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Abstract. The goal of the paper is to get a method of Lithuanian speech diphthong modelling.
We use a formant-based synthesizer for this modelling. The second order quasipolynomial has
been chosen as the formant model in time domain. A general diphthong model is a multi-input
and single-output (MISO) system, that consists of two parts where the first part corresponds to the
first vowel of the diphthong and the second one – to the other vowel. The system is excited by
semi-periodic impulses with a smooth transition from one vowel to the other. We derived the para-
metric input-output equations in the case of quasipolynomial formants, defined a new notion of the
convoluted basic signal matrix, derived parametric minimization functional formulas for the con-
voluted output data. The new formant parameter estimation algorithm for convoluted data, based
on Levenberg–Marquardt approach, has been derived and its stepwise form presented. Lithuanian
diphthong /ai/ was selected as an example. This diphthong was recorded with the following pa-
rameters: PCM 48 kHz, 16 bit, stereo. Two characteristic pitches of the vowels /a/ and /i/ have
been chosen. Equidistant samples of these pitches have been used for estimating parameters of
MISO formant models of the vowels. Transition from the vowel /a/ to the vowel /i/ was achieved
by changing excitation impulse amplitudes by the arctangent law. The method was audio tested,
and the Fourier transforms of the real data and output of the MISO model have been compared.
It was impossible to distinguish between the real and simulated diphthongs. The magnitude and
phase responses only have shown small differences.

Keywords: Lithuanian diphthongs, modelling, MISO system, Levenberg–Marquardt approach,
formant, quasipolynomial model, parameter estimation, speech synthesis.

1. Introduction

Much effort is given by Lithuanian scientists and engineers for developing digital tech-
nologies of Lithuanian speech processing. An overview of speech engineering in Lithua-
nia at the end of the twentieth century is given in Lipeikienė and Lipeika (1998).
The dominating field of Lithuanian speech engineering is speech recognition. Research
groups work in Vilnius at the Institute of Mathematics and Informatics and Faculty of
Mathematics and Informatics of Vilnius University, in Kaunas at Vytautas Magnus Uni-
versity, Kaunas University of Technology and Vilnius University Kaunas Faculty of Hu-
manities. Some of the problems analyzed by researchers of the Institute of Mathematics
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and Informatics are as follows: development of isolated word speech recognition system
(Lipeika et al., 2002), application of dynamic programming for word endpoint detec-
tion in isolated word recognition (Lipeika and Lipeikienė, 2003), creating of a frame-
work for choosing a set of syllables and phonemes for Lithuanian speech recognition
(Laurinčiukaitė and Lipeika, 2007), using of the formant features in the dynamic time
warping based recognition of isolated Words (Lipeika and Lipeikienė, 2008; Lipeika,
2010). Experts at Vilnius University Faculty of Mathematics and Informatics consider
text-to-speech synthesis of Lithuanian language (Kasparaitis, 2001), Lithuanian speech
recognition using the English recognizer (Kasparaitis, 2008), text independent speaker
identification (Bastys et al., 2010). Scientists from Vytautas Magnus University deal with
building medium-vocabulary isolated-word Lithuanian HMM speech recognition system
(Raškinis and Raškinienė, 2003), modelling phone duration of Lithuanian by classifica-
tion and regression trees (Norkevičius and Raškinis, 2008), investigating hidden Markov
model modifications for large vocabulary continuous speech recognition (Šilingas and
Telksnys, 2004). Researchers at Kaunas University of Technology and Vilnius Univer-
sity Kaunas Faculty of Humanities investigate foreign languages models for Lithuanian
speech recognition (Maskeliūnas et al., 2009), deal with implementation of hierarchi-
cal phoneme classification approach on LTDIGITS corpora (Driaunys et al., 2009), con-
sider control of computer and electric devices by voice (Rudžionis et al., 2008). Other
fields (some of them are closely related with speech recognition) of Lithuanian language
and speech engineering are noisy speech intelligibility enhancement (Kazlauskas, 1999),
transcribing of the Lithuanian text (Kasparaitis, 1999; Skripkauskas and Telksnys, 2006),
automatic stressing of the Lithuanian text (Kasparaitis, 2000), coding and transmission
of voice signals (Kajackas and Anskaitis, 2009), the Lithuanian language machine trans-
lation (Šveikauskienė, 2005).

Lithuanian speech synthesis is one of the tasks of Lithuanian speech digital process-
ing. In order to solve the problem of Lithuanian speech synthesis, it is necessary to de-
velop mathematical models for Lithuanian speech sounds. Developing of the diphthong
models is a part of this problem.

