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Abstract. In the protocol conformance testing, many existing test methods can effectively detect
the possible faults of the implementation under test. However, it is difficult to diagnose the found
faults in terms of the test results. This paper presents a diagnosable input/output (DIO) sequence, to
differentiate a state from other states under a given condition. We further propose a two-tier protocol
conformance testing and diagnosing method based on DIO sequences. The proposed method can
effectively detect and diagnose the possible faults of the implementation of a protocol.
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1. Introduction

The wide applications of communication services have accelerated the researches of var-
ious new or improved protocols (e.g., Liao et al., 2010; Tseng et al., 2010 and Yoon and
Yoo, 2010). The correct implementation of a protocol must conform to the corresponding
protocol specification, because the protocol conformance is one of basic prerequisites for
errorless interactions among communicating entities. Therefore protocol conformance
testing is an indispensable part of the development of a communication system. One of
the major tasks of the protocol conformance testing is to generate test sequences for the
control portion of the protocol. A test sequence is the concatenation of input/output pairs.
The input sequence is applied to the implementation being tested, and the correspond-
ing output sequence will be observed. If the output sequence is not coincident with the
expected output sequence, then we say that the implementation has some faults.

The control part of a protocol specification is typically modeled as a deterministic
Finite State Machine (FSM), and the FSM-based test sequence generation methods for
the conformance testing have been widely studied. These methods detect the possible
faults of the implementation under test. However, they usually have limited capabilities
of locating the faults. Ramalingam et al. (1995) analyzed the diagnosis capabilities of
some FSM-based test sequence generation methods, and claims that these methods have
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the capability of locating the fault to a set including more than n transitions, where n

indicates the number of the states of the specification FSM.
An efficient fault diagnosis is very helpful to shorten the time of revising the faults

found in the protocol conformance testing. However, it is difficult to accurately diagnose
the found faults in terms of the test results. The main reasons include that (1) a single test
sequence in the test case might not detect the related faults, and (2) the symptoms might
not accurately respond to the corresponding faults in the test procedure. Up to now, there
have been only limited researches in this area. Ghedamsi et al. proposed two methods to
provide fault hints through a set of the diagnosis, each of which is formed by a set of tran-
sitions that are suspected of being faulty (see Ghedamsi and Bochmann, 1992; Ghedamsi
et al., 1993). Vuong and Ko (1990) presented a diagnosis approach which uses consider-
able additional test sequences to find the FSM model for the implementation under test
under some assumptions. Note that the above fault diagnosis methods, as well as most
of FSM-based test sequence generation methods, are actually based on the deterministic
FSM (DFSM). So far accurately diagnosing the found faults of an implementation is still
an open problem.

In this paper, we classify the transfer faults into two categories according to the spec-
ified input/output pairs, i.e., IO-wrong transfer faults and IO-correct transfer faults. We
propose a diagnosable input/output (DIO) sequence for identifying a given specified state.
Under the assumption that an implementation has no fault or only has IO-correct trans-
fer faults, the DIO sequence can differentiate the associated state from other states. We
further propose a protocol conformance testing and diagnosing method that includes two
fault detection and diagnosis procedures at different levels. The lower-tier fault detection
and diagnosis procedure is performed in the development procedure, to find the pos-
sible output faults, IO-wrong transfer faults and missing/extra state faults through the
local tests. Consequently, the found faults in the lower-tier procedure can be well lo-
cated. An implementation that past the lower-tier test satisfies the assumption mentioned
above. The upper-tier fault detection and diagnosis procedure can accurately locate the
IO-correct transfer fault if the starting state and ending state of the transition can be iden-
tified based on the DIO sequences.

In Section 2, we present the deterministic finite state machine model for protocol
conformance testing and the types of the faults in the implementation under test. The
DIO sequence and related concepts are described in Section 3. We introduce the DIO
sequence searching algorithm and fault detection and diagnosis procedures for protocol
conformance testing in Section 4. In Section 5, the related work will be introduced. Fi-
nally, we summarize this paper in Section 6.

2. Preliminaries

2.1. Deterministic Finite State Machine

The control portion of the protocol specification and implementation usually can be
modeled as a deterministic finite state machine. A deterministic finite state machine is
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an initialized deterministic Mealy machine that can be formally defined as a 6-tuple
M = (S, X, Y, δ, λ, s0) (Gill, 1962), where S is a finite set of states, s0 is the initial
state, X is a finite set of input symbols, Y is a finite set of output symbols, δ and λ are a
pair of characterizing functions given by

sj = δ(si, x),

y = λ(si, x),

where si, sj ∈ S, x and y are input symbol and output symbol, respectively.

In this paper, we use the notation si × x
y→ sj to represent a transition, which means

that the DFSM M at state si responds with an output y and enters the state sj when the
input x is applied, where sj = δ(si, x) and y = λ(si, x). State si and sj are the starting

state and ending state of the transition si × x
y→ sj , respectively. If we are not interested

in the output of a transition si × x
y→ sj , we use the notation si × x → sj to mean the

transition. Similarly, we sometimes employ notation si × x → to mean a transition of
deterministic FSM.

FSM M is said to be a complete FSM if the transition si ×x → is defined for any state
si and input x; otherwise, M is said to be a partial FSM (see (Petrenko and Yevtushenko,
2005; Sabnani and Dahbura, 1988). In most cases, only a minority of inputs are specified
for a given state of the protocol model, some examples can be seen in Wang et al. (2004),
Zhang et al. (2006).

