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Abstract. In this paper, we consider the so-called structured low rank approximation (SLRA) prob-
lem as a problem of optimization on the set of either matrices or vectors. Briefly, SLRA is defined
as follows. Given an initial matrix with a certain structure (for example, Hankel), the aim is to find
a matrix of specified lower rank that approximates this initial matrix, whilst maintaining the initial
structure. We demonstrate that the optimization problem arising is typically very difficult; in partic-
ular, the objective function is multiextremal even in simple cases. We also look at different methods
of solving the SLRA problem. We show that some traditional methods do not even converge to a
locally optimal matrix.
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1. Introduction

1.1. Statement of the Problem

Let L and K be two given integers with L � K and R
L×K be the set of all real-valued

L × K matrices. Let Mr ⊂ R
L×K be the subset of R

L×K containing matrices with rank
� r, and H ⊂ R

L×K be the subset of R
L×K containing matrices of a specified structure.

Define A = Mr ∩ H.
Assume we are given a matrix X0 ∈ R

L×K . The problem of structured low rank
approximation (SLRA) is:

F (X) → min
X∈A

, (1)

where F (X) = ρ(X,X0) is a distance function on R
L×K × R

L×K .
We only consider the case where H is a set of Hankel matrices (a matrix X = (xij) is

Hankel if xij = const for all pairs (i, j) such that i + j = const). In this case, the SLRA
problem (1) is called Hankel SLRA. This is the most common instance of the SLRA
problem. Other structures that appear in relation to the problem (1) include, amongst
others, Toeplitz, circulant, and Hankel-block-Hankel (Markovsky, 2008).
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We will show that (1) is a difficult optimization problem. We will also look at dif-
ferent methods of solving (1). One of the main difficulties in optimising the objective
function F (·) in (1) is that although H is a convex space, Mr is non-convex. In par-
ticular, we demonstrate that the SLRA problem (1) is generally a global, rather than a
local optimization problem. Moreover, we show that the multi-extremality of the objec-
tive function is very high and the Lipschitz constant is typically very large which makes
many deterministic methods of global optimization almost unsuitable. This opens huge
possibilities for the stochastic methods of global optimization. Note that the seminal book
by Mockus (1989) was at the heart of the field at the early stages of the development of
the field of stochastic global optimization. Many different and somehow more mature
methods have been developed since Clausen and Žilinskas (2002), and Calvin and Žilin-
skas (2000). For a comprehensive exposition of the field of stochastic global optimization
see Zhigljavsky (1991) or Zhigljavsky and Žilinskas (2008).

Many problems in system identification, signal processing and time series can be re-
duced to the Hankel SLRA problem (1) Markovsky et al. (2006). Indeed, a vector of ob-
servations (called time series in statistical literature) can be mapped onto a matrix created
by a series of lagged vectors. This matrix is Hankel and is in one-to-one correspondence
with the original vector of observations. See Golyandina (2010) for a recent review of the
corresponding techniques.

The relation between low-rank Hankel matrices and vectors governed by linear recur-
rent formulae has long been known; see for example (Gantmacher, 1959; Pollock, 1999).
One can reformulate the original problem (1) as a problem of optimizing coefficients of
linear recurrent formulae. However, in this paper we adopt a more traditional approach
which is based on the representation (4) below.

Abatzoglou et al. (1991) are often cited to be the first to formulate a version of the
SLRA problem. Since then, a number of papers discussing and offering solutions to the
SLRA problem have appeared. See Markovsky (2010) for a historical overview and bib-
liography of important results and papers. Further details are provided in another paper
by Markovsky (2008). A general perspective on the topic is also offered by Chu et al.
(2003).

1.2. Types of Algorithms

As A is a closed set, the solution to the original problem (1) always exists. However, the
solution is not necessarily unique. Set

X∗ =
{
X∗ = arg min

X∈A
ρ(X,X0)

}
and F∗ = F (X∗) = min

X
F (X).