A diphthong is defined as a complex speech sound or glide that begins with one vowel
and gradually changes to another vowel within the same syllable, as (oi) in boil or (̄i) in
fine (Collins, 2009). There exist two types of diphthongs in Lithuanian language that are
made of two vowels: compound diphthongs (ai, au, ei, ui, eu, oi, ou) and complex diph-
thongs (ie, uo). A complex speech sound that begins with a short vowel (i, e, u, a) and ends
with a sonant (l, r, m, n) within the same syllable is called a mixed diphthong (Garšva,
2001). The number of vowels and compound/complex diphthongs or mixed diphthongs
defines the number of syllables in a word. Compound complex diphthongs are important
for Lithuanian language as they along with vowels and mixed diphthongs make the basis
of a Lithuanian language syllable.

One can find research papers that investigate diphthongs of various languages in the
literature. Acoustic analysis of the Spanish diphthongs has been carried out in Borzone
De Manrique (1979). The German diphthongs have been analysed in Geumann (1997).
Acoustic analysis of diphthongs in Standard South African English has been carried out
in Martirosian and Davel (2008).
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Diphthong modelling is important for solving a text-to-speech (TTS) problem. TTS
problem arises in various applications such as services for the hearing impaired, reading
email aloud, etc. A TTS system is defined as a system that takes a sequence of words as
input and converts it into speech (SIL, 2004). The best known commercial TTS systems
are Bell Labs TTS and Festival developed at University of Edinburgh. The construction
of a model for segmental duration in German is considered in the paper (Mobius and van
Santen,1996). This model has been implemented in the German version of the Bell Labs
text-to-speech system. The goal of the paper (Mobius and Von Santen, 1996) “was to
analyze and model durational patterns of natural speech in order to achieve an improved
naturalness of synthetic speech”.

A method for formant parameter extraction from a labelled single speaker database
for use in a synthesis system is examined in Mannell (1998). This paper considers speech
synthesis by the concatenation of formant parameter diphones. A word “diphone“ can be
derived from two Greek words “di“ that means “two“ and “phonos” that means “sound”.
A diphone is defined as an adjacent pair of phones.

A phone is an individual sound unit of speech without concern as to whether or not
it is a phoneme of some language (Onelook 2010). Remind that a phoneme is any of the
distinct units of sound that distinguish one word from another, e.g., p, b, d, and t in pad,
pat, bad, and bat (Oxford dictionaries 2010).

A phone can also be defined as an unanalyzed sound of a language. It is the small-
est identifiable unit found in a stream of speech that is able to be transcribed with an
IPA symbol (SIL, 2004) where IPA stands for the abbreviation International Phonetic Al-
phabet. The IPA is a system of phonetic notation based primarily on the Latin alphabet,
devised by the International Phonetic Association as a standardized representation of the
sounds of spoken language (International Phonetic Association, 1999). The IPA is de-
signed to represent only those qualities of speech that are distinctive in spoken language:
phonemes, intonation, and the separation of words and syllables.

Diphones contain the transitions from one sound to the next and form building blocks
for synthetic speech. Spanish has about 800 diphones, English – over 1500, German –
about 2500, and Lithuanian – about 5000 (Cressey, 1978; Fox, 2005). By combining pre-
recorded diphones, we can create synthesized speech sounds much more natural than by
combining just simple phones, because the pronunciations of each phone varies depend-
ing on the surrounding phones.

Two main speech synthesis types – concatenation (Hopcroft and Ullman, 1979; Kas-
paraitis, 2001) and formant (Holmes and Holmes, 2001; Slivinskas and Šimonytė, 2007) –
are discussed in the literature. The formant synthesis type is based on the formant model.
The main formant model problem is a strong synthetic shade of the synthesized signal
(Ringys and Slivinskas, 2009).

The objective of this paper is to develop a method of Lithuanian speech diphthong
modelling. We use the formant synthesizer method. Each formant is responsible for a
certain band of the frequency response. In general case, the formants of the diphthong
vowels are different. The first problem is as follows: what functions must be used to de-
scribe formants in time domain. A formant can be selected as a damped sinusoid. Such an



414 G. Pyž et al.

approach is often used in various language formant synthesizers. The sounds produced
by such synthesizers, however, have synthetic character. Ringys and Slivinskas (2010)
used a quasipolynomial function to describe formants. They obtained sufficiently natu-
rally sounding vowel sounds. Following them, we choose a quasipolynomial function as
a mathematical tool for formant description.