In the implementation of a partial FSM, an input error is returned when a unspecified
input x is applied to a state si. For transforming a partial FSM into a complete FSM,
some additional transitions are added to the FSM. In Sabnani and Dahbura (1988), for
satisfying completeness assumption, there is a self-loop edge, with a null output in its
label, from each state corresponding to each input which is ignored. To distinguish the
normal protocol behavior from unexpected one, we introduce the following definition.

DEFINITION 1. An exceptional output is a response to the transition which is not speci-
fied or is specified only for satisfying completeness assumption.

According to Definition 1, the null output in Sabnani and Dahbura (1988) is an ex-
ceptional output. In this paper, we use symbol ◦ to represent the exceptional output.

2.2. Fault Classes

In the protocol conformance testing, the faults of the implementation can be divided
into the following four classes (see Chow, 1978; Fujiwara et al., 1991; Ghedamsi and
Bochmann, 1992).

• Output Fault: A transition, denoted by si × x
y→ sj , has an output fault if the

implementation produces an output different from y when input x is applied to
state si.
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• Transfer Fault: A transition, denoted by si × x
y→ sj , has a transfer fault if the

implementation enters a state different from sj when input x is applied to the state
si.

• Missing State Fault: An implementation has a missing state fault, if the imple-
mentation cannot enter any state when a transition in the specification is tested.

• Extra State Fault: An implementation has an extra state if the implementation
cannot enter the state in terms of the specification.

To test the protocol conformance, some test sequences is applied to the implementa-
tion. If there are some differences (called “symptoms” as in Ghedamsi and Bochmann,
1992) between expected output sequences and observed output sequences, we can decide
that there are some differences between the specification and implementation. However,
the symptoms might not accurately respond to the corresponding faults in the test proce-
dure.

EXAMPLE 1. Let us consider a specification DFSM shown in Fig. 1a and its implemen-
tation shown in Fig. 1b. Table 1 shows three test sequences and corresponding outputs.

When test sequence “a, b, a” is performed starting from state s0, the output sequence
is equivalent to the expected one through the past state sequence is not equivalent to the

Fig. 1. An example of the specification DFSM and corresponding implementation DFSM.

Table 1

Three test sequences (TSs) and their responses

TS Excepted output Output

a, b, a 1, 2, 1 1, 2, 1

b, a, a 2, 1, 1 1, 1, 1

a, b, b 1, 2, 1 1, 2, ◦

TS Expected state sequence State sequence

a, b, a s0, s1, s4, s3 s0, s1,s2, s4

b, a, a s0, s2, s4, s3 s0, s2, s4, s3

a, b, b s0, s1, s4, s2 s0, s1,s2,null
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expected state sequence. The input sequence “a, b, b” can detect the fault, but the it
cannot reflect the fault in the accurate moment of the fault occurrence.

From the above example, we can see that the symptoms cannot reflect the real faults
in some cases. Therefore it is difficult to quickly and accurately diagnose the faults in the
conformance testing procedure.

3. Diagnosable Input/Output Sequence

In a given DFSM model, an input/output pair x/y is said to be specified for state s if and
only if there exists a transition s × x

y→. Clearly, two different states might have the same
specified input/output pairs.

DEFINITION 2. Some states of a DFSM are said to be IO-equivalent, if and only if the
specified input/output pair sets for the states are identical to each other.

For the example shown in Fig. 2a, state s4 and s7 are IO-equivalent because the spec-

ified input/output pair set for each of them are {e/1}. Formally, we use si
IO= sj to mean

that state si and sj are IO-equivalent. We introduce two types of sets for a given state

s, i.e., IO-equivalent set SIO(s) and IO-inclusive set S+
IO(s), SIO(s) = {si|si

IO= s},
S+

IO(s) = {si|IO(s) ⊆ IO(si)}, where IO(s) represents the set of all specified in-
put/output pairs for state s. Clearly, SIO(s) ⊆ S+

IO(s).
We use IO-inclusive set to classify the transfer faults into two categories, i.e., IO-

wrong transfer fault and IO-correct transfer fault, which are defined in following:

DEFINITION 3. The implementation of transition si × x
y→ sj is said to be IO-wrong if

the ending state of the transition in the implementation is not in S+
IO(sj). If the ending

state sk (k �= j) of the transition in the implementation is in set S+
IO(s), the transfer fault

is said to be IO-correct.

In the example of Fig. 2a, if the ending state of s0 × b
1→ s1 in the implementation

is state s8, then we say that the transition has an IO-wrong transfer fault. However, the
transition has an IO-correct transfer fault if the ending state is s2.

In this section, we assume that the implementation has no output fault, IO-wrong
transfer fault and missing/extra state fault. The above assumption is called IO-correct as-
sumption, and we will explain how to satisfy it in Section 4. Under the above assumption,
we propose an identification sequence, called Diagnosable Input/Output (DIO) sequence,
for each state of the specification DFSM if it exists.

DEFINITION 4. The DIO sequence for state s is an input/output sequence which can
identify state s in the implementation under the IO-correct assumption.
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Fig. 2. An example DFSM.

Fig. 3. An example of the transfer tree.

Formally, a DIO sequence for state si, denoted dios(si), is an input/output se-
quence (i1/o1)(i2/o2) . . . (im/om) such that: ∀j (j �= i), different output sequences
are produced when dios(si) is applied to si and sj . Additionally, we employ deno-
tation diosi(si) and dioso(si) to mean the input part and output part of dios(si), re-
spectively. For example, if dios(si) = (a/1)(b/2)(c/1), then diosi(si) = abc, and
dioso(si) = 121.