A result of the application of an optimization algorithm to (1) is a sequence of ma-
trices X1,X2, . . . such that some of the matrices Xn for large n can be considered as
approximations to X∗, a solution of (1). The optimization algorithm converges if

lim inf
n→∞

ρ(X0,Xn) = F∗ ⇐⇒ lim inf
n→∞

ρ(Xn, X∗) = 0.
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We propose to distinguish between the following two types of algorithms for solving
problem (1).

1. Any Hankel matrix X of size L × K is in one-to-one correspondence with a vec-
tor of size N = L + K − 1. Therefore, if an algorithm generates a sequence of
matrices Xn ∈ H then it can also be considered as an algorithm which generates
a sequence of vectors (f (n)

1 , . . . , f
(n)
N ) ∈ R

N . Any solution of problem (1) can
also be regarded as an N -dimensional vector. Note however that to make a transi-
tion Xn → Xn+1 we may use additional matrices that do not belong to the space
H. These algorithms, where Xn ∈ H for all n, can alternatively be considered as
algorithms of optimization of N -dimensional functions.

2. The matrices Xn do not belong to the space H so that we approach a solution
X∗ ∈ X∗ with a sequence of matrices Xn /∈ H. In this case, the algorithms cannot
be considered as optimization algorithms in R

N but rather as interior point algo-
rithms where it is natural to give penalties for violating the low-rank and/or Hankel
constraints.

One could think about other types of algorithms; for example, the algorithms which
force the matrices Xn to belong to Mr for all n � 1. Such algorithms do not seem to be
practical, however.

A few algorithms of solving the SLRA problem are known, see below. One of the
simplest and most popular of them is the so-called Cadzow iterations algorithm, see Sec-
tion 3.4. Despite Cadzow’s initial claim that it is a globally convergent algorithm, this
algorithm is not even locally convergent. Some other algorithms known in the literature
(like HTLS, again see Section 3.4) are typically locally convergent but as shown below
are not necessarily globally convergent. In this paper, we investigate the reasons for this.
In particular, we show that typically the objective function F (·) has a large number of
local minima.

1.3. Choice of a Distance Function

Most commonly, the distance function ρ(·, ·) is defined by the matrix Frobenius norm;
that is, ρ(X,X0) = ‖X − X0‖F . In this case, the Hankel SLRA problem is equivalent
to the so-called Hankel total least squares (HTLS) problem; for further information see
Golyandina (2010). Consider a Hankel matrix X ∈ R

L×K and its vector representation
(f1, . . . , fN ) ∈ R

N with N = L+K − 1. Then the (i, j)th element of X is xij = fi+j−1

and the squared Frobenuis norm of X is

‖X‖2
F =

L,K∑
i,j=1

x2
ij =

N∑
m=1

wmf2
m, (2)

where {w1, . . . , wN } is the sequence of weights defined by

wm =

⎧⎨
⎩

m, if m � L,

L, if L � m � K,

N − m + 1, if K � m � N.
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Another common choice of the distance function arises from the simple L2 vector norm
of the associated vector (f1, . . . , fN ):

‖X‖2 =
N∑

m=1

f2
m. (3)

In this case, the weights attributed to each element of the vector (f1, . . . , fN ) are equal
to 1. Below we use both these norms, (2) and (3).

2. Study of the Properties of the Optimization Problem (1)

2.1. A Parametrization of the Solution of the Problem (1)

An alternative way of formulating the problem of Hankel SLRA (1) is by associating
matrices X ∈ A with vectors (f1, . . . , fN ) which can be represented as sums of damped
sinusoids:

fj =
q∑

i=1

ai exp(dij) sin(2πωij + φi), j = 1, . . . , N ; (4)

see, for example, Lemmerling and Van Huffel (2001), and Van Huffel (1993). Here
q = r/2 (assuming r is even) and a = (a1, . . . , aq), d = (d1, . . . , dq), ω = (ω1, . . . , ωq)
and φ = (φ1, . . . , φq) are sets of parameters. This formulation of the problem offers
a convenient way of visualizing rank deficient Hankel matrices.

