and proceed
with t = 3, 4, . . . while tQ − J is not copositive. Unfortunately, copositivity of several
matrices should be checked. Although this is not too bad when the variable is discrete
(t ∈ N), it may come to problems when the variable is continuous (y ∈ R). Moreover,
such an approach does not provide extremizer to the underlying problem, for example, it
only provides the clique number, not the optimal clique. To overcome these shortcomings
an algorithm for copositive programming is developed in the next section.

3. Algorithm for Copositive Programming by Simplicial Partition

Observe that for the copositive programming problem (1), the matrix to be copositive is
A = Q − yD. Let us assume that the matrix D is copositive. In this case the condition (4)
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can be rewritten as

vT
i (Q − yD)vj = vT

i Qvj − yvT
i Dvj � 0,

and

y � vT
i Qvj

vT
i Dvj

.

Therefore, the matrix A is not copositive, if

y >
vT Qv

vT Dv

for any v of any simplex in the partition. Moreover, the matrix Q − (y − ε)D is copositive
if

y − ε � vT
i Qvj

vT
i Dvj

for all vertices vi, vj of all simplices in the partition P .
In the case of the standard quadratic programming (2), A = Q − yJ and the condi-

tion (4) can be rewritten as

y � vT
i Qvj ,

since vT
i Jvj = 1 for vi, vj ∈ ΔS . The matrix A is not copositive, if

y > vT Qv

for one vertex v of one of the simplices. The matrix Q − (y − ε)J is copositive if

y − ε � vT
i Qvj

for all vertices vi, vj of all simplices in the partition P .
In the case of the maximum clique problem (3), A = tQ − J and the condition (4)

can be rewritten as

vT
i (tQ − J)vj = tvT

i Qvj − vT
i Jvj = tvT

i Qvj − 1 � 0,

and

t � 1
vT

i Qvj
.



Copositive Programming by Simplicial Partition 605

Q = J −AG and v do not have negative entries. Therefore, the matrix A is not copositive,
if

t <
1

vT Qv

for one vertex v of one of the simplices. The matrix (t + ε)Q − J is copositive if

t + ε � 1
vT

i Qvj

for all vertices vi, vj of all simplices in the partition P . For the maximum clique problem
ε = 1 can be set, as this is exactly the tolerance needed for the integer clique number. The
last observation: if the previous condition holds, arg maxv 1/(vT Qv) defines the solution
of the underlying problem (non zero values of v mean the node is in the clique), where v

is a vertex of a simplex.
These rewritten conditions give rise to the following algorithm for copositive pro-

gramming (alternatively the standard quadratic programming and maximum clique for-
mulations):

1. Start with P = {ΔS }.
2. y = min(vT Qv)/(vT Dv) (alternatively y = min vT Qv or t = max 1/(vT Qv)),

where v is a vertex of a simplex in the partition.
3. Check, if y − ε � (vT

i Qvj)/(vT
i Dvj) (alternatively y − ε � vT

i Qvj or t + ε �
1/(vT

i Qvj)) for all vertices vi, vj of all simplices in the partition P .
4. If yes, stop: y (alternatively t) is the solution.
5. If no, select a simplex from Δ ∈ P and subdivide it into Δ = Δ1 ∪ Δ2. Iterate the

process.

Since we optimize y = min vT Qv and t = 1/ min(vT Qv) for the standard quadratic
programming and maximum clique formulations, the algorithm is optimization of a
quadratic function over the standard simplex in these cases what is not surprising. In
a general formulation y = min(vT Qv)/(vT Dv) what is related to quadratic fractional
programming (Yamamoto and Konno, 2007; Phillips, 2009).

There is some freedom in selecting the next simplex from the current partition P .
One option is to do it using a depth-first strategy, which leads to an algorithm displayed
in Algorithm 1. As shown for example by Žilinskas and Žilinskas (2009), it is possible to
develop a branch and bound algorithm with depth-first strategy which avoids storing of
unbranched nodes of the search tree. Similarly, this idea is applied by Žilinskas and Dür
(2009) and enables solution of much larger problems due to significantly smaller memory
requirements.

