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Abstract. We describe an adaptive algorithm for approximating the global minimum of a contin-
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1. Introduction

Several algorithms have been proposed for global optimization that are motivated by a
probability model for the objective function. A general Bayesian approach to optimiza-
tion was formulated in Mockus (1972). For such algorithms it is interesting to analyze the
convergence characteristics under the motivating stochastic model. A popular stochastic
model is the Wiener process, due mainly to its tractability and also because it gives exam-
ples of very irregular multimodal functions which are interesting for global optimization.
Optimization of nonsmooth objective functions arises in applications such as binary clas-
sification by support vector machines (Bartkute-Norkuniene, 2009). Optimization for the
Wiener process model was considered in Kushner (1962). The algorithm described in
this paper is of a form studied from the point of view of axiomatic rationality in Zilinskas
(1985). The issue that we address is chosing the parameters of the algorithm so that the
algorithm is efficient and also so that the convergence rate can be identified.

In this paper we propose an algorithm for approximating the global minimum of a
continuous function f defined on the unit interval. Under the assumption that f is a
random function distributed according to the Wiener measure, we establish an asymptotic
upper bound on its approximation error.

Let f be a Wiener process on [0, 1]. That is, f is a continuous Gaussian process with
covariance function E f(s) f(t) = min(s,t), 0 < s, t < 1. We are interested in approx-
imating the global minimum M = ming<<; f(t) of f using a number of adaptively
chosen function evaluations. The algorithm specifies a first point ¢; at which to evalu-
ate f(¢1). The algorithm then computes the second point to = t2(f(¢1)), and evaluates
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f(t2). Continuing on in this fashion, we evaluate

f(tl)vf(t1)7 EER f(tﬁ)7

where t, = ti(f(t1),..., f(tg—1)) for k < n.

For notational convenience set ty = 0 and ¢} the ith smallest of the {t;}, so that
0=t <th <~ <th <land{tP:0<i<n}={t;:0<i<n}Letr, =
min; <;<n t7 — t7'_, denote the smallest distance between function evaluation points.

The next section describes the details of the proposed algorithm and states the con-
vergence theorem. The convergence analysis and proof of the theorem are in Section 3.

2. The Algorithm

The first two observation points of the algorithm are fixed: ¢t = 1 and t2 = 1/2. Define

9(x) = v/Awlog(1/a)

for0 < x < 1/2.Here \is a fixed number > 16, which is convenient to leave unspecified.
Note that g is increasing and g(x) | 0 as z | 0. Set

G =ty

P @) — Mo+ a(r))(F(E) — M + (7))

The algorithm operates as follows: at each step, split the interval with the largest
value of p}' = p™ at the midpoint. More precisely, suppose we have made k evaluations.
Compute pf, 1 < i < k, and let ¢ be an index such that pf > p? forall 1 < j < k. The
next function evaluation is made at the midpoint

th o+ th

thr1 = 5

Denote the error by A,, = min;¢;<p f(¢;) — minggi<a f(2).
Our main result is

Theorem 1. For the algorithm described above, as the number of observations n — oo,
there exists a positive constant c such that

P(An < (en)*exp < — %M)) — 1.
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3. Convergence

Suppose that the algorithm is about to split the smallest subinterval at time n; that is,
p" =pland T, =t — 1t ;. Then

1 1
L <
PPS Xlog(1/m) = Mog(n)’

ey

since 7, < 1/n.
Consider the 2n — 1 random variables

F(85) — f(ty)

)
[+k k
tz_tL 1

These are standard normal random variables, with nonnegative covariances, since

Cov f(ti)_f(ti'—l) f(t?“)—f(t}”_l) _ (min(tﬁ, t}") - max(t§_17 t§”_1)> 1/2
\/tﬁ —t ’ \/t;n —tm max (!, t7) — min(téil,t;nil)

R
Therefore, by the Slepian—Schlifli form of the comparison principle for Gaussian random
variables (Lifshits, 1995),

kY _ £tk
P( max maxM<r> >P< max Uigr)

1<k<n 1<i<k /t’? 4k ] 1<i<2n—1
1 11—

for any r € R, where the U; are independent standard normal random variables.
Let

1<e<k<n

Wn = ImaxXx max M

1<k<n 1<i<k ik _ gk ;
1 11—

Then

2n—1
> (2 2 ! exp ( - 14log(n)) - 1)
27 24/log(n) 2
_(1_ 1 < 1 1 2n—1>)2”1
2n — 1\ V27 \/log(n) n?
—1
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(Lifshits, 1995). Define

oL () — £tk )|
n =14 f max max ——————-"
1<k<n 1<i<k tl_c _ tk

Then P(F,) — 1.