Assume that a(0) = (a(0)
1 , . . . , a

(0)
q ), d(0) = (d(0)

1 , . . . , d
(0)
q ), ω(0) = (ω(0)

1 , . . . , ω
(0)
q )

and φ(0) = (φ(0)
1 , . . . , φ

(0)
q ) are true values of the parameters. If the observations are

noise-free, then the vector (f1, . . . , fN ) with components

fj =
q∑

i=1

a
(0)
i exp

(
d
(0)
i j

)
sin

(
2πω

(0)
i j + φ

(0)
i

)
, j = 1, . . . , N, (5)

is considered as given and the objective function in the Hankel SLRA problem, with the
distance function given by the norm (3), becomes

F (a, d, ω, φ) =
N∑

j=1

ε2(j, a, d, ω, φ), (6)

where

ε(j, a, d, ω, φ) = fj −
q∑

i=1

ai exp(dij) sin(2πωij + φi). (7)
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If q is known then F∗ = 0. With noise, the value fj are not observed, but rather fj + nj ,
where {nj , j = 1, . . . , N } is the series of noise terms. In this case, the objective function
is also defined by (6) and (7) but typically F∗ > 0.

We are aware of only one paper, which is Lemmerling and Van Huffel (2001), that
contains a discussion about the behaviour of the objective function (6). In Lemmerling
and Van Huffel (2001), the fact that the objective function F is multiextremal has been
observed; the function F was decomposed into three different components and it was
numerically demonstrated that the part of the objective function with the observation
noise removed dominates the shape of the objective function. In this section we are not
going to pursue this issue but instead provide some simple examples in order to visualize
the complexity of the problem of minimization of the objective function (6).

The function F defined in (6) has the most interesting behaviour as a function of ω.
For simplicity we assume that the true values of the parameters a, d and φ are known and
are a

(0)
i = 1, d

(0)
i = 0, and p

(0)
i = 0 for i = 1, . . . , q. Therefore, the objective function

F we consider in the examples below is

F (ω) =
N∑

j=1

(
fj −

q∑
i=1

sin(2πωij)

)2

, (8)

where

fj =
q∑

i=1

sin
(
2πω

(0)
i j

)
, j = 1, . . . , N, (9)

with q and ω
(0)
1 , . . . , ω

(0)
q given. In the examples with noisy observations we shall use the

objective function (8) with fj + nj substituted for fj , where nj represents a noise-term.

2.2. Examples with q = 1

EXAMPLE 1. q = 1, N = 10 and N = 100, ω
(0)
1 = 1/3; noise-free observations and

noisy observations.

The objective function becomes F (ω) =
∑N

j=1 (fj − sin(2πωj))2, where ω = ω1.
The function F (ω) is periodic with period 1 and the minimal value F∗ = 0 attained at
the points ω∗

1 = ω
(0)
1 + k (k = 0, ±1, ±2, . . .). The feasible domain for ω can therefore

be chosen as 0, 1); in this interval, the function F has one global minimizer at ω∗
1 = ω

(0)
1

and many local minimizers.
The behaviour of the function F (ω) is illustrated in Fig. 1 for N = 10 and N = 100.

We can easily see that the objective function F (ω) is multiextremal and very irregular.
For N = 10, the Lipschitz constant of F is approximately 327.86. For N = 100, the Lip-
schitz constant F is approximately 6195.88.

The global minimum, however, is visible and reasonably well-separated (in terms
of the objective function values) from the multitude of local minima. Since the global
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Fig. 1. Function F (ω) in Example 1.

minimizer has a very narrow domain of attraction, particular care should be taken in
devising global optimization algorithms that would be able to find this global minimizer.
If we know that the observations are noise-free and hence F∗ = 0, the creation of such
algorithms is not a serious challenge though.

Increasing N leads to more erratic cost function; as N increases, the number of local
minima also increases. For the parameter settings in this example, the number of local
minimizers increases linearly in N . In this and similar examples, the number of minimiz-
ers of F (ω), for ω ∈ [0, 1), is in between N and 2N for all N > 3.

