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Abstract. A well-known example of global optimization that provides solutions within fixed error
limits is optimization of functions with a known Lipschitz constant. In many real-life problems this
constant is unknown.

To address that, we propose a novel method called Pareto–Lipschitzian Optimization (PLO) that
provides solutions within fixed error limits for functions with unknown Lipschitz constants. In the
proposed approach, a set of all unknown Lipschitz constants is regarded as multiple criteria using
the concept of Pareto Optimality (PO).

We compare PLO to the existing algorithm DIRECT. We show that, in contrast to PLO,
the DIRECT algorithm considers only a subset of PO decisions that are selected by a heuristic
rule depending on an adjustable parameter. It means that some PO decisions are preferred to oth-
ers. By contrast, PLO regards all PO decisions without preferences and is naturally suited to utilize
highly parallel computing.

Keywords: Pareto optimality, Lipschitz functions, global optimization.

1. Introduction

1.1. Worst Case Analysis

The traditional approach to numerical optimization methods is to design a sequence of
points

xi ∈ A ⊂ RK , i = 1, . . . , n,

such that the sequence of the current best points arg min1�i�n f(xi) converges to an
exact or ε-exact 1 solution x∗ = arg minx f(x), in all the functions f from a given
family, as n → ∞. In simple cases, often connected with convexity, the convergence rate
can be determined as well.

In terms of the decision theory this approach can be considered as the “Worst Case
Analysis”. It means that the method must retain the exactness or ε-exactness in all cases,

1When ‖x∗(ε) − x∗ ‖ � ε.
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including the worst one. A disadvantage of the Worst Case Analysis is that, in general,
it requires many evaluations of f(x). To obtain the exact solution in the worst case, one
may need many iterations, if the family of problems is large. An important advantage is
a well-defined maximal deviation.

The well-known examples of Worst Case Analysis are optimization methods for the
set of Lipschitz functions with known Lipschitz constants (see, e.g., Evtushenko, 1985;
Pijavskij 1972; Shubert, 1972). Here the deviation can be defined in terms of the objective
function:

Δf = |f(x) − f(x∗)| � ω‖x − x∗ ‖, (1)

where ω is the Lipschitz constant.
For a wider family of functions, such as Lipschitz functions with an unknown con-

stant, only the deviation in terms of function arguments can be ensured.

Δx = ‖x − x∗ ‖. (2)

In Sukharev (1971), the problem of global optimization for a family of Lipschitz func-
tions with unknown Lipschitz constants is considered. In this case, the uniform grid on
a compact feasible set is the optimal passive method, in the mini–max sense (Sukharev,
1971). The term “passive” means that all the points of observations (xi) are determined
at the start. The term “observation” denotes an evaluation of the objective function f(x)
at some fixed point x, and the term “mini-max” means minimization of the maximal de-
viation. Here the number of required observations will be exponentially increasing with
the complexity of the problem. We define the complexity as the number of variables and
the accuracy of solutions (Ko, 1991).

The contribution of this paper is a definition of the problem of optimization with
unknown Lipschitz constants in terms of Pareto optimality and the Pareto–Lipschitzian
Optimization (PLO) method to realize this approach. Furthermore, advantages and dis-
advantages of PLO are compared to the existing DIRECT algorithm (Jones et al.,
1993; Finkel, 2003; Sergeyev, 2006), which is a well-known active method for opti-
mization of Lipschitz functions with unknown constants. To increase the efficiency of
search, the DIRECT algorithm uses heuristic rules that depend on some manually chosen
parameter and applies sophisticated techniques of parallel computing (Gablonsky, 2001;
He et al., 2009, 2009a, 2009c; Verstak, 2008). The DIRECT algorithm (Sergeyev, 2006)
considers a subset of non-dominated decisions. Different versions of DIRECT regard dif-
ferent subsets of non-dominated decisions determined by the corresponding heuristics.

On the contrary, the proposed algorithm explores all PO decisions, no heuristic pa-
rameters are applied. Exploration of all PO decisions is particularly suitable for parallel
computations which is important in computing. In addition, PLO honors the condition of
“no preferences”, which is the basic theoretical concept of Pareto optimality.
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2. Pareto-Optimal Approach: Dominant Analysis

The concept of Pareto optimality (see, e.g., Pardalos and Siskos, 1995; Miettinen, 1999;
Figueira et al., 2004) is traditionally used in the cases where an objective is a vector-
function fω(x), ω ∈ Ω. Here x ∈ D ⊂ RK is the control parameter, ω is a component
index of the vector-objective fω(x), and Ω is a set of all the components ω.