We introduce a special tree, called transfer tree (TT), to illustrate and build the pos-
sible DIO sequence for a given state. The transfer tree gives the possible transfer space
under the IO-correct assumption. This section explains the structure of the transfer tree,
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and the corresponding building procedure will be depicted in next section. As Fig. 3
shows, there are the following three types of nodes in the transfer tree:

• Specified State (SS) node represents a state of the specification DFSM.
• Uncertain State (US) node means an uncertain state which might be any state in

an IO-inclusive set.
• Nonexistent State (NS) node indicates a nonexistent state. Any NS node is a leaf

node.

Each SS node is labeled by si if it represents state si, and each US is labeled by s′
j ,

where sj means some specified state. If a node is labeled by si, then we say that the label
state of the node is si.

Each transfer tree is in association with a certain state si. The tree root is a US node,
labeled by s′

i. A US node labeled by s′
j has |S+

IO(sj)| SS children, labeled by the states
in S+

IO(sj), respectively. Only the edge starting from the SS node is labeled by some
input/output pair. Assume that an edge labeled by x/y starts from a tree node labeled
bysj , then the ending node of the edge is (1) a SS node labeled by sk if sj × x

y→ sk

and the possible transition is unique (i.e., |S+
IO(sk)| = 1, see line 3–5 of Algorithm 3),

or (2) a US node labeled by s′
k if sj × x

y→ sk and the possible transition is not unique,

or (3) a NS node if sj × x
y→ is not specified. Note that different tree nodes can have the

same label state.
In the transfer tree, each node is at some level. Practically, the tree root is at level 0.

We use function lev(n) to represent the level of node n other than the root. Function
lev(n) is defined as

lev(n) =
{

lev(p(n)), if p(n) is a US,
lev(p(n)) + 1, otherwise,

where p(n) means the parent node of node n.
In the transfer tree for state si, each downstream SS node of the 0-level node which is

labeled by si is said to be the test point (or node), and other node (other than the tree root)
is said to be the reference point (or node). Particularly, the test point and reference point at
level 0 are said to be main test point and main reference point, respectively. Additionally,
we introduce two types of paths by the following definition.

DEFINITION 5. In a given transfer tree, the path from main test point to one of its down-
stream leaf nodes is said to be a test path, while the path from a main reference point to
one of its downstream leaf nodes is said to be a reference path.

The concatenations of input/output pairs in the test path and reference path are
said to be Test Input/Output (TIO) sequence and Reference Input/Output (RIO) se-
quence, respectively. In the transfer tree, the last input/output pair of each RIO sequence
can be represented by x/◦, where x is an input and symbol ◦ means the exceptional
output. Let a TIO sequence be (i1/o1)(i2/o2) . . . (im/y) . . . and a RIO sequence be
(i1/o1)(i2/o2) . . . (im/◦), we say that the TIO sequence includes the RIO sequence. In
addition, we say that a TIO sequence is hidden if it is a prefix of another TIO sequence.
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In the transfer tree, the subtree rooted by the main test point is called test subtree,
and the subtree rooted by a main reference point is said to be a reference subtree. The
transfer tree has one and only one test subtree. Each node of the test subtree has at least
one associated reference node, which is defined in the following:

DEFINITION 6. Let the input/output pairs of the path, from the main test point to a test
point t, be represented by (i1/o1)(i2/o2) . . . (im/om), a reference node r is said to
be an associated reference node of t if there is a reference path ending at r such
that the input/output sequence in the reference path is (i1/o1)(i2/o2) . . . (im/om) or
(i1/o1)(i2/o2) . . . (im/◦).

Formally, we use RS(s) to indicate the set of associated reference nodes (except NS
nodes) of test point s. Similarly, suppose that a reference point r is one of associated
reference nodes of some test point t, we say that the reference path ending at r is one of
associated reference path of the test path ending at t.

We further introduce a special subtree of the test subtree, called matching subtree.
A matching subtree can be formed through pruning the test subtree as the following steps:

Step 1. The main test point is the root of the matching subtree; P ← {the root}.
Step 2. For each US node u in P , at least one subtree rooted by the child of u is

retained, the subtrees rooted by other child nodes, if have, are pruned; P ← {the current
children of the nodes among P }.

Step 3. If P is null, end the pruning procedure. Otherwise, go to Step 2.

Lemma 1. Let MT be any subtree of a transfer tree. For any reference path, there exists
at least one test path (in MT ) which includes the reference path.

Similar to the UIO sequence (Sabnani and Dahbura, 1988), we also use notation
T (si, α) to indicate the input/output sequence that brings the machine back to si from
δ(si, α), where α is an input sequence. We also employ an operator � to represent a con-
catenation of input/output sequences. Let A1, A2, . . . , Ak be k input/output sequences,
then the concatenation CO is defined by CO = �k

1Ai (Sabnani and Dahbura, 1988). The
DIO sequence dios(si) can be generated in terms of the transfer tree for state si. We
use notation Γ(si) to represent the set of TIO sequences (for state si) except hidden TIO
sequences. Let Γ(si) = {ts1, ts2, . . . , tsk }, then dios(si) = (�k−1

1 tsiT (si, tsi))tsk. Par-
ticularly, if |S+

IO(si)| = 1, then it is unnecessary to build the transfer tree for si, because
the transition ending at si has no fault under the IO-correct assumption.

When the DIO sequence for a certain state si is applied to a tested state, the corre-
sponding output sequence is observed. If the practical output sequence of a test sequence
ts in Γ(si) is equal to the output part of ts, we say that ts is matched. All the test paths
(including related nodes and edges) which produces a matched TIO are marked with a
symbol pass. Additionally, all the test paths which are hidden by these test paths with
symbol pass are also marked with symbol pass. If at least one test path is marked with
symbol pass and all the children of each SS node with symbol pass are also marked with
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Table 2

The TT test sequences and the observed outputs

Test sequence Input Expected output Observed output

TIO 1 c, d 1, 2 1, 2

TIO 2 a, a 2, 1 2, ◦

the symbol, we say that the DIO sequence has an expected output sequence. Under the
IO-correct assumption, we have the following theorem.