Equation (1) gives an upper bound on p™ at times when the algorithm is about to
form a new smallest subinterval. The following lemma provides a high-probability upper
bound at other times.

Lemma 1. Foralln > 2and f € F,,

2 2
L < .
PoS Xlog(1/m) ~ Mog(n)

Proof. The second inequality follows from the fact that 7, < 1/n.
Let m < n be the last time before n that the smallest subinterval was about to be split,
SO T,, = 27, and by (1),

1 1
< = .
= Aog(1/7,,)  Mlog(1/27,)

m

p

We will show by induction that

m—+k < 2

<— % k=12...n-m 2
Nog(1/Tm 1) @

p

Let us first consider the p values for time m + 1. Suppose that ¢ is the split interval at
time m, and let j denote a non-split subinterval, so p}” < p™. Then

et i
’ (f(t;nfl) - Mm+1 —+ g(Tn))(f(t;n) - Mm+1 + g(Tn))
et

S G ) = Mo+ () FE) = Mo + 9(7)

(g(QTn)>2 -t
S\ g(m) ) () = My + g(2m)) (F(2) — My + g(27))
since ¢(27,) > g(7,)

_ (g@m)"’
B g(Tn) &
A2t log(1/27,) .
© Arlog(1/7,) Pi

B log(1/27,) .,
= Flog(1/m) ¥
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log(1/27,) .,

S “og(1/m) ”
log(1/27,) 1

<2 Nos by (1)
_ olog(1/27,) 1
~ Tlog(1/7,) Alog(1/27,)
2
~ Mog(1/7,)
-2
~ Alog(1/Tmy1)”

Next consider a child of the split subinterval 7. Since we are splitting the smallest
subinterval, t/* —ti* | = 7, = 27, and

m—+1 Tn
P T ) = Myt + 9n)) (F(bns1) — Mong1 + 9(7))
S )
_ 1
o Alog(1/7,)
_ 1
- AMog(1/Tmy1)

We have established the base case for the induction. Now let’s consider iteration m +
k+ 1,1 < k < n — m. For the induction hypothesis, assume that

ko 2 2
S Mog(1/Tyar)  Mog(1/7,)

p

Suppose we evaluate at ,,, 11 = (t7"% + ") /2. Then

FEER) + f(E)
2

f(tnz+k+1) = + 57

where f € F,, implies that (let 7; = ¢ * — ¢ 1k)

+6— f(EMR)| < V/Ti/2 - 2y/1og(n)

‘f(t?i*lk) + ()
2

and

‘f(t?lﬁk) + F(E)

5 +0 — f(ts)

< VTi/2 - 2+/log(n).
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Equivalently,

) -
2

FE

and

FE

FE ) -
2

Therefore,

et -

+o| <
+5‘<

m-+k
fer

2
)

m-+k
FE

= 2

J. Calvin

2T; log(n)

2T; log(n).

2T; log(n)

2T; log(1/ 7).