DEFINITION 1. The decision x ∈ D dominates the decision x∗ ∈ D, if

fω(x) � fω(x∗) for all ω ∈ Ω,

fω(x) < fω(x∗) for at least one ω ∈ Ω. (3)

Here D is the decision space and Ω is the set of components ω.

DEFINITION 2. The decision x∗ ∈ D is called Pareto Optimal (PO)2, if there is no
dominant decision x ∈ D.

3. Pareto–Lipschitzian Optimization (PLO)

We begin to explain the optimization of Lipschitz functions with unknown constants by
considering the following one-dimensional example.

Suppose that the interval D = [a, b] ⊂ R is partitioned into intervals [ai, bi],
i = 1, . . . , I of lengths li = bi − ai with midpoints ci = (bi + ai)/2 and the values
f(ci) of the function fω(x) are known only at the midpoints ci. The unknown Lipschitz
constants are regarded as different components of multiple criteria. The variables x are
represented by the intervals ai � x � bi and the function fω(x) is approximated by the
lower bounds:

Li(ω) = f(ci) − ω li/2 � fω(x), ai � x � bi. (4)

Expression (4) shows that the lower bound of the interval i is increasing with f(ci) and
decreasing with li for all ω. We compare the “quality” of different intervals by their lower
bounds. For example, we say that the interval is better for a given ω, if its lower bound is
lower. The formal definition is as follows.

DEFINITION 3. Let us compare the interval i: ai � x � bi, belonging to a compact set
D ⊂ R, with the interval j: aj � x � bj at ω ∈ Ω.

The interval i is at least as good as the interval j at ω ∈ Ω, if Li(ω) � Lj(ω).
The interval i is better than the interval j at ω ∈ Ω, if Li(ω) < Lj(ω).
The interval i is worse than the interval j at given ω ∈ Ω, if Li(ω) > Lj(ω).
The interval i is not better than the interval j at given ω ∈ Ω, if Li(ω) � Lj(ω).

2Here we consider minimization, while in maximization the inequalities should be reversed.
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DEFINITION 4. The interval i: ai � x � bi that belongs to a compact set D ⊂ R

dominates the interval j: aj � x � bj , if

Li(ω) � Lj(ω) for all ω ∈ Ω, (5)

Li(ω) < Lj(ω) for at least one ω ∈ Ω. (6)

In Mockus et al. (1997) and Mockus and Stasionis (2011) the set of Pareto Optimal (PO)
intervals is defined as follows:

DEFINITION 5. The interval j: aj � z � bj that belongs to the compact set D ⊂ R is
called Pareto Optimal (PO). 3 if there is no dominant interval i defined by (5) and (6).

4. Comparison of PLO with the DIRECT Algorithm

The DIRECT algorithm (Jones et al., 1993; Finkel, 2003; Gablonsky, 2001) for Lip-
schitzian optimization with unknown constants is defined as a heuristic without any ref-
erences to the theory of Pareto optimality. However, it can be explained in terms of PLO,
too. The basic idea of DIRECT is to select (and sample within) all Potentially Optimal
(PTO) intervals during an iteration. A formal definition of PTO intervals follows.

DEFINITION 6. The interval i is said to be PTO if there exists some rate-of-change con-
stant ω > 0 such that

Li(ω) � Lj(ω) for all j = 1, . . . , I, (7)

Li(ω) � fmin − ε |fmin|. (8)

Here ε > 0 is a constant that defines the size of the set of PTO intervals, and fmin is the
current best value.

It was shown in Sergeyev (2006) that the DIRECT intervals are not dominated, thus,
they belong to the PO set as well. However, condition (7) restricts a subset of not dom-
inated intervals. A further restriction of the subset of PO intervals is provided by condi-
tion (8) which depends on the parameter ε.

The actual performance of the DIRECT algorithm is determined by this parameter.
The adjustable parameters are useful when adapting an algorithm to specific applications.
However, it makes a comparison with other algorithms more difficult. For example, it is
not clear how to compare such an algorithm to that without adjustable parameters.

