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Abstract. Many biological processes and objects can be described by fractals. The paper uses a
new type of objects – blinking fractals – that are not covered by traditional theories considering
dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can
be successfully studied by a recent approach allowing one to work numerically with infinite and
infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex pro-
cesses of growth of biological systems including their season changes. The new approach allows
one to give various quantitative characteristics of the obtained blinking fractals models of biological
systems.
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1. Introduction

Fractals have been very well studied during the last few decades and have been used
in various scientific fields including biology to model complex systems; see numerous
applications given in papers (Devaney, 2003; Falconer, 1995; Hastings and Sugihara,
1994; Peitgen et al., 1992; Strongin and Sergeyev, 2000). The fractal objects are con-
structed by using the principle of self-similarity: a given basic figure (some times slightly
modified in time) infinitely many times repeats itself in several copies. A simple exam-
ple of such a construction is shown in Fig. 1. The basic figure shown in Step 1 is then
repeated and already at Step 3 can be viewed as a simple model of a tree.

The introduction of fractals has allowed people to describe complex systems having
a fractal structure in an elegant and very efficient way, to construct their computational
models, and to study them. However, it is important to mention that mathematical analysis
of fractals; except, of course, a very well developed theory of fractal dimensions (see
Devaney, 2003; Falconer, 1995; Hastings and Sugihara, 1994; Peitgen et al.), very often
continues to have mainly a qualitative character. For example, tools for a quantitative
analysis of fractals at infinity are not very rich yet (e.g., even for one of the mostly studied
fractals – Cantor’s set – we are not able to count the number of intervals composing the
set at infinity).
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Fig. 1. A simple fractal model of a tree.

Nowadays, fractals usually are used to describe objects (see, e.g., a tree presented in
Fig. 1, Step 3) where one basic figure often called generator can be determined; they are
rarely used for modeling processes where appearance of the studied objects is changed in
time without preserving the generator. For example, the model from Fig. 1 cannot be used
to describe a tree if we take into account season changes because in summer the tree has
green leafs, in autumn the leafs are yellow, in winter there are no leafs at all and branches
of the tree are under the snow. Thus, we are not able to distinguish one basic figure that
maintains its form during the whole process and can be observed at all four seasons.

In nature, there exist processes and objects that evidently are very similar to clas-
sical fractals but cannot be covered by the traditional approaches because several self-
similarity mechanisms participate in the process of their construction. A new method-
ology; see Sergeyev (2003, 2010b) allowing one not only to study traditional fractals
but also to introduce and to investigate a new class of objects – blinking fractals – that
are not covered by traditional theories studying self-similarity processes can be used for
describing such processes.

The new methodology allowing one to work with such processes can be found in
a rather comprehensive form in Sergeyev (2008, 2010b) downloadable from Sergeyev
(2004); see also Sergeyev (2003) written in a popular manner and the survey (Lolli,
to appear) where the new methodology is considered in a historical panorama of views
on infinities and infinitesimals). Numerous examples of the usage of the methodology
(Sergeyev, 2008, 2010b) for mathematical modeling in several fields can be found in
papers (De Cosmis and De Leone, to appear; Margenstern, 2011, to appear; Rosinger,
2011; Sergeyev, 2003, 2007, 2009b, 2009c, 2009d, 2010a, 2011; Sergeyev and Garro,
2010; Vita et al., to appear; Zhigljavsky, submitted; Žilinskas, to appear). The goal of the
entire operation is to propose a way of thinking that would allow us to work with finite,
infinite, and infinitesimal numbers in the same way and to create mathematical models
better describing the natural phenomena.

In this paper, blinking fractals (Sergeyev, 2007) are used to model season changes and
processes of growth in biological systems. The paper not only proposes such a modeling
but also describes mathematical tools allowing one to study the properties of processes of
growth in the limit even in the situations where various kinds of divergency take place.
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The rest of the paper is organized as follows. Section 2 introduces the notion of blink-
ing fractals, presents some examples, and briefly introduces the methodology used in
the further investigation. In Section 3, it is shown how the blinking fractals can be in-
vestigated by using the infinite and infinitesimal numbers from Sergeyev (2008, 2010b).
Section 4 shows how processes of growth of biological systems can be modelled by using
the blinking fractals, particularly, the new applied approach to infinity is used to study a
model of the growth of a forest. Section 5 concludes the paper.