Then (considering without loss of generality the left child)

PR 1 () = M+ 9(m)) (£ () = M + 9(7))
pZ”““ 2 (f(tﬁk) m+k+1 + g( n))(f( m+k+1) - Mm+k+1 + Q(Tn))
<l (") = Mk + 9(r)) (f () = Misi + 9(7a))
T 2(f(P) = Mgk + 9(m)) (f (bmii1) = Minrsr + 9(7)
1 () = My + g(r)
2 (f tmtrt1) = Mingig1 + 9(70))

< [FE7F) ~

— Moy + g(m) + | F(EFF) —

Making the substitution

Mk + Q(Tn)] [f(tyﬁik)

= Mokt g(ma) + f(£715)

FETN/2 =2 10g(1 /)]

VI Mt ()
= > 0,
RO — Mo+ g()
the last expression is
pzn+k+1 -
<
N 1 \/pm+k\/210g (/)

T

<
RERS SR ERFIEES

by the induction hypothesis if A >

<1

4. The proof by induction of (2) is complete.
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Let N, (f) denote the o-algebra generated by (f(t1), f(t2), ..., f(tn))-

Lemma 2. If1 > ~ 0.707/\/X, then for all f € F,,

1
B> 7
2
P(An < By(m) |Nn(f)) >1—nl"207A,
Note that the lower bound converges to 1 as n — oo by our assumption on (3.

Proof. Conditional on N, (f), the minimizers over distinct subintervals [t} ;,t?] and

i—10 %1
[t"_1,t}] are independent with distribution

P, i, 1) <0) = o (e (1) ~0)(U01) )

B Ss<t} %
for y < min(f(¢? ), f(t*)); see (Shepp, 1979). Therefore,

P (A < Bg(ra) | Na(f))
2

= H (1 —exp ( - m(f(t?q) — M, + B9(a))
f

3

() - 34, + Pa(r) )

WV
—
=
|
oD
=
s
—
|
[\
YRS
>
S
N
3
N—
SN—
SN—

Define the linear interpolation L,, of the { f(¢})} by

Lo(s)= =5 p(m )+

Tt

o <s<ty, 1<i<n.

n
s—1t

G =t

f(t7),
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Lemma 3.

Proof. The first inequality follows from

1

1
~ dt dt
;pi - / L)~ My 1 g(m)? ~ _/O (Ln(t) = M +g(mn))*

t=0 t
For the second inequality,

1

1
—~ dt B dt
;pi - / (Ln(t) = Mo+ g(10))? /0 (Ln(t) = M+ g(1) — Ap)*

t=0 t

Set

A= {18 < ot}

By Lemma 2, P(A,,) — 1. On A,
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Lemma 4. Define the events

. £(5) = Lus) _
B, = {lrg%xn t?jngasxg o e S Vlog(n) ¢,

pr={ iy SOl

1<i<n t? | <s<Ly =t

> — log(n)}~

Then P(B), P(B,;

) — lasn — oo.

Proof. Let
L,
Vie o [ Lu(s)
tr sty (U — 17

which is the maximum of a standard Brownian bridge. Then P(Y; > y) = exp(—2y2),
y = 0; see (Shepp, 1979) and since the Y;’s are independent,

P( max Y; < log(n)) =(1 —exp(—2log(n)))n = (1 - _)" — 1.

1<i<n

Lemma 5. For f € F,,

i — b
max —
1<in (min{ f (£, f(87)} — M + g(70))?
< max ti —tig < A(N)

S 1<i<n (min{ f(£7 ), F(t7)} — My, + g(m0))2  log(n)’

1 1 2\?

Proof. Since M,, > M, we need only prove the second inequality. Observe that

-t
1iSn (min{ f(t7_1), FUP)} — M + g(1n))2
- -t
TR (F(E)) = Mo + gra))(F () — My + g(7)
|f(t7) = f(& )] )
. (1 * min{f(t7_,), f(t7)} — My + g(72)

. £ = £t )]
sP <1 TR min{ (), ()} - M, + gm))
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=p<L+mw|ﬂwyﬁﬁlﬁl N )
Sty mn{J), FE)} — M+ g(m)

[F(8) — ()
NG

Vi~ )
X m .

1S min{f (6, F(t7)} — M, + g(rn)

Setting

w __ N
ti ti—l

1%11'222 min{ f(t7_,), f(t})} — My 4 g(7)’

Zn =

the last inequality reads

r) S )

Now use the fact that f € F), and p™ < 2/\1og(n) (from Lemma 2) to get

zfl < 2 (1+2\/10g(n) ~zn),

Alog(n)

or

< 1 Y< Lo, 2
2y — ———] < .
Ay/log(n) A2log(n)  Alog(n)

This implies that

1 1 1 2
R Y
i /log(n) </\ A2 /\>

which is the desired inequality.