EXAMPLE 1. Let us consider three intervals:

l1 = 3, l2 = 2, l3 = 1,

f(c1) = 3, f(c2) = 2, f(c3) = 1.

3Here PO decisions are defined as indexes of PO intervals. In expression (3), PO decisions are expressed
as continuous variables x.
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The first interval is PTO, if ω > max(2, 4/3 + 2/3ε), the third interval is PTO, if
2ε < ω < 2, and ε < 1, all the three intervals are PTO, if ω = 2 and ε = 1.

Example 1 illustrates a strong dependence of the set of PTO intervals on the parame-
ter ε. The manual adaptation of this parameter to increase the efficiency of the DIRECT
algorithm for a given set of objective functions is a time consuming activity. It is note-
worthy that such parameters can be adjusted or optimized not only manually, but also
using other optimization algorithms. Specifically, the automatic adaptation of parameters
of various heuristics is investigated in Mockus (2002, 2006) using the Bayesian approach.
Some other approaches are described in Dzemyda and Sakalauskas (2009, 2011).

In terms of Pareto optimality, conditions (7) and (8) define a subset of PO intervals
which get the preferential treatment. Filtering of the PO set to a small subset may be
helpful for using a single-thread computing, because a complete PO set may be quite
large. However, using multi-processor technologies, all PO intervals can be regarded in
parallel.

EXAMPLE 2. Let us consider the intervals:

l1 = 3, l2 = 2, l3 = 1 with
f(c1) = 3, f(c2) = 2.5, f(c3) = 1.

All the three intervals are not dominated, so they belong to the PO set.
However, the second interval does not belong to the PTO set independently of ε. This

illustrates the fact that PTO is a subset of PO. In this simple example, a single interval
is excluded. In larger problems, the PTO subset represents only a small part of the entire
PO set.

Numerical results in Jones et al. (1993), Gablonsky (2001), Sergeyev (2006) have shown
that DIRECT has a low computational overhead and is efficient for bound-constrained,
black-box global optimization problems of small size. The DIRECT algorithm has
been in use for solving engineering design problems since 1993 (Jones, 1993; Finkel,
2003; Sergeyev, 2006; Gablonsky, 2001; He et al., 2009, 2009a, 2009c; Verstak, 2008).
Therefore, we expect that PLO would also be efficient in practice and, when consid-
ering all PO intervals and utilizing parallel computation will yield better results than
DIRECT.

5. Definition of PLO for Algorithmic Realization

In this section, conditions (5) and (6) of Definition 4 of dominant intervals will be pre-
sented in the form convenient for calculations. To simplify the explanation we start from
one-dimensional functions. The extension to several dimensions is straightforward.
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Theorem 1. The interval i dominates the interval j if and only if

f(ci) < f(cj) and li > lj or (9)

f(ci) < f(cj) and li = lj or (10)

f(ci) = f(cj) and li > lj . (11)

Proof. Intervals i satisfying (9) are at least as good as the interval j for all ω and are
better for small ω and for large ω. The reason is that, if f(ci) < f(cj), and li > lj , then,
for small ω the minimum of the lower bound is in the interval where f(ci) is minimal. At
large ω this bound is in the interval i the length li of which is maximal.

By similar reasoning we can draw the following conclusions.
The intervals i defined by (10) are at least as good as the interval j for all ω and are

better for small ω.
The intervals i satisfying (11) are at least as good as the interval j for all ω and are

better for large ω.
It means that the intervals i dominate the interval j, since they satisfy conditions (5)

and (6).
It follows from (9)–(11) that Li(ω) < Lj(ω) for all ω > 0, since

Li(ω) − Lj(ω) = f(ci) − f(cj) + ω/2(lj − li) < 0. (12)

To prove that no other intervals satisfy Definition 4 of dominant intervals, consider the
complementary conditions:

f(ci) < f(cj) and li < lj or (13)

f(ci) = f(cj) and li = lj or (14)

f(ci) = f(cj) and li < lj or (15)

f(ci) > f(cj) and li > lj or (16)

f(ci) > f(cj) and li = lj or (17)

f(ci) > f(cj) and li < lj . (18)

The intervals i, defined by (13), are better for small ω, but worse for large ω.
The intervals i satisfying (14) are no better for all ω.
The intervals i, defined by (15), are worse for all ω > 0 and no better for ω = 0.
The intervals i, defined by (16), are better for large ω and worse for small ω.
The intervals i, defined by (17), are worse for all ω.
The intervals i, defined by (18), are worse for all ω.
It means that the intervals defined by conditions (13)–(18) are not dominant intervals.