In conclusion of the Introduction I am happy to dedicate this paper to Professor Jonas
Mockus in the occasion of his 80 year jubilee.

2. Blinking Fractals and Infinite Integers

Before going to a general definition of blinking fractals let us consider a process shown
in Fig. 2. At the first moment we see a grey square with the side equal to 1. At the second
moment we see two white circles with the diameter equal to 1

2 . Then each white circle is
substituted by to grey squares 1

2 on side. This process of substitution continues in time as
it shown in Fig. 2

It is clear that the process shown in Fig. 2 is not a fractal process because at each
even iteration squares are not transformed in smaller copies of themselves but in circles
(see Figs. 2 and 3, left). Analogously, at odd iterations circles are transformed in squares
instead of smaller circles (see Figs. 2 and 3, right). Thus, the process shown in Fig. 2 is
a mixture of two fractal processes with the rules shown in Fig. 4: the first of them works
with grey squares and the second with white circles.

Fig. 2. Results of the first five iterations.
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Fig. 3. At each even iteration every square with a side equal to h is substituted by two circles having the
diameter h

2
. At each odd iteration every circle with a diameter d is substituted by two squares with d on side.

Fig. 4. Two traditional fractal processes that can be extracted from the blinking fractal process shown in Fig. 2.

Traditional approaches are not able to say anything about the behavior of this process
from Fig. 2 at infinity. Does there exist a limit object of this process? If it exists, what
can we say about its structure? Does it consist of white circles or grey squares and how
many of them take part of this limit object? All these questions remain without answers
if traditional mathematical tools are used for analysis of such processes.

In this paper, we give answers to these questions by using a new approach developed
in Sergeyev (2003, 2008, 2010b) for dealing with infinite, finite, and infinitesimal num-
bers. The new methodology will be applied to study traditional fractals and new objects
constructed using the principle of self-similarity with an infinite cyclic application of
several fractal rules. These objects are called hereinafter blinking fractals.

Usually, when mathematicians deal with infinite objects (sets or processes) it is sup-
posed that human beings are able to execute certain operations infinitely many times
(Cantor, 1955; Conway and Guy, 1996; Loeb and Wolff, 2000; Robinson, 1996). For ex-
ample, in a fixed numeral system it is possible to write down a numeral1 with any number

1We remind that numeral is a symbol or group of symbols that represents a number. The difference between
numerals and numbers is the same as the difference between words and the things they refer to. A number is
a concept that a numeral expresses. The same number can be represented by different numerals. For example,
the symbols ‘7’, ‘seven’, and ‘VII’ are different numerals, but they all represent the same number.
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of digits. However, this supposition is an abstraction because we live in a finite world and
all human beings and/or computers finish operations they have started.

The new computational paradigm introduced in Sergeyev (2003, 2008, 2010b) does
not use this abstraction and, therefore, is closer to the world of practical calculations
than traditional approaches. Its strong computational character is enforced also by the
fact that the first simulator of the Infinity Computer able to work with infinite, finite,
and infinitesimal numbers introduced in Sergeyev (2003, 2008, 2010b) has been already
realized Sergeyev (2004, 2009a).

The main idea of the new approach consists of the possibility to measure infinite and
infinitesimal quantities by different (infinite, finite, and infinitesimal) units of measure.
A new infinite unit of measure has been introduced for this purpose as the number of
elements of the set N of natural numbers. The new number is called grossone and is
expressed by the numeral ①. It is necessary to stress immediately that ① is not related
either to non-standard analysis or to Cantor’s ℵ0 and ω. Particularly, ① has both cardinal
and ordinal properties as usual finite natural numbers Sergeyev (2008, 2010a, 2010b). In
fact, infinite positive integers that can be viewed through numerals including grossone
can be interpreted in the terms of the number of elements of certain infinite sets.

For instance, the set of even numbers has ①
2 elements and the set of integers has 2①+1

elements Sergeyev (2008, 2010a, 2010b). Thus, the new numeral system allows one to
distinguish within countable sets many different sets having the different infinite number
of elements. Analogously, within uncountable sets it is possible to distinguish sets having,
for instance, 2① elements, 10① elements, and even ①① − 1, ①①, and ①① + 1 elements and
to show Sergeyev (2008, 2010a, 2010b) that

①

2
< ① < 2①+1 < 2① < 10① < ①① − 1 < ①① < ①① + 1.