Theorem 1. If the DIO sequence for si has an expected output sequence, then the tested
state is si. Otherwise, the the tested state is not si.

Proof. We mark all the matched paths and the paths hidden by these paths with symbol
pass, then all paths with symbol pass comprise a tree T . Clearly, the root of T and
any matching subtree is 0-level node labeled by si. We can notice that all the children
of a SS node are marked with symbol pass. Additionally, at least a child of a US node
is marked with symbol pass because the US node is marked with symbol pass only if
there is a matched test path which passes the US node. Therefore we can prove that at
least one matching subtree can be derived from T . Thus the DIO sequence for si has
an expected output sequence. For any reference sequence, there exists at least one TIO
sequence derived from T which includes the reference sequence, i.e., the DIO sequence
for si has an expected output sequence if and only if the tested state is si. Thus this
theorem has been proven.

EXAMPLE 2. Consider a specification DFSM shown in Fig. 2a and its implementation
shown in Fig. 2b. In the implementation DFSM, dashed lines represent the IO-correct
transfer faults. A transfer tree for state s1 is shown in Fig. 3. For determining whether
or not state s1 is entered when input b is applied to state s0, input sequence diosi(s1)
is applied to the tested state. Table 2 gives the TIO sequences and corresponding output
sequences. According the observation, we notice that the 0-level node labeled by s1 is
marked with symbol pass, but one child s5 of the node is not marked with symbol pass.
Thus we can determine the DIO sequence has no expected output sequence, i.e., transition

s0 ×b
1→ s1 has an IO-correct transfer fault. Note that this example is under the IO-correct

assumption.

4. Testing and Diagnosing Method

In this section, we present a two-tier testing and diagnosing method for protocol confor-
mance testing, which includes two fault detection and diagnosis procedures. The method
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is used to detect and diagnose the possible faults of the implementation which is devel-
oped in terms of the specification modeled by deterministic FSM. The lower-tier part
of the method is performed in the development procedure, to find the possible output
fault, IO-wrong transfer fault and missing/extra state fault through local test, while the
upper-tier part tries to use DIO sequences to detect and diagnose the potential IO-correct
transfer faults. Through the above hierarchical diagnosis, the proposed method can well
locate the found faults.

4.1. DIO Sequence Searching Algorithm

The proposed testing and diagnosing method is based on the DIO sequence. As mentioned
previously, the DIO sequence for a state can identify the state under the assumption that
there is no output fault, IO-wrong transfer fault and missing/extra state fault. Section 3 ex-
plains the DIO sequence generation approach based on the transfer tree, this part presents
the transfer tree building algorithm, as Algorithm 1 shows.

Given a specification DFSM, the specified transitions is denoted by e0, e1, . . . , ene −1,
where ne is the number of transitions of the DFSM. Array ME [ne] saves the verification
status of each transition. The initial value of ME [i] (0 � qi < ne) is F . If a transition
ei is proven to be implemented without any fault, then ME [i] = T . More details can be
seen in Section 4.2.

In Algorithm 1, equation comp = T holds if and only if the current constructed tree
can produce a DIO sequence, i.e., each downstream leaf node of the main reference points
is a NS node. Expression r(p) means the SS node (except p) sequence in the path from
the root to node p. Denotation s(c, t) means the label state of the tail node of tree edge
which starts from c and is labeled by the input/output pair of t. Similarly, s(c) denotes the
label state of tree node c. Procedure Init S(B, r(p)) creates a stack B and then pushes
the node of r(p) into B in certain order (i.e., first SS node first enter). The purpose of
the Next P (X) procedure is to find a new test path, as Algorithm 2 explains. Procedure
Next T (c) chooses a child a of c, such that a has the most specified inputs among all
the children which are not visited for extending the tree. We take the above prior order
because it is a good heuristics to reduce the possible tra nsfers. Let d mean the tail node
of the tree edge, which starts from c and is labeled by the input/output pair of transition
t, then expression nextss(c, t) indicates (1) one random child of d if d is a US node, or
(2) d if d is a SS node.

The test path extending procedure TST (, c, t, A) can be depicted by Algorithm 3. In
the RST (v, ref (v, t)) procedure, ref (v, t) represents the transition that starts from s(v)
and has the same input/output of transition t. RST (v, ref (v, t)) is similar to TST (c, t, A)
except that the former (1) creates new tree nodes and edges in terms of ref (v, t) instead
of t, and (2) has no Push(A, ·) operation.

Clearly, it is impractical to provide a too long DIO sequence. Therefore the height of
the tree produced by Algorithm 1 is limited, as the following theorem shows.

Theorem 2. The height of the tree produced by Algorithm 1 is at most 2ns +2, where ns

is the number of the specified states.
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Algoritm 1. Build the Transfer Tree for State si

1: procedure TTBM, si, ME [ne]

// M is the specification DFSM.

2: create a root r labeled by s′
i; ∀su (su ∈ S+

IO (si)), create a new node labeled by su and connect
the node to the root; comp = F ;

3: create a stack A for saving created US nodes;

4: while A is not null

5: c ← Next P (A);

6: InitS(B, r(c));

7: while comp = F do

8: if ¬ ∃a((a ∈ B) ∧ (s(a) = s(c)) then

9: Push(B, c);

10: end if

11: t ← Next T (c);

12: if t �= null then

13: TST (c, t, A);

14: for all v ∈ RS(c) do

15: l ← RST (v, ref(v, t));

16: add s(l) to set Sn;

17: end for

18: if Sn = {s(c, t)} then

19: c ← Next P (B);

20: else

21: c ← nextss(c, t);

22: end if

23: else

24: c ← Next P (B);

25: end if

26: If c = null, then return failure.