It follows from (13)–(18) that Li(ω) � Lj(ω) for all ω > 0, since

Li(ω) − Lj(ω) = f(ci) − f(cj) + ω/2(lj − li) � 0. (19)
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Fig. 1. Two iterations of PLO.

Therefore, conditions (9)–(11) define the complete set of dominant intervals. Conse-
quently, Definition 4 can be reduced to these conditions which are convenient for cal-
culations.

6. Extension to Several Dimensions

We define the length li of the closed K-dimensional interval [ak
i , bk

i ] ⊂ [ak, bk],
k = 1, . . . , K as the longest length:

li = max
k=1,...,K

lki . (20)

Here lki = bk
i − ak

i . The observation points ci are in the middle ck
i = (bk

i + ak
i )/2,

k = 1, . . . , K. Then Definition 5 of PO-intervals and Theorem 1 remains the same.
Figure 1 illustrates a two-dimensional problem.

7. Sampling

The definition of PO intervals depends on ω which is unknown, so the rational strategy
of sampling (choosing the points where the objective function is to be evaluated) is to
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investigate all the PO intervals.
To retain a symmetry, instead of picking one side of the PO interval, two additional

observations are made in the middle of two additional intervals, produced by dividing the
initial PO interval along the longest dimension into three equal parts.

After the division, the new set of PO intervals is defined by conditions (9)–(11).
The maximal distance to the nearest observation point

max
i=1,...,n

1/2 li � εl(n). (21)

can be used for estimating the maximal error, if the number of observations n is fixed.
Expression (21) can be used as a stopping condition, if n is not fixed.

Here the distance is defined in the maximum norm:

max
k

lk, k = 1, . . . , K. (22)

Using the Euclidean norm, the error limit is defined as

max
i=1,...,n

1/2 di � εd(n) (23)

where di is the diameter of the interval i

di =
√∑

k

(lki )2. (24)

The procedure is called the Pareto–Lipschitzian Optimization (PLO).
Figure 1 illustrates PLO.
The rows in this figure represent iterations. The columns show operations. The first

column illustrates the identification of PO rectangles4. The second column shows how
these rectangles are divided and sampled.

In the first operation (upper left), the initial partition is performed. The initial unit
square is divided into three equal rectangles. Then the middle rectangle is divided again
into three parts along the longest dimension. Five symmetric observations are made in
the centers of these rectangles. The operation is concluded by identifying the PO interval
(shaded area in this picture) by expressions (9)–(11) and (20).

During the second operation (upper right picture), the PO rectangle is divided into
three equal parts, followed by sampling in the centers of the new parts.

The second row shows the second iteration. In the first operation (lower left), two new
PO rectangles are identified using expressions (9)–(11) and (20). In the second operation
(lower right picture), both PO rectangles are divided and additional sampling of two new

4The general term “interval”, that means an interval in the k-dimensional space (k = 1, . . . , K), is used
while explaining formulas. The term “rectangle” explains pictures better.
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rectangles is performed. In the DIRECT algorithm (Finkel, 2003), four new rectangles
are sampled, instead of two new rectangles in PLO.

The results of the second iteration (twelve samples in the middle of twelve rectangles)
serve as the initial data for the next iteration, where the new PO rectangles are to be
identified.

The optimization stops when the longest interval reaches the error limit defined by
expressions (21) or (23).

The sampling procedure of PLO is similar, but not identical, to that of the DIRECT
algorithm (Finkel, 2003). However, the definition of Pareto Optimal intervals, used in
PLO, is different than that of Potentially Optimal intervals in the DIRECT algorithm.

8. Convergence

It follows from (9)–(11) that the set of PO intervals includes the longest interval. Thus,
the longest intervals will be divided into three equal parts until they reach the error limit
(21). This limit is reached after the finite number of partitions, since [ak

i , bk
i ] ⊂ [ak, bk],

k = 1, . . . , K. That proves the following proposition:

Theorem 2. For any εl > 0 there exists a number nε such that εl(n) � εl, if n � nε.

9. Defining User Preferences

If user preferences are not known, then all the PO intervals should be treated equally. In
computing terms it means consideration of all the PO decisions in parallel.