It is worthwhile to emphasize that since ①, on the one hand, and ℵ0 (and ω), on the
other hand, belong to different mathematical languages working with different theoretical
assumptions, they cannot be used together. Analogously, it is not possible to use together
Piraha’s ‘many’; see the primitive numeral system described in Gordon (2004) and the
modern numeral 4.

Formally, grossone is introduced as a new number by describing its properties pos-
tulated by the Infinite Unit Axiom (IUA) Sergeyev (2003, 2008). This axiom is added to
axioms for real numbers similarly to addition of the axiom determining zero to axioms of
natural numbers when integer numbers are introduced. It is important to emphasize that
we speak about axioms for real numbers in the following applied sense: axioms do not
define real numbers, they just define formal rules of operations with numerals in given
numeral systems (tools of the observation) reflecting so certain (not all) properties of the
object of the observation, i.e., properties of real numbers.

Inasmuch as it has been postulated that grossone is a number, all other axioms for
numbers hold for it, too. Particularly, associative and commutative properties of multi-
plication and addition, distributive property of multiplication over addition, existence of
inverse elements with respect to addition and multiplication hold for grossone as for fi-
nite numbers. This means that the following relations hold for grossone, as for any other
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number

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (1)

The introduction of the new numeral allows us to use it for construction of various new
numerals expressing infinite and infinitesimal numbers and to operate with them as with
usual finite constants. As a consequence, the numeral ∞ is excluded from our new math-
ematical language (together with numerals ℵ0, ℵ1, . . ., and ω). In fact, since we are able
now to express explicitly different infinite numbers, records of the type

∑∞
i=1 ai are not

sufficiently precise. It becomes necessary not only to say that i goes to infinity, it is nec-
essary to indicate to which point in infinity (e.g., ①, 7① − 1, 3①2 + 4, etc.) we want to
sum up. Note that for sums having a finite number of items the situation is the same: it is
not sufficient to say that the number of items in the sum is finite, it is necessary to indicate
explicitly the number of items in the sum.

The appearance of new numerals expressing infinite and infinitesimal numbers gives
us a lot of new possibilities. For example, it becomes possible to develop a Differential
Calculus (Sergeyev, 2009d) for functions that can assume finite, infinite, and infinitesimal
values and can be defined over finite, infinite, and infinitesimal domains avoiding indeter-
minate forms and divergences (all these concepts just do not appear in the new Calculus).
This approach allows us to work with derivatives and integrals that can assume not only
finite but infinite and infinitesimal values, as well. Infinite and infinitesimal numbers are
not auxiliary entities in the new Calculus, they are full members in it and can be used in
the same way as finite constants.

These numerals give us a possibility to study traditional fractals and blinking fractals
at different points of infinity and to use them for modeling the nature. In this section,
we investigate the blinking fractal introduced in Section 2 and infinite sequences will
be used for this goal. Naturally, we need first to understand what can we say about the
infinite sequences using the new mathematical language.

3. Quantitative Analysis of Blinking Fractals

We start by reminding traditional definitions of the infinite sequences and subsequences.
An infinite sequence {an}, an ∈ A, n ∈ N, is a function having as the domain the set
of natural numbers, N, and as the codomain a set A. A subsequence is a sequence from
which some of its elements have been cancelled. The IUA allows us to prove the following
result.

Theorem 1. The number of elements of any infinite sequence is less or equal to ①.

Proof. The IUA states that the set N has ① elements. Thus, due to the sequence definition
given above, any sequence having N as the domain has ① elements.

The notion of subsequence is introduced as a sequence from which some of its el-
ements have been cancelled. Thus, this definition gives infinite sequences having the
number of members less than grossone. �
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It becomes appropriate now to define the complete sequence as an infinite sequence
containing ① elements. For example, the sequence {n} of natural numbers is complete,
the sequences of even and odd natural numbers are not complete.

One of the immediate consequences of the understanding of this result is that any se-
quential process can have at maximum ① elements and Sergeyev (2003, 2008) it depends
on the chosen numeral system which numbers among ① members of the process we can
observe.

EXAMPLE 1. Let us consider the set, N̂, the set of extended natural numbers indicated
as N̂ and including N as a proper subset

N̂ =
{
1, 2, . . . , ① − 1, ①, ① + 1, . . . , ①2 − 1, ①2, ①2 + 1, . . .