Lemma 6.
1
| 1 dt "
nli%op<%_/o =+ 2"
1
9 dt
) 4t=/o (F(t) - M+9(Tn>>2> -
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Proof.

/ M +9(Tn))

t=0

n

i ds
2 / (Lu(s) — M + g(r) 21+ ]Gl

7’:197 )—M+g(Tn)

ti

ds

I
H'M:
I
|

V=t La(s)=MA+g(mn

On the event F,, N B;}, using Lemma 5,
f(s) = La(s)  VE — 1,
=10 | Ly(s) — M+ g(mn)

_ J(8) = Ln(s) VE—T,
S —, min(f(t7,), f(t1) — M + g(7,)
A(N)1/?
log(n) - ——t—
&(r) log(n)

1 1 2
=(=+{/=+3)<1/2
<)\+ )\2+>\> /

if A > 16. Similarly, on the event F,, N B,;,

f(S) - Ln(s) \/W > —1/2
B =B, Lu(s) - M +g(ra) ~

if A > 16. Therefore, on F,, N B, N B,

1
/ M+ng sz

t=0
and
/ d
t
/ (J(8) = M + (7)) sz
if A > 16.

s=t;—1 (Ln(s) _M+g(7n)) ( + f(s)=Ln(s) \/W ))2

481

Having established bounds for 3~ p? in terms of [(f(t) — M + g(7,,))~2dt, we next

turn to estimating the growth of the integrals as 7, | 0.
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Lemma 7. Asn — oo,

fl dt
t=0 (f()=M+g(mn))2 P

4log(1/g(7n))

Proof. Let t* denote the (first) global minimizer of f. Conditional on (¢*, f(t*), f(1)),
the process (f(t* +s) — f(t*): 0 < s < 1 — t*) is a 3-dimensional Bessel bridge over
[0, 1 —¢*] with terminal value f(1) — f(¢*). Let Y} be a 3-dimensional Bessel bridge over
the interval [0, ] with terminal value Y3 (¢) = b, defined on a complete probability space
(Q,F, Py), and let F5 = o{Y3(u),u < s} be the o-algebra generated by the process up
to time s, 0 < s < t. To prove the theorem it suffices to show that

f =0 (Ys( s)+e)2
2log(1/e)

as € | O (the factor of 2 in the denominator is because we are only considering the integral
to the right of ¢*; the integral to the left gives a similar contribution).
Define the event

_ f =0 (Yb(9)+f)2
Ey,={ ————2"—" —15.
b { 2log(1/e) - }
The event E}, is measurable with respect to the o-algebra

Foy =) Fe.

s>0

Since Y}, is a Markov process, the Blumenthal 0— 1 law implies that P,(Ej) € {0,1}. We
will show that P,(E}) = 1, and since convergence with probability 1 implies convergence
in probability, this will complete the proof.

Let Y be an (unconditioned) 3-dimensional Bessel process, and set Y(s) =
min(1,Y(s)) and let L = sup{s: Y (s) < 1} denote the last exit time of Y from [0, 1].
Now

[lyeeds [ ds e
/(Y(S)+e)2 /(Y(s)+e)2 <t/(T+e) <t

s=0 s=0

and

t
Liv<iyds / Lyw<npds _ L—t
(Y(s) + €)? (Y(s)+€)? =~ Ve

L~

s=
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where V' = min;,, Y (u), and so

f =0 (Y(s)+e)? s)+e)2 R

2log(1/e) !

if and only if

f Liv(s)<1y ds
2
=0 (Y (s)+e) 1

21log(1/e)

The local time (occupation density) of the 3 dimensional Bessel process is the square of
a 2-dimensional Bessel process which has the same distribution as the squared-modulus
of a 2-dimensional Wiener process. Therefore we can write

7 Ly(eipds _ / [Bu(w)? + Ba(y)?)dy
(¥ (s) + 97 W+ P

s=0 y=

)

and it suffices to show that

fl B(y)ztiy
y=0 (y"!‘f) —>1

log(1/e)

with probability 1, where B is a Wiener process.
Let us consider the process Z(t) = F(B(t),t), where F(z,t) = —2%(1 +t)~L.
By Ito’s formula,