Now assume that the values fj are not observed, but rather fj + nj , where {nj , j =
1, . . . , N } is the series of uncorrelated noise terms such that nj are normally distributed
with mean 0 and variance σ2. Figure 2 contains plots of F (ω) for particular realizations
of noise for varying values of σ2. A plot of one of the observed series (with N = 10)
fj + nj is included in Fig. 3.

2.3. Examples with q = 2

EXAMPLE 2. q = 2, N = 10, ω
(0)
1 = 0.3, ω

(0)
2 = 0.32; noise-free observations. The ob-

jective function is

F (ω) = F (ω1, ω2) =
N∑

j=1

(
fj − sin(2πω1j) − sin(2πω2j)

)2
,

ω ∈ [0, 1) × [0, 1). (10)

Figure 4 contains various plots of the objective function F . In this example, two
‘close’ frequencies are selected. The objective function F (ω) is highly multiextremal.
The global minimum is again clearly visible and well-separated (in terms of objective
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Fig. 2. Function F (ω) in Example 1 with noisy observations, N = 10.

Fig. 3. Plot of sin(2πω
(0)
1 j) (black), and sin(2πω∗

1j) (gray), where ω
(0)
1 = 0.3 and ω∗

1
∼= 0.5619 is the

global minimizer of F for σ2 = 0.3 and the realization related to Fig.2.

function values) from the multitude of local minima, but the effect of having two nearly
equal frequencies can be seen.

EXAMPLE 3. q = 2, N = 10, ω
(0)
1 = 0.3, ω

(0)
2 = 0.45; noise-free observations. The ob-

jective function and the feasible domain are as defined in (10). Figure 5 contains various
plots of the objective function F . Figure 6 contains cross-sections of F as functions of
ω1 for different values of ω2. The global minimum F∗ = 0 of F at ω1 = 0.3, ω2 = 0.45
is clearly visible. Figure 6 illustrates that there is a rapid change of the objective function
behaviour as ω1, ω2 move away from the optimal values.
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Fig. 4. Example 2. Function F (ω).

Fig. 5. Example 3. Function F (ω).

EXAMPLE 4. q = 2, N = 10, ω(0) = (0.3, 0.45); noisy observations. In this example,
we assume that fj are not observed, but rather fj + nj where {nj , j = 1, . . . , N } is
the series of uncorrelated normally distributed noise terms with variance σ2. Figure 7
contains contourplots of F (ω1, ω2) for varying values of σ2. Plot of one of the realizations
of the observed series fj + nj is included in Fig. 8. Values of F at ω(0) and the global
minimizer ω∗ are provided.
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Fig. 6. Cross-sections F̃ (ω1) = F (ω1, ω2) for different values of ω2 and a narrow scale for ω1.

3. Methods and Their Properties

3.1. Cadzow Iterations

A simple algorithm where Xn ∈ H for all n is provided by the use of alternating pro-
jections where to get Xn+1 we project each Xn to the space Mr and then back to H. If
ρ(·, ·) is the distance induced by the Frobenius norm, then the projection to the space Mr

is obtained by the singular value decomposition (SVD) of Xn. The resulting algorithm is
called Cadzow iterations.

Cadzow’s algorithm decomposes the SLRA into two smaller problems; namely that of
(1) finding a low-rank matrix approximation of Xn (using the SVD);
(2) finding a structured Hankel matrix closest to the low-rank approximation of X0.
One Cadzow iteration corresponds to a technique known as singular spectrum analysis

(SSA); for further details regarding the link between Cadzow iterations and SSA, see
Gillard (2010), and Golyandina et al. (2010).
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Fig. 7. Contour plots of F (ω1, ω2) with ω(0) = (0.3, 0.45) (marked +) and the global minimizer ω∗ (marked
�), for different values of σ2. Values of F at ω(0) and ω∗ are provided.

The paper by Gillard (2010) contains some examples comparing SSA with Cadzow
iterations. In the simulation study within this paper, it was shown that repeated iterations
of Cadzow’s algorithm may result in an increased root mean square error from the true
signal. This was particularly the case if the number of terms selected in the truncated
SVD was smaller than the rank of the true signal.