}
. (2)

Then, starting from the number 1, the process of the sequential counting can arrive at
maximum to ①

1, 2, 3, 4, . . . ① − 2, ① − 1, ①︸ ︷︷ ︸
①

, ① + 1, ① + 2, ① + 3, · · ·

Starting from 2 it arrives at maximum to ① + 1

1, 2, 3, 4, . . . ① − 2, ① − 1, ①, ① + 1︸ ︷︷ ︸
①

, ① + 2, ① + 3, · · ·

Starting from 3 it arrives at maximum to ① + 2

1, 2, 3, 4, . . . ① − 2, ① − 1, ①, ① + 1, ① + 2︸ ︷︷ ︸
①

, ① + 3, · · ·

Similarly to infinite sets, the IUA imposes a more precise description of infinite se-
quences. To define a sequence {an} it is not sufficient just to give a formula for an. It is
necessary to indicate explicitly its number of elements.

EXAMPLE 2. Let us consider the following three sequences, {an}, {bn}, and {cn}:

{an} = {2, 4, . . . 2(① − 1), 2①},

{bn} =
{

2, 4, . . . 2
(

2①

5
− 1

)
, 2 · 2①

5

}
, (3)

{cn} =
{

2, 4, . . . 2
(

4①

5
− 1

)
, 2 · 4①

5

}
. (4)

They have the same general element equal to 2n but they are different because they have
different number of members. The first sequence has ① elements and is thus complete, the

other two sequences are not complete: {bn} has 2①
5 elements and {cn} has 4①

5 members.
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Note also that among these three sequences only {bn} is a subsequence of the sequence

of even natural numbers because its last element has the number 2①
5 � ①

2 . Since ① is

the last even natural number, elements of {an} and {cn} having n > ①
2 are not natural

but extended natural numbers; see (2).

Thus, to describe a sequence we should use the record {an : k} where an is, as usual,
the general element and k is the number (finite or infinite) of members of the sequence.
In connection to this definition the following natural question arises inevitably. Suppose

that we have two sequences, for example, {bn : 2①
5 } and {cn : 4①

5 } from (4) and (4).
Can we create a new sequence, {dn : k}, composed from both of them, for instance, as it
is shown below

b1, b2, . . . , b 2①
5 −2, b 2①

5 −1, b 2①
5

, c1, c2, . . . , c 4①
5 −2, c 4①

5 −1, c 4①
5

and which will be the value of the number of its elements k?
The answer is ‘no’ because due to the definition of the infinite sequence, a sequence

can be at maximum complete, i.e., it cannot have more than ① elements. Starting from
the element b1 we can arrive at maximum to the element c 3①

5
being the element number

① in the sequence {dn : k} which we try to construct. Therefore, k = ① and

b1, . . . , b 2①
5

, c1, . . . , c 3①
5︸ ︷︷ ︸

① elements

, c 3①
5 +1, . . . , c 4①

5︸ ︷︷ ︸
①
5 elements

.

The remaining members of the sequence {cn : 4①
5 } will form the second sequence,

{gn : l} having l = 4①
5 − 3①

5 = ①
5 elements. Thus, we have formed two sequences, the

first of them is complete and the second is not.
The introduced more precise description of sequences allows us to observe fractal

processes at different points of infinity by indicating the number of a step, n, 1 � n � ①,

that we want to study. For example, for our blinking fractal from Fig. 2 we are able to say
that we observe grey squares at all odd steps and white circles at even steps independently

of the fact n is finite or infinite. Particularly, since due to the Infinite Unit Axiom ①
2 is

integer, for n = ① we have white circles and for n = ① − 1 – grey squares.
In order to be able to measure fractals at infinity (e.g., to calculate the number of

squares or circles at a step n in our blinking fractal from Fig. 2), we should reconsider
the theory of divergent series from the new viewpoint introduced in the previous sections.
The introduced numeral system allows us to express not only different finite numbers but
also different infinite numbers. Therefore (Sergeyev, 2003, 2008) we should explicitly
indicate the number of items in all sums independently on the fact whether this number
is finite or infinite. We shall be able to calculate the sum if its items, the number of items,
and the result are expressible in the numeral system used for calculations. It is important
to notice that even though a sequence cannot have more than ① elements, the number
of items in a sum can be greater than grossone because the process of summing up not
necessary should be executed by a sequential addition of items.
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For instance, let us consider two infinite series

S1 = 1 + 2 + 4 + 8 + 16 + · · · , S2 = 1 + 2 + 1 + 2 + 1 + 2 + 1 · · ·

The traditional analysis gives us a very poor answer that both of them diverge to infinity.
Such operations as S1 − S2 or S1

S2
are not defined. From the new point of view, the sums

S1 and S2 can be calculated because it is necessary to indicate explicitly the number of
items in both sums.