The algorithm starts with the standard simplex whose vertices are the unit vectors
e1, . . . , en. Simplices are subdivided until the candidate list is empty. Subdivision is per-
formed similarly as by Bundfuss and Dür (2008), just the current extreme value of y

(alternatively t) is used to build Q − yD (alternatively Q − yJ or tQ − J) instead of pre-
defined. Simplices for which y − ε � (vT

i Qvj)/(vT
i Dvj) (alternatively y − ε � vT

i Qvj



606 J. Žilinskas

Algorithm 1: max{y: Q − yD ∈ C }, max{y: Q − yJ ∈ C }, or min{t: tQ − J ∈ C }
Input: n; Q ∈ S ; D ∈ S ; ε > 0
1: V ← (e1, . . . , en); QS ← Q; DS ← D; l ← 0; y ← ∞ (or t ← 0)
2: while l � 0 do
3: for i ∈ {1, . . . , n} do
4: if y > QSii/DSii (alt. y > QSii or t < 1/QSii) then
5: y ← QSii/DSii (alt. y ← QSii or t ← 1/QSii)
6: s ← V{1,...,n}i (or {j ∈ {1, . . . , n}: Vji > 0})
7: end if
8: end for
9: if ∀i, j: y − ε � QSij/DSij (alt. y − ε � QSij or t + ε � 1/QSij) then

10: l ← l − 1
11: while l � 0 and i∗

l = −1 do
12: V{1,...,n}j∗

l
← v∗

l ; QS{1,...,n}j∗
l

← q∗
l ; QSj∗

l
{1,...,n} ← q∗

l

13: DS{1,...,n}j∗
l

← d∗
l ; DSj∗

l
{1,...,n} ← d∗

l ; l ← l − 1
14: end while
15: if l � 0 then
16: V{1,...,n}i∗

l
↔ V{1,...,n}j∗

l
; V{1,...,n}i∗

l
↔ v∗

l

17: QS{1,...,n}i∗
l

← q∗
l ; QSi∗

l
{1,...,n} ← q∗

l q∗
l ← QS{1,...,n}j∗

l

18: QS{1,...,n}j∗
l

← V T QV{1,...,n}j∗
l

; QSj∗
l

{1,...,n} ← V T QV{1,...,n}j∗
l

19: DS{1,...,n}i∗
l

← d∗
l ; DSi∗

l
{1,...,n} ← d∗

l ; d∗
l ← DS{1,...,n}j∗

l

20: DS{1,...,n}j∗
l

← V T DV{1,...,n}j∗
l

; DSj∗
l

{1,...,n} ← V T DV{1,...,n}j∗
l

21: i∗
l ← −1; l ← l + 1

22: end if
23: else
24: choose i, j ∈ {1, . . . , n} so that min QSij/DSij (min QSij)
25: α ← QSii − yDSii (alt. QSii − y or tQSii − 1);
26: β ← QSjj − yDSjj (alt. QSjj − y or tQSjj − 1);
27: γ ← QSij − yDSij (alt. QSij − y or tQSij − 1)
28: if γ

γ−α � β
β−γ then

29: λ ← max
{

γ
γ−α , min

{
β−γ

α−2γ+β , β
β−γ

}}
30: else
31: λ ← β−γ

α−2γ+β

32: end if
33: σ ← λV{1,...,n}i + (1 − λ)V{1,...,n}j ; i∗

l ← i; j∗
l ← j

34: v∗
l ← V{1,...,n}i; V{1,...,n}i ← σ

35: q∗
l ← QS{1,...,n}i; QS{1,...,n}i ← V T Qσ; QSi{1,...,n} ← V T Qσ

36: d∗
l ← DS{1,...,n}i; DS{1,...,n}i ← V T Dσ; DSi{1,...,n} ← V T Dσ; l ← l + 1

37: end if
38: end while
Output: y (or t), s
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or t + ε � 1/(vT
i Qvj)) for all pairs of vertices vi and vj can be discarded. Therefore, we

can prune our tree at the nodes corresponding to those simplices.
The matrix QS (and DS if needed) in Algorithm 1 stores the values vT

i Qvj (and
vT

i Dvj if needed) so not to compute them for each simplex as only one row and one col-
umn is changed when subdividing a simplex. In the beginning the matrix QS is initialized
by the matrix Q (and DS by D if needed) as the vertices of the initial simplex are the
unit vectors. The matrix V is used to store the vertices of a simplex.