27: end while

28: end while

29: prune the tree nodes of the test subtree that has no reference node, and prune the edges connecting
to these nodes.

30: end procedure

Proof. According to the algorithm, we can see that the height of the test subtree is limited
by stack B. In stack B, the label states of tree nodes are different from each other (see
line 8–10). We can also notice that (1) the number of US node is not larger than that of
the SS nodes in any test path, and (2) the height of any reference subtree is not larger
than that of the test subtree. Additionally, the leaf node and one of its upstream nodes
might have the same label state in a test path. Thus the max height of the tree produced
by algorithm is 2ns + 2.
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Algoritm 2. Search New Test Path

1: procedure NextP X

// X = A or B, r is the tree root.

2: while X �= null do

3: t ← top(X);

4: if t = r then

5: Pop(X); return the main test point;

6: else if ∃d((d ∈ C(t)) ∧ (!vd(d))) then

// C(t) means the set of t’s children; !vd(d) indicates that d has not been visited for extending the tree.

7: if d is SS node then

8: return d;

9: else

10: return one random child of d;

11: end if

12: else

13: Pop(X);

14: end if

15: end while

16: return null;

17: end procedure

Algorithm 3. Extend the Test Path

1: procedure TSTc, t, A)

// Assume that t = s(c) × x
y→ sd, and t = ei.

2: if ¬ ∃h((h ∈ C(c) ∧ (s(h) = sd)) then

3: if |S+
IO (d)| = 1 or ME [i] = T then

4: create a SS node m labeled by sd;

5: created edge (c, m), labeled by x/y;

6: else

7: create a US node u, labeled by s′
d;

8: created edge (c, u), labeled by x/y;

9: Push(A, u);

10: for all v ∈ S+
IO (sd) do

11: create a SS node k, labeled by v;

12: create edge (u, k);

13: end for

14: end if

15: end if

16: end procedure
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In a given DFSM M = (S, X, Y, δ, λ, s0), we use dmax to mean the largest out-
degree of the states and d′

max to indicate the largest out-degree of the US nodes, d′
max =

max{ |S+
IO(s)| |s ∈ S}. Then we have the following theorem.

Theorem 3. The worst-case space-complexity of Algorithm 1 is O((d′
max)

2(dmax ·
d′
max)n+1), where n is the number of specified states.

Proof. In the test subtree, Algorithm 1 produces at most (dmax · d′
max)n+1 SS nodes, and

the number of US nodes is not larger than that of SS nodes. Therefore there are at most
O((dmax · d′

max)n+1) test nodes. Except the edge starting from the root, edges of the test
subtree are produced in terms of the SS nodes, and the edge generation procedure creates
at most d′

max +1 test edges. Therefore there are at most O((d′
max + 1)(dmax · d′

max)
n+1)

edges in the test subtree. The worst-case space-complexity of building any reference
subtree is not larger than that of building the test subtree. Thus the worst-case space-
complexity of Algorithm 1 is O((d′

max)2(dmax · d′
max)n+1).

For a certain state si and any transition si × x
y→ sj , if there exists a transition

sk × x
y→ sl (k �= i) such that IO(sj) ⊆ IO(sl), then we say that sk is able to hide si.

If sk is able to hide si and there is an input/output pair x/y such that the tail states of
transition sj × x

y→ and sl × x
y→ are different from each other, we say that si can be

further distinguished from sk. If the input/output sequences in a test path and a reference
path are different, we say that the test path can be distinguished from the reference path.
Assume that a given state is hidden by another state with probability α, and can be further
distinguished from another state with probability β.

Theorem 4. A test path including m edges can be distinguished from one of its associ-
ated reference path with probability (1 − α) (αβ)m −1

αβ−1 .

Proof. Suppose that the test path starts from state si. If si can not be hidden by its as-
sociated reference node sk, then there exists a transition si × x

y→ sj such that some
input/output pair x′/y′ is specified for sj but not for any tail state of transition starting
from sk. Thus input sequence “x, x′” can distinguish si from sk with probability (1 − α).
Similarly, a test path that includes n test edges is distinguished from the associated ref-
erence path with probability (αβ)n−1(1 − α). Note that the test path passing through u

is not able to distinguished itself from the associated reference path passing through u’s
associated reference node v if u and v are labeled by the same state. Thus this theorem
has been proven.

4.2. Fault Detection and Diagnosis Procedures

Our proposed testing and diagnosing method for protocol conformance testing includes
two fault detection and diagnosis procedures at different levels. As mentioned previously,
the lower-tier detection and diagnosis procedure is used to satisfy the IO-correct assump-
tion, which is performed in the protocol development procedure. The purpose of the
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Fig. 4. The fault detection and diagnosis processes.

upper-tier detection and diagnosis procedure is to detect the potential IO-correct transfer
faults of the implementation under test and accurately diagnose the found faults. Fig. 4
describes the two-tier fault detection and diagnosis processes, and we will explain the
details in the following parts.

Because the states can be easily identified through messages and communication en-
tities (such as server and client), the lower-tier detection and diagnosis procedure can
track each state of the implementation DFSM in the protocol development procedure.
The lower-tier detection and diagnosis procedure has the following two objectives:
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Objective 1. Ensure that the number of states of the implementation DFSM is equal
to that of specified states.