Suppose that the sum S1 has m + 1 items and the sum S2 has n items:

S1(m) = 1 + 2 + 4 + 8 + · · · + 2m︸ ︷︷ ︸
m+1

, S2(n) = 1 + 2 + 1 + 2 + 1 + · · ·︸ ︷︷ ︸
n

. (5)

Let us first calculate the sum S1(m). It is evident that it is a particular case of the sum

Qm =
m∑

i=0

qi = 1 + q + q2 + · · · + qm, (6)

where m can be finite or infinite. Traditional analysis proves that the geometric series∑∞
i=0 qi converges to 1

1−q for q such that −1 < q < 1. We are able to give a more
precise answer for all values of q and finite and infinite values of m.

By multiplying the left hand and the right hand parts of this equality by q and by
subtracting the result from (6) we obtain

Qm − qQm = 1 − qm+1

and, as a consequence, for all q �= 1 the formula

Qm =
1 − qm+1

1 − q
(7)

holds for finite and infinite m. Thus, the possibility to express infinite and infinitesimal
numbers allows us to take into account infinite m too and the value qm+1 being infinites-
imal for a finite q < 1 and infinite for q > 1. Moreover, we can calculate Qm for q = 1.
In fact, in this case we have just

Qm = 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
m+1

= m + 1.

Now, to calculate the sum S1(m) it is sufficient to take q = 2

S1(m) = 1 + 2 + 4 + 8 + 16 + · · · + 2m︸ ︷︷ ︸
m+1

=
1 − 2m+1

1 − 2
= 2m+1 − 1.
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This formula can be used for finite and infinite values of m. For instance, if m = ①
2 − 1

then S1(①
2 − 1) = 2

①
2 − 1; if m = ①

2 then S1(①
2 ) = 2

①
2 +1 − 1. Note that the sum

S1(①
2 ) has been obtained by adding 2

①
2 to the sum S1(①

2 − 1). In fact, if we subtract

from the obtained number 2
①
2 +1 − 1 this value, we obtain exactly S1(①

2 − 1):

S1

(
①

2

)
− 2

①
2 = 2

①
2 +1 − 1 − 2

①
2 = 2

①
2 − 1 = S1

(
①

2
− 1

)
.

The second sum, S2(n), from (5) is calculated as follows

S2(n) = 1 + 2 + 1 + 2 + 1 + · · ·︸ ︷︷ ︸
n

=
{

k + 2k = 3k, if n = 2k,

k + 2k + 1 = 3k + 1, if n = 2k + 1.

By giving numerical values (finite or infinite) to n we obtain numerical values for results
of the sum. If, for instance, n = 3① then we obtain S2(3①) = 4.5① because ① is even. If
n = 3①+1 then we obtain S2(3①+1) = 4.5①+1. Note, that we have no indeterminate
expressions and the results such as S2(m) − S2(n), S1(m) − S2(n), S2(m)

S2(n) , etc. can be
easily calculated.

Let us now return to fractals. First of all, it is evident that the number of circles or
squares at a step i, 1 � i � ①, in the blinking process from Fig. 2 is defined by the
sum S1(i − 1). It is important to remind that, due to the IUA, a process cannot have
more than grossone steps but a sum can have more than grossone items because it can
be calculated in parallel (it is important that it is not calculated in sequence). Thus, if we
consider the process from Fig. 2, then in S1(i) it follows 1 � i � ①. It is possible to
calculate S1(i), i > ①, if this is done without any connection to processes (i.e., S1(i) can
be computed in parallel) or in connection with another process with other different initial
conditions. For instance, starting the process from Fig. 2 from two circles instead of one
square, it is possible to arrive to S1(① + 1), see discussion in Example 1).