The general way of representing users’ preferences is by supplying an importance
measure to each multi-criteria component ω. Since the set of all Lipschitz functions Ω is
continuous, the proper measure would be the probability density p(ω). Then

i(p) = arg min
i

∫
Ω

(f(ci) − ω li/2)p(ω) dω

= arg min
i

(f(ci) − E{ω} li/2), (25)

where E{ω} is the expected value of the Lipschitz constant.
It is well known (Miettinen, 1999; Figueira et al., 2004) that i(p) ∈ PO. This way, we

reduce the number of PO decisions just to one interval, as usual, so the parallel computing
is not needed. The error limit is defined as an expected error

∫
Ω

ω max
i

li = E{ω} max
i

li � εl (26)

or ∫
Ω

ω max
i

di = E{ω} max
i

di � εd, (27)
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where di is the diameter (24) of the interval i.
The DIRECT algorithm considered in Section 4 is a specific example of preferential

treatment of some subset of PO decisions.

10. Computational Aspects

The basic idea of Pareto optimality is that all the PO decisions should be treated equally,
unless we know preferences of the user 5.

Each iteration i = 1, . . . , n includes the following tasks:

• The basic task is to make observations (calculations of f(x) at fixed x). The obser-
vations should be performed in parallel, if possible.

• An auxiliary task consists of four parts:

(i) Definition of all PO intervals by I2
i comparisons using conditions (9)–(11),

where Ii is the number of intervals at the iteration i;
(ii) Creating new intervals by splitting the PO intervals along the longest dimen-

sion;
(iii) Defining new observation points in the middle of new intervals;
(iv) Keeping the current best observation which will be accepted as the solution

at the end of the optimization process as i = n.

Auxiliary calculations are for the central (master) processor, if the parallel computing
is applied.

PLO procedures are particularly suitable for parallel computing. To optimize real-size
problems, where the time of observations is greater as compared with the time of auxiliary
calculations, the parallel computing might be not only convenient, but also necessary. The
multi-processor technology appears to be the primary way for increasing the computing
power in the future.

11. Experimental Calculations, Preliminary Results

There is a number well known methods of global optimization which converge to the ex-
act minimum. Experimental calculations are needed to evaluate their practical efficiency.
We start the experimental comparison with methods without adjustable parameters. The
first results comparing the sequential version of PLO with other methods are in Mockus
and Stasionis (2011). These and other calculations can be repeated independently using
any of the following websites:

http://soften.ktu.lt/∼mockus,
http://optimum2.mii.lt/,
http://prof.if.ktu.lt/∼jonas.mockus,

5Users preferences are expressed as the relative importance of different PO decisions.
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section ‘Software Systems’, task ‘GMJ4: Global Optimization of many Models with
‘PloN’, start “Applet long: gmj4.html”, select Method: “PloNj”, Task: “Xcos” etc., click
“Operations” and “Run”.

Here follow some results of the sequential PLO implementation using three spe-
cial multi-modal test functions of 20 variables, called “Xcos” (28), “Xcos2” (29), and
“Xcos3” (30), respectively (websites, 18 June, 2011).

20∑
i,j=1

(xixj + a cosxi cosxj), (28)

20∑
i,j=1

(xixj + a cosxi cosxj + a cosxixj), (29)

20∑
i,j=1

(xixj + a cosxi cosxj . (30)

The multiplier a defines the proportion of multi-modal components and the domain de-
termines the number of local minima. On the websites, the domains are defined by the
user and seen in the task window.

In addition, we compare two models that simulate real optimization problems
(Mockus, 2000). The first one, called “Eco Duel”, is about a differential game that repre-
sents the competition of two servers, using the concept of Nash equilibrium. Here eight
optimization variables are used. The second five-dimensional model optimizes the “mix-
ture” of five heuristics for packing rectangular boxes of different size into the container
and is called “Packer”.

The parallel PLO implementation is simulated by selecting the method ‘PloN’ where
one ‘PloN’ operation means making as many function evaluations as there are PLO in-
tervals. Table 1 illustrates the comparison of the results by the test function ’Xcos3’ with
a = 1000 of sequential ‘PloNj’ with ‘PloN’ which simulates parallel operations. The
term ’operation’ denotes one function evaluation in ‘PloNj’. In ‘PloN’ this term means a
complete PLO operation involving function evaluation in all the PLO intervals. The total
computing time is determined mainly by the number of function evaluations. Therefore,

Table 1

Comparison of sequential ‘PloNj’ with simulated parallel version ‘PloN’ using ‘Xcos3’

Operations PloNj PloN

100 92.98 3.119

200 92.98 1.046

300 3.119 0.654

400 3.119 0.554

600 3.119 0.553
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Table 2

Comparison of three algorithms minimizing five test functions.