Objective 2. Find and revise the possible output faults and IO-wrong transfer faults.

The first objective can be obtained through counting the different states of the imple-
mentation DFSM. The second objective can be gained as follows:

For any specified transition si × x
y→ sj and specified input/output pair x′/y′ for state

sj , an input sequence “x, x′” is applied to the corresponding state (in the implementation)
of specified state si. If the first observed output is not y, then there is an output fault for
the transition. The second observed output is not y′ if (1) the tail state of the transition
in the implementation is not in S+

IO(sj) and/or (2) the input/output pair x′/y′ for state sj

has a wrong implementation. All the found faults will be revised until passing the above
test. Because the above tests are within a local area, the found faults can be well located.

REMARK 1. Through the above test and revise procedure, we can say that the implemen-
tation has no IO-wrong transfer fault, output fault and missing/extra fault, i.e., satisfy the
IO-correct assumption.

As noted above, the DIO sequence can identify a state in the implement under the IO-
correct assumption. The upper-tier part of our proposed method employs a test method
based on DIO sequences to detect and locate the possible IO-correct transfer faults. Sim-
ilar to ME [ne], array MS [i] (0 � i < n) is used to indicate whether or not state si has a
DIO sequence. Specifically, MS [i] = T if state si has a DIO sequence at current moment,
while MS [i] = F if state si has no DIO sequence at this moment. State si is said to have
a T label if MS [i] = T . Next we introduce some related concepts.

DEFINITION 7. In a given DFSM, if there exists a path from the initial state s0 to state
si such that each edge ej in the path is labeled by T or S (i.e., ME [j] = T or S), then
the path is said to be a diagnosable path.

DEFINITION 8. In a given DFSM, a state si is said to be diagnosis-reached if there exists
a diagnosable path from the initial state s0 to state sj . Otherwise, state sj is said to be
diagnosis-unreached.

DEFINITION 9. Let α and β denote the specified input sequence and output sequence of
a path (denoted by p) from state si to sj , respectively. We say that path p has the expected
output sequence if the output sequence is equal to β when α is applied to state si.

We say that a path, from state si to state sj , has no symptom if the expected output
sequence is observed and the ending state is si when the input sequence of the path is
applied in state si. If a path has some symptoms, there is at least one fault in the path
because the starting state and ending state are both affirmed to be correctly implemented.
The path that has some symptoms is said to be a fault-included path. Let transition t be
represented by en(t). Suppose that a specification deterministic FSM M has ne transitions
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(denoted by e0e1 . . . ene −1) and ns specified states (denoted by s0s1 . . . ens −1), then the
upper-tier detection and diagnosis procedure does as follows:

Step 1. Perform the conformance test through some existing fault detection method
with high fault coverage (by default, the Wp-method). If no fault is found, then end the
procedure.

Step 2. Create array ME [ne]; ∀i (0 � i < ne), ME [i] ← F ; Create array MS [ns],
∀i (0 � i < ns), MS [i] ← F ; Initialize set Ctf and Cpf , which are used to save the
found IO-correct transfer faults and fault-included paths, respectively.

Step 3. Employ Algorithm 4 to attempt to find the new diagnosable paths and save
the found IO-correct transfer faults. If ∀j ((0 � j < ne) ∧ (ME [j] = T )), then end the
procedure.

Step 4. Try to find a path from a diagnosis-reached state to a diagnosis-unreached state
which is labeled by T such that (1) the path has no symptom and (2) only the starting state
of the path is diagnosis-reached. In the searching procedure, if a surveyed path pa (from
a diagnosis-reached state to a diagnosis-unreached state which is labeled by T ) has some
symptoms, then Cpf ← pa. If the above path is found, then each edge ej of the path is
labeled by S (i.e., ME [j] = S) and go to Step 3.

Step 5. Csus = {ek |ME [k] �= T } −Ctf , where Csus means a set of the transitions that
might have IO-correct transfer faults. All the transitions in set Ccor (i.e., {ek |ME [k] =
T }) are correctly implemented.

In Algorithm 4, the DIOSSearch procedure generates the possible DIO sequence
(for each state sk) that satisfies MS [k] = F , in terms of ME [ne]. The DIO sequence
generation method can be seen in Section 3. The purpose of the V alidate(t) procedure
is to validate transition t. The above procedure returns T if (1) ME [nw,v] = F , and
(2) transition t has no IO-correct transfer fault. Otherwise, F is returned. To determine
whether transition t (t = si × x

y→ sj) has IO-correct transfer fault or not, input sequence
“x, diosi(v))” is applied to state si, and the output sequence is observed. If the output se-
quence is the expected one, we say that the transition is correct. Otherwise, the transition
has a IO-correct transfer fault, related work should be done to revise the fault.

Let Tpt be the set of the transitions which are in the paths in set Cpf , then Tpt ⊆ Csus.
Additionally, Ctf

⋂
Csus = Φ. According to the two-tier fault detection and diagnosis

procedures, we have the following theorem.

Theorem 5. Assume that set Csus produced by the proposed fault detection and diagno-
sis method is null, then all the faults can be located accurately.

Proof. Assume that set Csus produced by the proposed fault detection and diagnosis
method is null, then all faults can be detected. According to the above description, we
can notice that all the found faults occur near the related symptoms (in the lower-tier
procedure) or at the tested transition (in the upper-tier procedure). Thus the theorem has
been proven.

Additionally, a fault can be located within a limited arrange if the starting state and/or
ending state of the transition cannot be identified, because the transitions in set Ccor have
been confirmed to be correctly implemented.
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Algorithm 4. DIO-Based Fault Detection and Diagnosis Procedure

1: procedure DiagnoseM, MS [ns], ME [ne]

// s0 is the initial state.