We conclude this section by calculating the side of the squares, s(i), i = 2k − 1, 1 �
k � ①

2 , and the diameter of circles, d(i), i = 2k, 1 � k � ①
2 , for the blinking fractal

from Fig. 2. It is easily to show that

s(i) =
1

2k−1
, i = 2k − 1, 1 � k � ①

2
,

d(i) =
1
2k

, i = 2k, 1 � k � ①

2
.

For finite values of i we obtain finite values of s(i) and d(i), whereas for infinite values

of i we obtain infinitesimal values of s(i) and d(i). For example, for i = ①
3 it follows

that we have white circles (because due to the IUA, for all finite integer n the numbers of

the form ①
n are integer and, therefore, i = ①

3 is even) and their diameter d(①
3 ) = 2− ①

6 .

Analogously, for i = ①
3 − 1 we have grey squares having the side s(①

3 − 1) = 21− ①
6 .

Thus, the new infinite and infinitesimal numerals allow us to observe and to measure
the traditional and blinking fractals at different points of infinity.



Using Blinking Fractals for Mathematical Modeling 569

4. A Blinking Fractals Model of the Growth of a Forest and Its Analysis at Infinity

The analysis performed in the previous section allows us to pass to modeling processes
in nature having a blinking fractals structure. Without loss of the generality we consider
biennial plants (called hereinafter for simplicity trees) that will be observed four times
a year: in spring, in summer, in autumn, and in winter. The process of growth starts in
spring by planting two small trees (see Fig. 5, spring) in a line. In summer, the trees
grow up and green leafs (shown by grey color) appear. During summer new branches
appear and when we observe our trees in autumn, we see these new branches and leafs
that meanwhile have became yellow (shown in Fig. 5 by the light grey color). When we
observe our small forest in winter, there are no leafs and the trees are under the snow.

When we observe our forest in spring of the second year (see Fig. 6, spring), we see
that three new trees have appeared (we suppose that the growth goes along the line defined
by the first two trees). In summer of the second year, we see green leafs and observe that

Fig. 5. The first year of growth.
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Fig. 6. The second year of growth.

the new trees have grown up but the old two trees are not able to grow up and remain
the same. In autumn, all five trees have the same measure and yellow leafs. In winter, all
of them are under the snow. During the winter two old trees die and at their places new
young trees appear. Two more new trees appear also at the free places on the left and the
right ends of our forest. Thus, in spring of the third year we observe the situation shown
in Fig. 7.

The process then continues to infinity and at each place where a tree appears we can
observe the two years cycle shown in Fig. 8. It is evident that the described model is not
a fractal. By using traditional mathematics we are not able to answer to the following
questions: How many trees and how many branches will have our forest at infinity? What
will be color of the leafs? However, we can separate from the process of growth several
processes behaving as fractals and, as a consequence, the process of growth of our forest
is a blinking fractal. The new approach introduced in the previous section will allow us
to give quantitative answers to the questions above easily.
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Fig. 7. Spring of the third year of growth.

Fig. 8. The two years cycle of growth.

Fig. 9. The winter process.

It is evident that during each season we have different basic figures and it is necessary
to consider the forest at each season separately by applying the methodology of blinking
fractals. Let us start from winter. If n is the number of the year then (see Fig. 9) we can
easily calculate the number of trees at the forest, ω(n), for each year n as follows

ω(1) = 2, ω(2) = 5, ω(3) = 7, . . . , ω(n) = 2n + 1, n � 2.
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An analogous formula for calculating the number of the trees in autumn, a(n), can be
obtained (see Fig. 10) for the autumn process

a(1) = 2, a(2) = 5, a(3) = 7, . . . a(n) = 2n + 1, n � 2.

The same formulae for calculating the number of trees can be obtained for spring and
summer, because the number of trees is the same during four seasons of each fixed year.
Note that since we observe our forest four time per year and any process, due to the IUA,
cannot have more than ① elements, the following restriction exists for the number, n, of

the years of observations of our forest: 1 � n � ①
4 . This means, particularly, that the

number of the trees at the last year a(①
4 ) = ①

2 + 1.
Although the number of the trees does not change during each fixed year, the changes

take place for the number of branches; the form of the basic figures is also different for
each season. Moreover, as it emphasized in Figs. 11 and 12, the processes in summer
and spring are more complex than the processes in winter and autumn because we can
distinguish the processes of growth of the same tree (parts a) in both figures) and the

Fig. 10. The autumn process.