Z(t):Z(O)+/(fJ<rsi)2ds—2/ ffidB(s)— / lcfs,

s=0 s=0 s=0
or
B(s)® B [ d [ B(s)dB(s)
S t S S S
ds = ———— 2 e 3
1+s2™ 1+t+/1+s+ / 1+s 3
s=0 s=0 s=0
t
B(t)2 B(s)dB(s)
= log(1+1t) — 2 e 4
og(l +1) 1+t + / 1+s )
s=0
Therefore,
(1/€ 1/e B(s)dB(s
ft 0 t+e)2dt log(1+1/€) — 1+{/ + 2f ( 1+s( ) 5)

log(1/e) log(1/e)
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B(1/¢)? //
log(1/e)(1+ 1/€) log 1/6 1—|—8

=14o0(1)—

- (6)

The third term converges almost surely to 0 by the law of the iterated logarithm. The
fourth term is an L2-bounded martingale, since

1/c ) 1/e

E(log(21/€) / B(sl)ﬁ(S)> = (@)1_/04?&)2@ )
) 1

B (ﬁ) _/0 ﬁds 8)

_<bg(21/6)>2<10g(1+1/6)+1ﬁ1/61)ﬂo ©)

as ¢ — 0. Therefore the fourth term is an L2-bounded martingale, and so converges
almost surely (to 0).
We have now shown that
fl Bi(y)® dy
y=0_ (y+9? 4
log(1/e)

almost surely, and so P(F) = 1.
Finally, 1 = P(E) = EP(E|Y (t)),and so P(E|Y (t) = y) = 1 for almost all y > 0.
By monotonicity, P(E|Y (t) = y) = 1 forall y > 0, and so P(Ep) = 1.

Lemma 8. Let

1
orlgkgn}.

=S fpF > f
{ log(1/7,) (A 4 2v/X)
Then F,, C Gy, in particular, P(G,,) — 1.

Proof. Suppose k < nand f € F),. Let i be an index such that f (tf) = My, and observe
that (letting T; = tk — tk 1)

P Z P
B th—tF
g (f(thy) — Mk+9(7k))
1
VAT og(L/T) (11 (t) = FE_DI/NVT + /A7 /To) log(1/7)

1

2 N os (1) — JEE /T + Aos(1/70)




An Adaptive Univariate Global Optimization Algorithm and Its Convergence Rate 485

1
=z since F,
> i gt + Vakeam) et €
> 1 since 7, < 1/n
VA log(1/71)(24/1og(1/) + /Alog(1/71))
> ! since 7, < Tk
\/)\ log(l/Tn)(Z\/Iog(l/Tn) + \/)\ log(1/7))
1
©log(1/m) (A +2VA)

Lemma 9.

(sz T 8(A+2V) 2+2\/ 2)2 log(1/7,) )
Proof. Let f € F,. Then for any k < n

& 1

P2 om0t 2V

by Lemma 8. Suppose that sublnterval [t ¢! ] was produced at time k; < n; say p* =
pj k1 = ( ‘ —|—t )/2, and f(t% )2 f( ). Letm =m(n) = mlnlglgnkl,and
observe that m( ) — oo as n — oo since the observations become dense. Assume that
f € F, NEF,.Sincem =m(n) — oo, P(F,, N F,) — 1asn — oo.

Since f € F,,,

1
ki _ ki > )
P Yo/ (0 + 2V

Since we assume that f (tfi_l) > f (tfl ), the smaller child of the split will have

th —thi
(F(E5)) = M1 + g(mi, 1)) (f(E
ki (F(£57 1) — My, + g(7%,))

(F(£57 1) = M, 1 4 9(Thi12))(
Lo (P = M, + g(me) (F(E5) = M, + (7))
27 () = Miir + 9() (F(tear1) — M1 + 9(78,)
SR~ M, g (i)

ki1 _
p] -

N | =

ki+ ) Mkri‘l +g(7—ki+1))
(f(th) = My, + g(m,))
f(trit1) = My, 1 + 9(7h, 1))