2: fin ← F ;

3: while fin = F do

4: DIOSSearch(M, MS [ns], ME [ne]);

5: create stack D, Push(D, s0);

6: create array V [n], V [i] ← F (0 � i < n);

7: fin ← T , w ← s0;

8: while w �= null do

9: t ← Next (w);

10: if t �= null then

11: if ME [k] = S and V [v] = F then

// k = n(t), v is the tail state of t.

12: Push(D, v); V [v] = T ; w ← v;

13: else if MS [w], MS [v] = T then

14: if Validate(t) = T then

15: ME [n(t)] = T ; fin ← F

16: else

17: add t to Ctf ;

18: end if

19: if V [v] = F then

20: Push(D, v);

21: V [v] = T ; w ← v;

22: end if

23: else

24: w ← Pop(D);

25: end if

26: else

27: w ← Pop(D);

28: end if

29: end while

30: end while

31: end procedure

4.3. Application Examples

Given the specification DFSM shown in Fig. 2a and an implementation shown in Fig. 5,
we use the proposed testing and diagnosing method to test and diagnose the faults in the
implementation.

In the lower-tier detection and diagnosis procedure, the corresponding output se-
quence “2, ◦” is observed when input sequence “e, d” is applied to state s2. Because

“2, ◦” is different from the expected output sequence “2, 2”, transition s2 × e
2→ s3 is IO-

wrong. Similarly, the procedure also can detect the output fault e/2. Note that all found
faults in the lower-tier procedure are correctly revised, as Fig. 2b shows.
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Next we use the upper-tier detection and diagnosis procedure to test the implementa-
tion DFSM shown in the Fig. 2b. The specific steps is explained in Table 3. Note that we
do not care about the output sequence β and expected output sequence α, which are in
associate with an input sequence T (, ) (see Section 3).

We further use 5 practical models to evaluate the performance of our proposed
method. These models include: 4 DFSM models for mobile IPv6 described in Zhang et al.
(2006), i.e., NS, MN, BCE and BC models; 1 DFSM model for IPv6 neighbor discovery

Table 3

The steps of the IO-correct transfer fault detection and diagnosis for the implementation DFSM shown in Fig. 5.
Symbol α and β mean the output sequence and expected output sequence corresponding to input sequence
T (, ), respectively

Transition Input sequence Expected output Observed output Diagnosis

s0 × c
2→ s9 c, a, c 2, 2, 1 2, 2, 1 pass

s9 × a
2→ s1 a, c, d, T (s2, (c, d)), a, c 2, 1, 2, α, 2, 2 2, 1, 2, β, 2, 1 error

s1 × a
2→ s5 – – – pass

s5 × d
2→ s7 d, e, a 1, 1, 1 1, 1, 1 pass

s7 × e
1→ s5 – – – pass

s5 × b
1→ s6 a, b, e 1, 1, 1 1, 1, 1 pass

s6 × e
1→ s7 e, e, a 1, 1, 1 1, 1, 1 pass

s5 × b
2→ s8 – – – pass

s8 × d
2→ s7 d, e, a 2, 1, 1 2, 1, 1 pass

s8 × c
1→ s1 c, c, d, T (s2, (c, d)), a, c 1, 1, 2, α, 2, 2 1, 1, 2, β, 2, 2 pass

s9 × b
2→ s8 – – – pass

s0 × b
1→ s1 b, c, d, T (s2, (c, d)), a, c 1, 1, 2, α, 2, 2 1, 1, 2, β, 2, 1 error

s0 × a
2→ s2 – – – pass

s2 × a
2→ s4 a, e, d 2, 1, 2 2, 1, 2 pass

s2 × c
1→ s4 c, e, d 1, 1, 2 1, 1, 2 pass

Csus = {(s4, s3), (s3, s4), (s2, s3), (s1, s3)}

Fig. 5. An example of the implementation.
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Table 4

The two-tier fault detection and diagnosis for the multicast tree building procedure of the HCcast protocol
(Zhang et al., 2009)

Fault types in lower-tier part IO-Correct fault

Output fault IO-Wrong fault Missing state fault

SA 1 1 – 1 2

Found faults 5 2 – 3 1

protocol described in Wang et al. (2004). Under the IO-correct assumption, each state
of 4 DFSM models (i.e., NS, BCE and BC models for mobile IPv6, and the model for
IPv6 neighbor discovery protocol) has corresponding DIO sequence, and only 2 states
of the MN model (which contains 9 states) have no corresponding DIO sequence. Ac-
cording to the proposed testing and diagnosing method, about 97% potential IO-correct
transfer faults of the above DFSM models can be accurately located under the IO-correct
assumption. We also applied the two-tier fault detection and diagnosis method in the de-
velopment procedure of the multicast tree building part of our proposed HCcast protocol.
The multicast tree building procedure is the core of the HCcast prot ocol, and the related
details can be seen in Zhang et al. (2009). Table 4 presents the corresponding fault de-
tection and diagnosis results. In this part, we use suspected arrange (SA) to denote the
number of the transitions which a designated found fault might be in. From the table, we
can see that the found faults can be accurately diagnosed (i.e., be located in a transition
or a small part of all the transitions).

5. Related Work

The deep analysis, especially formal analysis, can effectively improve the system design.
For instance, Lunday and Sherali proposed and formulated a multi-objective dynamic
network interdiction problem, and further presented a feasible solution of the problem
(Lunday and Sherali, 2010). In addition to the effective analysis of the system design,
testing is also an indispensable part of developing a high-quality system because it can
detect some potential faults of the system implementation.