Function Iteration PLO BA MC

Xcos, a = 100 1, 000 0.001 19.455 1.798

Xcos2, a = 100 1, 000 −30.093 −6.294 −6.139

Xcos3, a = 1000 1, 000 3.119 14.833 20.50

EcoDuel 100 0.138 0.163 0.63

EcoDuel 1, 000 0.023 0.119 0.336

Packer 10 − 2.2623 − 2.2572 −2.2119

Fig. 2. Projection, first variable of “Xcos”, a = 100.

we may expect that using the actual parallel computing the time of an operation in PLO
will be close to the time of an iteration in the sequential version of PLO.

In Table 2 the results of sequential PLO are compared with two well-known methods.
The first one is the “Bayesian Approach” (BA) which uses a stochastic model to predict
the expected improvement (Mockus et al., 1997).

BA is selected as an example of a sequential algorithm designed for optimizing both
the deterministic and stochastic functions. The second algorithm is a simple Monte Carlo
(MC) version which can be easily applied to parallel calculations and it is similar to
PLO in this aspect. The methods converge to the global minima of continuous functions
(Mockus, 1989) and do not contain adjustable parameters. Since BA and MC are stochas-
tic, average results are shown for these algorithms.

In all the instances PLO was the best. BA was better than MC.
Figure 2 shows how the results of “Xcos” depend on the first variable at fixed values

of other variables.
Figure 3 shows how the results of “Eco Duel” depend on the first variable that repre-

sents the rate of price changes. The other variables are fixed.
Table 3 illustrates the comparison of the results of Monte Carlo (MC), PLO, and

DIRECT algorithms, obtained using the standard test functions of global optimization in
Jones et al. (1993), Bjorkman and Holmstrom (1999), Liuzzi et al. (2010).

The symbol * in Table 3 means that the result by ‘PloNj’ was achieved after 1,308,332
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Fig. 3. Projection, first variable of “Eco Duel”.

Table 3

Comparison of four algorithms using twelve test functions.

Function Iteration MC DIRECT PloNj PloN (parallel) f(x∗)

Shekel, m = 10 97 −1.201 −10.435 −2.5834 −10.536 (50) −10.5364

Hartman-3, 83 −3.564 −3.847 −3.862 −3.863 (20) −3.86278

Hartman-6, 213 −2.505 −3.321 −3.321 3.322 (30) −3.32237

Brcos 63 1.066 0.42 0.401 0.39 (50) 0.397887

GolPri 101 8.86 3.03 3.001 3.000 (20) 3.00

SixH 113 −0.82 −1.022 −1.027 −1.032 (59) −1.031628453

Shub2D 2883 −180.53 −184.73 −123.57 186.73(120) −186.7309

Ackley2 561 4.394 5.64609E-05 0.047 0.000(22) 0

Ackley10 6, 780, 239 − 9.4929E-02 0.004∗ 0.081(67) 0

Easom 7019 −0.58 −0.999989985 −0.976 −1.0(60) −1

Griewank2 41, 005 0.06 7.88274E-07 0.0000 0.0000(20) 0

Mich2 67 −0.97 −1.801 −1.801 01.801(10) −1.8013

Mich5 14, 005 −3.313 −4.68721324 −4.19 −4.19(50) −4.687658

iterations, details are in Fig. 4. MC and PLO represent methods intended for parallel
computing with no adjustable parameters. This version of DIRECT is for a sequential
realization with one adjustable parameter ε selected by the method authors. Two versions
of PLO are tested. The one called ‘PloNj’ represents sequential implementation. The
second one named ‘PloN’ simulates parallel PLO calculations. In Table 3, the numbers
of parallel operations are shown in parentheses. It means that we compare the algorithms
that represent different families of optimization methods.

As expected, the efficiency DIRECT was similar to that of sequential ‘PloNj’, but not
as good as parallel simulator ‘PloN’. The comparison of parallel DIRECT with parallel
PLO is an important future task.