Storing the matrices V and QS (and DS if needed) of all candidate simplices would
require a large amount of memory. We apply a depth-first selection strategy without stor-
ing the whole set of simplices, thus we store only the information required to restore V

and QS (and DS if needed) when returning to the level l. By the “level of a simplex” we
mean the following: the initial simplex is of level 0, and if we perform a subdivision step,
the level of the sub-simplices is by 1 greater than the level of the parent simplex.

i∗
l and j∗

l are the row and column numbers of the smallest negative element of QS

and the numbers of vertices which are used in subdivision of a simplex. The vector v∗
l is

used to restore the vertex of the simplex, whereas the vector q∗
l is used to restore row and

column of the matrix QS, and d∗
l is used to restore these of the matrix DS.

4. Experimental Results

In this section we present the results of our experiments with the proposed algorithm
for copositive programming. As test instances we use example problems, the maximum
clique instances from several generators available through the web, as well as from the
collection of benchmark problems of the Second DIMACS Challenge.

4.1. Example Problems

Let us consider a copositive programming problem

max
{

y:
(

−3 0.5
0.5 −4

)
− y

(
1 0
0 1

)
∈ C

}
.

It can be solved by using our algorithm finding the optimum y = −4 at x = (0, 1). The
problem is similar to an example problem of fractional programming from Yamamoto
and Konno (2007):

max f(x) =
3x2

1 − x1x2 + 4x2
2

x2
1 + x2

2

s.t. x1 + x2 = 1, x1 � 0, x2 � 0,
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formulated as a minimization problem

min
xT

(
−3 0.5

0.5 −4

)
x

xT

(
1 0

0 1

)
x

s.t. x ∈ ΔS , x � 0.

We consider some example problems from Bomze and de Klerk (2002). These are
copositive programming problems max{y: Q − yJ ∈ C } with various matrices:

Q1 =

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎞
⎟⎟⎟⎟⎠ ,

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q3 =

⎛
⎜⎜⎜⎜⎝

−14 −15 −16 0 0
−15 −14 −12.5 −22.5 −15
−16 −12.5 −10 −26.5 −16
0 −22.5 −26.5 0 0
0 −15 −16 0 −14

⎞
⎟⎟⎟⎟⎠ ,

Q4 =

⎛
⎜⎜⎜⎜⎝

0.9044 0.1054 0.5140 0.3322 0
0.1054 0.8715 0.7385 0.5866 0.9751
0.5140 0.7385 0.6936 0.5368 0.8086
0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932

⎞
⎟⎟⎟⎟⎠ .

Several of the problems have maximum clique formulation therefore we can solve
them using all versions of the algorithm. Results of experimental investigation are given
in Table 1. All problems are solved in a fraction of a second. These are relatively easy
problems for the algorithm. The tolerance ε = 1 enables faster solution of one of the
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Table 1

Experimental results on example problems

max{y: Q − yD ∈ C }, ε = 10−6 max{y: Q − yJ ∈ C }, ε = 10−6

Q y nsimp max l Time (s) y nsimp max l Time (s)

Q1 0.5 19 4 0.0 0.5 19 4 0.0

Q2 0.3333 71679 22 0.53 0.3333 71679 22 0.35

Q3 −16.3333 23 6 0.0 −16.3333 23 6 0.0

Q4 0.4839 89 13 0.0 0.4839 89 13 0.0

min{t: tQ − J ∈ C }, ε = 1

Q t nsimp max l Time (s)

Q1 2 19 4 0.0

Q2 3 31301 21 0.18

maximum clique problem. The solution times are lower than ones reported by Bundfuss
and Dür (2009).

4.2. Maximum Clique Problems from Problem Generators

We used maximum clique instances to explore the size of problems that can be solved by
our approach. To this purpose, we generated problems of various sizes using the graph
generators available at FTP site ftp://dimacs.rutgers.edu/pub/challenge/
graph/contributed/ of the Second DIMACS Challenge (Johnson and Trick,
1996).