Fig. 11. Two summer processes.

Fig. 12. Two spring processes.
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process of substitution of an old tree by the young one (shown in parts b) in both figures).
For these two seasons we are able to calculate the number of old trees, the number of
young trees, and even the number of branches in the forest for each of four seasons.

Let us first calculate the number of young and old trees in summer indicated as
y(i) and o(i), respectively, that there are in the forest during an observation i made in
the year n (as it can be seen from Figs. 5 and 6, in spring we have the same quanti-
ties that can be calculated by a complete analogy). Since it can be done at maximum
grossone observations, it follows from description of the process of the growth that for

years n = 1, 2, 3, . . . , ①
4 , the numbers of observations corresponding to summer are

i = 2, 6, 10, . . . , 2 + 4(n − 1), . . . , ① − 2. Thus, the numbers of young and old trees in
summer are calculated as follows

y(2 + 4(n − 1)) = n + 1, 1 � n � ①

4
, (8)

o(2) = 0, o(2 + 4(n − 1)) = n, 2 � n � ①

4
. (9)

Let us calculate now the number of the branches in the forest for each season. We
indicate this number as b(i) where i is the number of observation. In winter, all the trees
have the same number of branches: three big and nine small. The observations i = 4n

correspond to winter at the year n and there are 2n+1 trees in the forest. Thus, we obtain
b(4n) = 12(2n+1). Analogously, the observations i = 3+4(n−1) correspond to autumn
at the year n and, consequently, the number of branches in autumn b(3 + 4(n − 1)) =
12(2n + 1) as well.

In spring and summer, the situation is different: young and old trees have different
number of branches (see Figs. 5, 6, 11, and 12). Let us consider summer (spring can be
studied by a complete analogy). In summer young trees have three big branches each and
old trees have 12 branches each: three big and nine small.

Remind, that the observations at the year n corresponding to summer have numbers
i = 2+4(n−1). Thus, in order to obtain the required result it is sufficient to use formulae
(9) and (9) that give us

b(2) = 6, b(2 + 4(n − 1)) = 3(n + 1) + 9n = 12n + 3, 2 � n � ①

4
.

For example, in summer of the last possible year of observation, n = ①
4 , our forest has

3① + 3 branches.

5. Concluding Remarks

Fractals have been widely used in literature to model complex systems. In this paper,
a new type of objects – blinking fractals – that are not covered by traditional theories
studying self-similarity processes have been used for studying season changes during
the growth of biological systems. The behavior of blinking fractals at infinity has been
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investigated using infinite and infinitesimal numbers proposed recently and a number of
quantitative characteristics has been obtained.

As an example of application of the developed mathematical tools for describing the
behavior of complex biological systems a new model of growth of a forest has been intro-
duced and investigated using the notion of the blinking fractals. The new mathematical
tools introduced in the paper have allowed us to separate in this complex model several
fractal processes and to perform their accurate quantitative analysis. It is evident that the
introduced model can be easily generalized to describe more complex objects and sys-
tems. For example, it is possible to introduce plants with the cycle of life superior to
two years, the plants having a more complex structure can be also described by the in-
troduced approach. In the future it is possible also to study some additional mechanisms
(for instance, plant pests or nature disasters) that influence the process of growth.
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ures.
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Žybsinči ↪u fraktal ↪u panaudojimas matematiniam biologini ↪u sistem ↪u
augimo modeliavimui

Yaroslav D. SERGEYEV

Daugelis biologijos proces ↪u ir objekt ↪u gali būti aprašyti fraktalais. Šiame straipsnyje panaudo-
tas naujas fraktal ↪u tipas, žybsintys fraktalai, kuri ↪u neapima tradicinės teorijos pagr↪istos panašumo
sau dinamika. Parodyta, kad tradiciniai ir žybsintys fraktalai gali būti sėkmingai tiriami neseniai
apibrėžtais skaitmeniškai realizuojamomis begalybėmis ir be galo mažais skaičiais. Parodyta, kad
žybsintys fraktalai tinka modeliuoti sudėtingus biologinio augimo procesus su sezoniniais svyra-
vimais. Naujasis metodas tinka ↪ivairi ↪u biologini ↪u sistem ↪u, modeliuojam ↪u žybsinčiais fraktalais,
kiekybini ↪u charakteristik ↪u ↪ivertimui.