Testing Finite State Machines is a long-term research subject in hardware and soft-
ware testing, as well as protocol conformance testing, e.g., Abo et al. (1991), Chan et al.
(1989), Chow (1978), El-Fakih et al. (2004), Fujiwara et al. (1991), Gonec et al. (1970),
Naito and Tsunoyama (1981), Petrenko and Yevtushenko (2005), Sabnani and Dahbura
(1988), Wang et al. (2005) for test derivation methods, and Lai (2002), Lee and Yan-
nakakis (1996) for survey. The test derivation methods for conformance testing can pro-
duce effective test sequences to detect the faults of the implementations under test. How-
ever, they usually have limited capabilities of diagnosing the faults. Ramalingam et al.
(1995) analyzed the diagnosis capabilities of some FSM-based test sequence generation
methods, including W-method (Chow, 1978), Wp-method (Fujiwara et al., 1991), UIO-
method (Sabnani and Dahbura, 1988), UIOv-method (Chan et al., 1989), DS-method



466 X. Zhang et al.

(Gonec, 1970) and T-method (Naito and Tsunoyama, 1981), and claimed that the stud-
ied methods have the capability of fault diagnosis when the implementation has only
one fault (Ramalingam et al., 1995). Among these methods, the W-method and the Wp-
method provide the best resolutions in diagnosing the fault. Additionally, the diagnosis
result is a set of transitions which contains the found fault. If an implementation has at
most n states and at most one fault, then both W-method and Wp-method locate the fault
in a set including more than n transitions.

As mentioned previously, it is difficult to diagnose the faults in terms of the result of
conformance test. So far there have been few fault diagnosis methods for the conformance
testing based on DFSMs. Ghedamsi et al. presented a fault diagnosis method (called SF-
method) that can locate single fault in the implementation modeled by DFSMs (Ghedamsi
and Bochmann, 1992). The method adapts conflict set to provide the fault information.
Ghedamsi et al. further proposed a multiple fault diagnosis method (called MF-method)
for the case where multiple faults (output and/or transfer fault) might be presented in
the transitions of an implementation represented by a deterministic finite state machine
(Ghedamsi et al., 1993). The method can provide fault hints through a set of diagnosis,
each of which is formed by a set of transitions suspected of being faulty. The above two
methods each need additional test to further find the accurate (or somewhat accurate)
location of the found fault, and th e corresponding test costs are depended on the results
of the initial diagnosis. Vuong and Ko (1990) proposed a method (called CB-method)
based on Constraint Satisfaction Problem (CSP). The CSP-based method detects and
diagnoses the possible faults of the implementation under test, under the assumption that
the specification (1) is minimal, strongly connected and completely specified, and (2)
has an upper bound on the number of states. The CSP-based method attempts to locate
the faults through enumerating the possible DFSM model of the implementation, which
needs considerable additional test sequences.

Table 5

Comparison among some fault detection and/or diagnosis methods and our proposed method

Method Fault detection Diagnosis capability Additional Black-box

capability Accuracy Coverage test cost test

W-Method Very high Very low Single None Yes

Wp-Method Very high very low single none yes

UIO-Method High Very low Single None Yes

UIOv-Method High Very low Single None Yes

DS-Method High Very low Single None Yes

SF-Method – Low Single Low Yes

MF-Method – Low Large Low Yes

CB-Method High High Large Very high Yes

Upper-tier part

of our method Very high High Large Low Yes

Lower-tier part

of our method High Very high Large Low No
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Table 5 presents the comparison among most of the above-mentioned fault detection
and/or diagnosis methods and our proposed method. In the table, the coverage measure
of the diagnosis capability denotes the number of faults that can be diagnosed, and the
additional test represents the test that is used to diagnose the found faults. Note that each
of SF-method and MF-method is based on the existing test result obtained by some fault
detection method.

6. Conclusions

In this paper, we classified the transfer faults into two categories, i.e., IO-wrong transfer
faults and IO-correct transfer faults. For accurately diagnosing the possible faults, we
proposed a diagnosable input/output (DIO) sequence. Under the IO-correct assumption,
the DIO sequence for a state of the DFSM model can differentiate the state from other
states even if the implementation might have some IO-correct transfer faults. Based on the
DIO sequence, we proposed a two-tier fault detection and diagnosis method for protocol
conformance testing. The lower-tier fault detection and diagnosis procedure is performed
in the development procedure, to find the possible output faults, IO-wrong transfer faults
and missing/extra state faults. The implementation past the lower-tier test satisfies the IO-
correct assumption. Therefore the upper-tier part of our proposed method can accurately
locate the IO-correct transfer fault if the starting state and ending state of the transition
can be identi fied. Additionally, the faults which are not accurately diagnosed can be
located within a limited area.
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DFSM protokolo atitikimo testavimo ir diagnozės metodas

Xinchang ZHANG, Meihong YANG, Guanggang GENG, Wanming LUO

Daugelis žinom ↪u protokolo testavimo metod ↪u gali efektyviai surasti galimus protokolo de-
fektus. Tačiau sunku surastus defektus susieti su gautais testavimo rezultatais ir juos lokalizuoti.
Straipsnyje pasiūlyta naudoti diagnozuojam ↪a ↪iėjimo/išėjimo (I/O) sek ↪a, kurios pagalba ↪imanoma
atskirti vien ↪a protokolo būsen ↪a nuo kitos. Pasiūlytas dviej ↪u procedūr ↪u protokolo atitikimo ir tes-
tavimo metodas besiremiantis I/O sekomis. Šis metodas gali efektyviai surasti ir lokalizuoti galimus
protokolo realizavimo defektus.