The graphs named Brockn are graphs with hidden cliques of different sizes (Brock-
ington and Culberson, 1996). Jagotan are graphs with five random cliques and are de-
scribed by Jagota (1992). The Sanchisn graphs are described by Sanchis and Jagota
(1996).

We used the graph generators described by Hasselberg et al. (1993) to generate var-
ious other graphs: c-fatn-1 graphs with n nodes are based on fault diagnosis; Ham-
mingm-d graphs have 2m nodes where two nodes are adjacent if the Hamming distance
between their binary codes is at least d; Johnsonm-w-d graphs have

(
m
w

)
nodes; Keller2

graph is based on Keller’s cube-tillings (Lagarias and Shor, 1992).
The results of experimental investigation are displayed in Table 2. The column t gives

the optimal value of the variable returned by the algorithm, nsimp gives the number of
analyzed simplices, max l states the maximal level of simplices, time in seconds taken by
the algorithm is shown in the last column.

Differently from Žilinskas and Dür (2009) one run of the algorithm is required to solve
a copositive programming problem. Moreover, the algorithm for copositive programming
requires less computations than the algorithm to check copositivity of ω(G)Q − J , be-
cause of the tolerance ε = 1. This allows us to solve larger problems: some problems
have been solved while copositivity check of ω(G)Q − J has not finished during allowed
time. The largest problems solved with the current algorithm are of size 24.
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Table 2

Experimental results on generated maximum clique problems

Graph Nodes Edges Clique t nsimp max l Time (s)

number

Brock14 14 51 5 5 1873355 33 15.73

Brock16 16 59 5 5 3929357 36 43.71

Brock18 18 78 5 5 100442543 50 1487.45

Brock20 20 95 5 5 936595215 52 18154.00

Jagota14 14 31 6 6 94425 24 0.71

Jagota16 16 57 8 8 14659409 43 157.13

Jagota18 18 84 10 10 2366989393 67 34478.00

Morgen14 14 50 5 5 2565871 37 20.97

Morgen16 16 59 5 5 1963895 36 21.39

Morgen18 18 60 5 5 10032327 38 141.71

Morgen20 20 67 5 5 298940103 43 5925.00

Morgen22 22 68 5 5 91131959 43 2109.27

Morgen24 24 69 5 5 80165637 45 2280.00

Sanchis14 14 50 5 5 1184933 31 10.09

Sanchis16 16 50 5 5 560033 28 6.05

Sanchis18 18 50 5 5 2578523 28 35.80

Sanchis20 20 50 5 5 17294981 33 315.58

Sanchis22 22 50 5 5 40407507 34 905.79

Sanchis24 24 50 5 5 172426589 38 4885.00

c-fat14-1 14 52 6 6 29692167 39 250.27

c-fat16-1 16 69 7 7 2071185519 52 23524.00

c-fat18-1 18 72 6 6 7515802065 53 109344.00

Hamming4-4 16 8 2 2 511 8 0.00

Johnson6-2-4 15 45 3 3 88483 21 0.82

Johnson6-4-4 15 45 3 3 90013 21 0.85

Johnson7-2-4 21 105 3 3 123008083 33 2829.00

Keller2 16 40 2 2 10329 15 0.10

The results show that the clique number has been identified in all problem instances.
Even with ε = 1 the estimates of t are equal to the clique numbers. This is due to im-
proved subdivision – the algorithm based on bisection through the longest edge requires
more computations and provides solutions not equal to the maximum clique number al-
though within the given tolerance ε = 1. Last, but not least, the algorithm identifies not
only the maximum clique number, but the maximum clique as well. It has been checked,
that all identified maximum cliques exist in the graphs.