Cadzow’s algorithm is a simple heuristic method, which is suboptimal in terms of
the Frobenius optimality criterion (Gillard, 2010). The example used by De Moor (1994)
demonstrates the sub-optimality of Cadzow’s algorithm; this example is simplistic how-
ever.

3.2. HSVD and HTLS

Both the HSVD and HTLS algorithms are described in a paper by Van Huffel (1993).
Both of these methods parameterise the space of rank r Hankel matrices by writing the



Analysis of Structured Low Rank Approximation as an Optimization Problem 499

Fig. 8. Plot of sin(2πω
(0)
1 j) + sin(2πω

(0)
2 j) (black), and sin(2πω∗

1j) + sin(2πω∗
2j) (grey) where

(ω∗
1 , ω∗

2) ∼= (0.2860, 0.3049) is the global minimizer of F for σ2 = 2.

signal (f1, . . . , fn) in the form as given in (5). Both algorithms are briefly described
below.

The SVD of X0 gives

X0 =
d∑

i=1

√
λiUiV

T
i .

Set the smallest singular values
√

λr+1, . . . ,
√

λd to 0 resulting in the closest rank r

approximation (with respect to Frobenius norm) to X0, denoted X:

X =
r∑

i=1

√
λiUiV

T
i

Let U = [U1 : . . . : Ur], and let U , U denote U with its first and last row omitted
respectively. Both algorithms HSVD and HTLS involve finding the solution Y of

UY = U. (11)

If (11) is solved by the least squares, then the algorithm is known as HSVD. If (11) is
solved by the total least squares, the algorithm is known as HTLS. Once Y is estimated,
it is possible to find estimates of the vectors a, d, m, p of (4). The least squares and total
least squares algorithms are described briefly in the next section.

3.3. Least Squares and Total Least Squares Algorithms and Their Relation to SLRA

Let A ∈ R
L×M be an input data matrix, and B ∈ R

L×r be an output observation matrix.
Finding an approximation θ ∈ R

M ×r such that Aθ = B in an overdetermined system
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(L > M ) is a common problem that has many applications in a variety of scientific
disciplines. Common methods of solution involve perturbing B, or both A and B as little
as possible so that the new system of equations has an exact solution. There are two
options:

θ̂ = arg min
θ,ΔB

‖ΔB‖ such that Aθ = B + ΔB, (12)

or

θ̂ = arg min
θ,ΔAΔB

‖ [ΔAΔB] ‖ such that (A + ΔA)θ = B + ΔB. (13)

If the Frobenius norm is chosen, then these methods of solution, (12) and (13), are known
as least squares and total least squares, respectively.

If A is of full rank, then the least squares estimator for θ is given by θ̂LS =
(AT A)−1AT B. There are many modifications based on this which under some circum-
stances, may be more robust. For example, ridge regression which imposes a constraint
on the size of θ̂, the lasso, and the elastic net; see Hastie et al. (1998).

It is possible to rewrite (13) as a matrix low rank approximation problem. Let X =
[AB] ∈ R

L×K , then for suitable r and a matrix norm ‖ · ‖ find X̂ such that

‖X − X̂‖ = min
rank(Y)=r

‖X − Y‖. (14)

Solution of such matrix low rank approximation problems, and indeed the total least
squares problem, depends heavily on the singular value decomposition (SVD). If the
Frobenius norm is chosen, then problem (14) is equivalent to problem (13).

The SVD can be described in general terms as follows. Let Q ∈ R
m×n. Then there

are orthonormal matrices U = [U1, . . . , Un] ∈ R
m×n and V = [V1, . . . , Vn] ∈ R

n×n

so that Q = UΣVT = U diag(σ1, . . . , σn)VT where σ1 � σ2 � · · · � σn. Proof
of this result is included in Van Huffel and Vanderwalle (1991). If rank(Q) = r then
σ1 � σ2 � · · · � σr = σr+1 = · · · = σn.