N | =
hs

WV

_ 1, F(E5) =M, +9 (i, )
B 2[) (f(t?il)*Mki+9(Tki) My, — Mg, 41 )
F(E5) =My, +g(m,) F(£))) =My, +g(%,)
1
% (f(tki+1)*Mki+g(‘rki) My, — My, 41 )

FE) My +g(rey) S~ M, +g(ri,)
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F(E ) =My, +g(ms,)

14, F(E) =My, +9(7r.,)
= Ep k; )
(.f(tj,l)_Mki"Fg(Tki) My, — My, 41 )2
FS) =My +g(re,)  F(£)))— Mg, +g(%,)

since f(t?"_l) > f(t). Next observe that since f € F), and f(t?i_l) > f(tf"'),

) ) ) k; ki
_ F ) = My, +9(mi) - FUhy) = f(85) G =t

f(tfz) - Mki + g(Tk‘i) a t? — tfl—l f(t?) - Mk‘i + g(’rkm)

AN
<1+ 2\/log(m)£ by Lemma 5
V/log(m)
— 14240,
Next suppose that My, .1 — M < g(7,+1). Then

My, — My, 1 <1
f(tfl) — My, + g(Tki)

)

and so

v 1
Rl >

p L R S
7720 242 /AN)?
and

no_ t;ﬂ - t?—l
P ) = My + g(7)) (F(E7) = My, + g(7))
ot
2 G ) = My + g ) FE) = My + g(mi11)
i1 < Fty) = My 1+ 9(Thi11) >
~ f(t7_ ) = My, 41+ 9(Thy41) + (My, 41 — M)

y f@) = My, 41+ 9(7h, 1) )

(f(t?) — My, 1+ 9(Tri 1) + (Mg, 1 — M)

R e
- My, 11—M My, 41— M
1+ 5 + 1+ 77 1

(7 ) =M, +1+9(Tk;+1) — My, +1+9(Tk; +1)

1 1
ki+1
Z P <1+Mki+1M>(1+ Mki_HM)

9(Th;+1) 9(Th,;+1)
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Since f € F,,, Lemma 2 implies that

(Ut D) (b DS e

k=m

If A > 2, then
n (o] 1
dmas D Emo
k:m k=m
as m — oo. Therefore,

IR

k=m

On the set
N (M — M
Fmﬁan ﬂ{k—gl}
k=m g(Tk)
we have
~ 1 Bt I~ g, 1
P =~ Pi n 5P T
; 42 T A2 (24 2(/AN)?
1

8(2 + 2/AN)2 log(1/7) (A + 2VA)

We have shown that with probability approaching 1,

5@ 2y DT log(1jm) O 2V < 254 S Plee ().

which implies that

Tn) < log(1/7,) - log (1/9())

= 3 1os(1/7) - (108(1/7) ~ loglog(1/7).
where

c(A) = 40(2+ 20/AN)) (A + 2VA).
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Set x;,, = log(1/7,); then the previous inequality reads

2_n
c(N)

Recall that ;,, — oo. Then x,, > /2n/c()\), orlog(1/7,) = \/2n/c(\), and so

9(r) = /T log(1/7) < (exp(—v/2n/c(N)v/2n/e(N) )2,

By Lemma 2 P(A,, < g(7,)) — 1, and so

< xi — Tn IOg('Tn)

P(An < (2n/c(V) ! exp ( - % 2n/c()\)>> 1.

This completes the proof of Theorem 1.

Acknowledgement. This material is based upon work supported by the National Science
Foundation under Grant No. CMMI-0825381.
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Adaptyvus vienmatis globalios optimizacijos algoritmas
ir jo konvergavimo greitis Vinerio mato atveju

James CALVIN

ApraSytas adaptyvus algoritmas skirtas aproksimuoti vieno kintamojo funkcijos globaluji mi-
nimuma. Paklaidos konvergavimo greitis yra ivertintas darant prielaida, kad tikslo funkcijos atsi-
tiktinés pasiskirs¢iusios pagal Vinerio mata.