4.3. Benchmark Problems from the Second DIMACS Challenge

In this section we report results for various benchmark problems from the Second
DIMACS Challenge which are available through ftp://dimacs.rutgers.edu/
pub/challenge/graph/benchmarks/clique/. In these instances, neither of
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Table 3

Results for the DIMACS benchmark problems. The algorithm was run for the maximum allowed time

Graph Nodes Edges Clique t nsimp max l Allowed

number time (s)

Brock200_1 200 14834 21 16 708261 1989 104

Brock200_2 200 9876 12 10 710547 980 104

Brock200_3 200 12048 15 11 699520 1330 104

Brock200_4 200 13089 17 14 708598 1504 104

Brock400_1 400 59723 27 20 18115 4984 104

Brock400_2 400 59786 29 20 17955 4946 104

Brock400_3 400 59681 31 20 18027 4920 104

Brock400_4 400 59765 33 20 18162 4978 104

Brock800_1 800 207505 23 17 19290 8376 105

Brock800_2 800 208166 24 17 19317 8482 105

Brock800_3 800 207333 25 17 19275 8385 105

Brock800_4 800 207643 26 16 19379 8389 105

Hamming6-2 64 1824 32 32 15805366 883 104

Hamming6-4 64 704 4 4 16612788 112 104

Hamming8-2 256 31616 128 128 128307 14441 104

Hamming8-4 256 20864 16 16 128632 1628 104

Hamming10-2 1024 518656 512 512 3899 3899 105

Hamming10-4 1024 434176 40 33 3857 3857 105

Johnson8-2-4 28 210 4 4 230691654 56 104

Johnson8-4-4 70 1855 14 14 14850322 405 104

Johnson16-2-4 120 5460 8 8 3202090 488 104

Johnson32-2-4 496 107880 16 16 7818 4308 104

Keller4 171 9435 11 8 696414 794 104

Keller5 776 225990 27 20 19377 8608 105

Keller6 3361 4619898 � 59 37 1493 1493 106

MANN_a9 45 918 16 16 57018692 320 104

MANN_a27 378 70551 126 121 242995 23055 105

MANN_a45 1035 533115 345 336 74763 74763 106

MANN_a81 3321 5506380 � 1100 302 1550 1550 106

the copositive programming problems has been solved to optimality within the maximum
allowed time. This shows that these benchmark problems are very hard.

However, the proposed algorithm provides lower bound of the solution and the corre-
sponding clique even if there is no guarantee that the maximum clique number is found.
A summary of the results for the DIMACSs benchmark problems is given in Table 3.
Similarly as in the previous table, the column t gives the estimate of the optimal value of
variable returned by the algorithm, nsimp gives the number of analyzed simplices, max l

states the maximal level of simplices, allowed time (in seconds) is indicated in the last
column.
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Although the algorithm provides a lower bound for the maximum clique number,
in several cases it coincides with the maximum clique number. Some lower bounds are
better than thouse found using copositivity checks by simplicial partition (Bundfuss and
Dür, 2008; Žilinskas and Dür, 2011). It has been checked, that all identified cliques exist
in the graphs.

5. Conclusions

We proposed a simplicial partition algorithm for copositive programming. The algorithm
solves copositive programming problems of size up to 24 in a reasonable time. For larger
problems, the algorithm does not finish with guaranteed optimal solution during allowed
time, but it gives bounds for solutions of problems of size up to several thousands. The
approach is faster than checking copositivity of several matrices built with various values
of variable.
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Kopozityvusis programavimas simpleks ↪u skaidymu

Julius ŽILINSKAS

Kopozityvumas svarbus kombinatoriniame ir kvadratiniame programavime, nes kombina-
torinio ir kvadratinio programavimo uždavinius galima tiksliai suformuluoti tiesinės funkcijos
optimizavimu kopozityvi ↪u matric ↪u kūgyje. Kopozityviojo programavimo uždaviniai gali būti
sprendžiami tikrinant matric ↪u, sugeneruot ↪u su skirtingomis kintamojo reikšmėmis, kopozityvum ↪a,
o sprendinys yra ekstremali reikšmė, kuriai matrica yra kopozityvi. Tačiau toks sprendimo būdas
turi kelet ↪a trūkum ↪u. Trūkumams išvengti, šiame straipsnyje yra pasiūlytas simpleks ↪u skaidymo
algoritmas kopozityviam programavimui. Algoritmas tiriamas eksperimentiškai sprendžiant aib ↪e
testini ↪u uždavini ↪u.