In particular, DIRECT was better than ‘PloNj’ for 5 test functions: Shekel, m = 10,
Shub2D, Ackley2, Easom, and Mich5. For three functions – Hartman-6, Griewank2, and
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Fig. 4. The output of ’Ackley10’ function optimization by ‘PloNj’.

Mich2 – the results were equal. PLO was better than DIRECT for 5 functions: Hartman-3,
Brcos, GolPri, SixH, and Ackley10.

Applying ‘PloN’ smaller numbers of the “parallel” iterations were used, to keep com-
puting times closer to the sequential DIRECT and ‘PloNj’. The results of ‘PloN’ were
better than DIRECT for eleven functions. Using ’Mich5’ the DIRECT algorithm achieved
better results.

Tables 2 and 3 show that the sequential version of PLO is better comparing with
methods without adjustable parameters, such as MC and BA and is close to DIRECT
with adjustable parameters. The simulator of “paralleln” ‘PloN’ has achieved best results
for almost all functions but it took longer computing times in the sequential simulation
of parallel PLO.

A detailed comparison with the existing sequential and parallel versions of DIRECT is
the task of further investigation. It is not a simple task, since it is not clear how to compare
the results of the methods without adjustable parameters, such as PLO, with the methods
having these parameters, such as DIRECT. A special attention should be paid regarding
the parallel realization of DIRECT and other methods of global optimization. We may
expect better results for PLO, because this algorithm is created for parallel computing.
Using the parallel computing PLO may be also applied to generate a set of good starting
points for additional local search in a way similar to DIRMIN (Liuzzi et al., 2010).

12. Concluding Remarks

A theoretical contribution is the definition of the problem of Lipschitzian optimization
with unknown Lipschitz constants in terms of Pareto optimality (PO) that provides the
algorithm without adjustable parameters. It is important as compared with other methods
and convenient for users.

A computational contribution is the Pareto–Lipschitzian Optimization (PLO) method
which regards all the PO intervals in accordance with the basic concept of PO.

By contrast, the existing DIRECT algorithms consider a subset of PO (non-
dominated) intervals, consisting of such intervals that are at least as good as others for
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some positive rate-of-change constant. This subset is filtered further by heuristic condi-
tions dependent on the parameter ε needed to be obtained by experimentation.

Therefore, the DIRECT algorithm can be conveniently implemented using single pro-
cessor machines, while the PLO method is most suitable for computing systems with
large numbers of processors. There exists efficient multi-processor software (He et al.,
2009, 2009a, 2009c; Verstak, 2008) that implements DIRECT by means of sophisticated
techniques of parallel computing.

An extensive computer simulation with various test functions may reveal additional
aspects of the proposed algorithm and that would be an interesting new investigation.

The presented description of the Pareto–Lipschitzian optimization can serve as a ba-
sis for discussions on the possibilities and limitations of various applications of the Lips-
chitzian optimization to functions with unknown Lipschitz constants.
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Apie Pareto–Lipšico optimizacij ↪a

Jonas MOCKUS

Optimizavimas funkcij ↪u su žinoma Lipšico konstatnta, užtikrinantis sprendinius duotu tikslumu,
yra tradicinis globaliojo optimizavimo uždavinys. Ši konstanta nėra žinoma daugelyje praktini ↪u
uždavini ↪u.

Mes siūlom nauj ↪a metod ↪a tokiems uždaviniams spr ↪esti, pavadint ↪a Pareto–Lipšico optimizacija
(PLO). Šis metodas pateikia sprendinius duotu tikslumu funkcijoms su nežinoma Lipšico kon-
stanta. PLO požiūriu, Lipšico konstantos nagrinėjamos kaip vektorinio kriterijaus elementai Pareto
optimalumo teorijos (PO) rėmuose.

PLO yra lyginamas su žinomu DIRECT algoritmu. Parodoma, kad DIRECT, skirtingai nei
PLO, nagrinėja tik nedidel ↪e dal↪i PO sprendini ↪u, kurie yra nustatomi pagal euristin ↪e taisykl ↪e, pri-
klausanči ↪a nuo laisvai parenkamo parametro. Tokiu būdu daliai PO sprendini ↪u suteikiamas priori-
tetas. PLO nagrinėja be išimties visus PO sprendinius, todėl geriau tinka lygiagretiems skaičiavi-
mams.