Under the assumption that rank(Q) = r, the SVD of Q may also be written

Q =
r∑

i=1

σiUiV
T
i = σ1U1V

T
1 + · · · + σrUrV

T
r ,

where rank(σiUiV
T
i ) for i = 1, . . . , r. The Frobenius norm (as used in total least

squares) of Q is given by

‖Q‖F =
r∑

i=1

σ2
i .

The L2 norm of Q is given by

‖Q‖2 = σ1.
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An important theorem relating the SVD to problem (14) is the so-called Eckart-
Young-Mirsky matrix approximation theorem which can be formulated as follows. As-
sume rank(Q) = r so Q =

∑r
i=1 σiUiV

T
i . Let r′ < r and Q′ =

∑r′

i=1 σiUiV
T
i . Then

min
rank(S)=r′

‖Q − S‖2 = ‖Q − Q′ ‖2 = σr′+1,

and

min
rank(S)=r′

‖Q − S‖F = ‖Q − Q′ ‖F =

√√√√ r∑
i=r′+1

σ2
i .

This implies that the closest rank r approximation to Q (with respect to the L2 norm or
Frobenius norm) is given by truncating the SVD.

As given by Markovsky (2008), there are many sources of information correspond-
ing to the total least squares topic. A detailed reference is the book by Van Huffel and
Vandewalle (1991).

3.4. Further Example

EXAMPLE 5. Consider first the vector (0, 1, 0, 1, 0, 1) mapped into the 5 × 2 Hankel
matrix. Suppose that a rank 1 Hankel approximation to X0 is required. In this example,
the matrix X0 itself and the Cadzow and HSVD approximations to X0 are

X0 =

⎛
⎜⎜⎜⎜⎝

0 1
1 0
0 1
1 0
0 1

⎞
⎟⎟⎟⎟⎠ , XCadzow =

⎛
⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎠ , XHSVD =

⎛
⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎠ .

The HTLS method fails to give a solution; as part of the numerical calculations of the
algorithm to estimate the parameters a, d, m and p of (4), log(0) appears.

Let ε = 0.01, and instead take the matrix

X0 =

⎛
⎜⎜⎜⎜⎝

ε 1
1 ε

ε 1
1 ε

ε 1

⎞
⎟⎟⎟⎟⎠ .
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In this case, the Cadzow, HSVD and HTLS approximations to X0 are

XCadzow =

⎛
⎜⎜⎜⎜⎝

0.0039 0.0117
0.0117 0.0347
0.0347 0.1035
0.1035 0.3086
0.3086 0.9198

⎞
⎟⎟⎟⎟⎠ , XHSVD =

⎛
⎜⎜⎜⎜⎝

0.1293 0.0154
0.0154 0.0018
0.0018 0.0002
0.0002 0

0 0

⎞
⎟⎟⎟⎟⎠ ,

XHTLS =

⎛
⎜⎜⎜⎜⎝

0.5050 0.5050
0.5050 0.5050
0.5050 0.5050
0.5050 0.5050
0.5050 0.5050

⎞
⎟⎟⎟⎟⎠ .

The Frobenius norms between X0 and these approximations are:

‖X0 − XCadzow‖F = 1.9357078, ‖X0 − XHSVD‖F = 2.225416,

‖X0 − XHTLS‖F = 1.56327.

Now taking ε = 2 gives the Cadzow, HSVD and HTLS approximations to X0 as

XCadzow =

⎛
⎜⎜⎜⎜⎝

1.5629 1.5369
1.5369 1.5113
1.5113 1.4861
1.4861 1.4614
1.4614 1.4370

⎞
⎟⎟⎟⎟⎠ , XHSVD =

⎛
⎜⎜⎜⎜⎝

1.5049 1.5031
1.5031 1.5012
1.5012 1.4994
1.4994 1.4975
1.4975 1.4957

⎞
⎟⎟⎟⎟⎠ ,

XHTLS =

⎛
⎜⎜⎜⎜⎝

1.5 1.5
1.5 1.5
1.5 1.5
1.5 1.5
1.5 1.5

⎞
⎟⎟⎟⎟⎠ .

The Frobenius norms between X0 and these approximations are:

‖X0 − XCadzow‖F = 1.577681, ‖X0 − XHSVD‖F = 1.580577,

‖X0 − XHTLS‖F = 1.581139.

In this example, Cadzow algorithm finds a better approximation to the global minimum.

4. Parameterising Low Rank Matrices

For some simple examples, it is possible to visualize the space of rank deficient structured
matrices by considering the determinant of the matrix to which a rank deficient approxi-
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mation is required. These examples demonstrate the complexity of the space of stuctured
rank deficient matrices.

EXAMPLE 6. Let N = 3, L = K = 2, r = 1. Define

H1 =
(

f1 f2

f2 f3

)
∈ H.

Then det(H1) = f1f3 − f2
2 . If rank(H1) < 2 then it follows that det(H1) = 0. A plot

of det(H1) = 0 against f1, f2 and f3 is included is included in Fig. 9.

EXAMPLE 7. Let N = 5, L = K = 3, r � 2. Define

H2 =

⎛
⎝ f1 f2 f3

f2 f3 f4

f3 f4 f5

⎞
⎠ ∈ H.

Then det(H2) = f1(f3f5 − f2
4 ) − f2(f2f5 − f3f4) + f3(f2f4 − f2

3 ). If rank(H2) < 3
then it follows that det(H2) = 0. For simplicity, setting f1 = f2 = 1 gives det(H2) =
f3f5 − f5+2f3f4 − f2

4 − f2
3 = 0. A plot of det(H2) = 0 against f3, f4 and f5 is included

in Fig. 9.

EXAMPLE 8. This example was also considered by Chu et al. (2003). Let N = 3, L =
K = 3, r � 2. Define

T1 =

⎛
⎝ f1 f2 f3

f2 f1 f2

f3 f2 f1

⎞
⎠ ∈ T ⊂ R

3×3 (the set of Toeplitz matrices).

Then det(T1) = (f1 − f3)(f2
1 + f1f3 − 2f2

2 ). If rank(T1) < 3 then it follows that
det(T1) = 0. A plot of det(T1) = 0 against f1, f2 and f3 is included in Fig. 9.

Fig. 9. Determinants of rank deficient matrices.
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5. Conclusion

In this paper, we have investigated the SLRA (structured low-rank approximation) prob-
lem as an optimization problem. We have shown that the optimization problem is very dif-
ficult with the objective function possessing many local minima. The objective functions
has very large Lipschitz constants which increase with N , the number of observations.
Additionally, the number of local minima in the neighbourhood of the global minimum
increases linearly in N . Adding noise to the observed data increases the complexity of
the objective function and moves the global minimizer away from the true value. We have
described some algorithms that have been developed to solve the SLRA problem, using
many examples to highlight the difficulty inherent in solving the problem. It is clear that
the classical methods often do not even converge to a locally optimal matrix. We suggest
that the difficulties described in this paper open huge possibilities for the application of
the stochastic methods of g lobal optimization.
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Struktūrinė žemo rango aproksimacija kaip optimizavimo uždavinys

Jonathan GILLARD, Anatoly ZHIGLJAVSKY

Taip vadinama struktūrinė žemo rango aproksimacija nagrinėjama kaip optimizacijos už-
davinys vektori ↪u arba matric ↪u aibėje. Trumpai š↪i uždavin↪i galima suformuluoti šitaip. Duota pradinė
specialios formos matrica (pavyzdžiui, Hankelio), ir reikia rasti j ↪a aproksimuojanči ↪a panašiai
apibrėžt ↪a žemo rango matric ↪a. Parodyta, kad šis uždavinys yra sunkus daugiaekstremalus už-
davinys. Parodyta, kad tradiciniai metodai šiam uždaviniui netgi nekonverguoja. Nagrinėjami

↪ivairūs metodai šiam uždaviniui spr ↪esti.