The second problem is to estimate formant parameters in the case of a diphthong.
Ringys and Slivinskas (2010) used the Levenberg–Marquardt approach and an algorithm
derived in Šimonytė and Slivinskas (1997) for vowel formant parameter estimation. They,
however, did not take into account that the data is convoluted. Using the above men-
tioned algorithm significant errors are obtained. These errors are not essential in vowel
modelling, they, however, can distort the overall diphthong model. Therefore we need
to develop a quasypolinomial formant parameter estimation algorithm that can be used
for convoluted data. The data can be deconvolved using the assumption that the formant
decays in three periods.

The third problem is to choose the model type of a system producing the diph-
thong. If the system is SISO (Single-Input and Single-Output), then all the model for-
mants are excited in the same way. As a result, we get the same output periods. Mod-
elling of a natural language requires the use of MISO (Multiple-Input and Single-
Output) system (Ringys and Slivinskas, 2010). In the paper, we use a MISO system
consisting of two parts. The first one is intended for the first vowel modelling, and
the other – for the second vowel modelling. All the formants influence the transition
area.

Looking at the recorded diphthong vowel plots, one can notice that the periods (even
adjacent) are not completely identical. To obtain a model for such a vowel signal, it is
necessary to use a MISO system where each channel (SISO system) is responsible for
one frequency band and is related to a single formant. If the formants are excited not in
the same way, we can get more natural synthesized diphthong sounding.

The fourth problem is selection of the MISO system input. To solve this problem, we
need to filter the diphthong signal in the formant intervals and calculate the output signal
maximums. In this way, we obtain the input amplitude dynamics.

The fifth problem is selection of the area of the transition from the first vowel to the
second vowel. We have to choose a mathematical function describing this transition.

This paper is the first one in the field of Lithuanian diphthong modelling. Our aim is
not to model all the Lithuanian diphthongs but to propose a method for their modelling.
Therefore we present only a single example – modelling of the diphthong /ai/.

The paper is structured as follows: Section 2 deals with derivation of the parametric
input-output equations in the case of quasipolynomial formants. We define a new no-
tion of the convoluted basic signal matrix and derive parametric minimization functional
formulas for the convoluted output data. In Section 3, we develop formant parameter es-
timation algorithm for convoluted data. We present a stepwise form of this algorithm in
Section 4. In Section 5, we give not only an example, but also the methodological outline
for diphthong modelling.
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2. A MISO System as a Speech Diphthong Model

Consider a MISO (multiple-input and single-output) discrete time system that is made of
K causal SISO (single-input and single-output) systems connected in parallel (Huang et
al., 2010; Ringys and Slivinskas, 2010). We assume that K = K1 +K2 where K1 equals
the number of SISO systems corresponding to the first vowel of the diphthong, K2 – to
the number of those SISO systems corresponding to the second vowel.

Let

h1 =
(
h1(0), h1(1), h1(2), . . .

)
,

...

hK =
(
hK(0), hK(1), hK(2), . . .

)
(1)

denote the impulse responses, and

u1 =
(
. . . , u1(−1), u1(0), u1(1), . . .

)
,

...

uK =
(
. . . , uK(−1), uK(0), uK(1), . . .

)
(2)

– the inputs of the corresponding SISO systems. Denote by

yk =
(
. . . , yk(−1), yk(0), yk(1), . . .

)
, k = 1, . . . , K (3)

the output of the kth SISO system.
The impulse response H of the MISO system is the following vector of sequences:

H =

⎡
⎢⎣

h1

...
hK

⎤
⎥⎦ , (4)

and the input of the MISO system is as follows: U = [u1, . . . ,uK ]T .
We consider such a MISO system whose output y is equal to the sum of the inputs of

the SISO systems:

y = y1 + · · · + yK . (5)

Since

yk = uk ∗ hk, (6)

where ∗ denotes the convolution operation

uk ∗ hk =
∞∑

i=0

uk(n − i)hk(i), (7)
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we have

y = u1 ∗ h1 + . . . + uK ∗ hK . (8)

A diagram of such a MISO system is shown in Fig. 1.
Consider the vector delta sequence δ(n) defined as

δ(n) =

⎧⎨
⎩

[1, 1, . . . , 1]T , n = 0,

[0, 0, . . . , 0︸ ︷︷ ︸
K

]T , n �= 0. (9)

Suppose that the system is excited by this sequence. In this case, the output sequence
values are as follows:

y(n) =
K∑

k=1

hk(n), n � 0. (10)

We assume that all the hk can be represented by second order quasipolynomials (they
are defined below). Quasipolynomials are slightly more sophisticated than damped sinu-
soids.

A formant is defined as a vocal tract resonance (Rosner and Pickering, 1994; Fry,
1977). The term “formant” is often used to refer to a peak in a frequency-domain repre-
sentation (Rosner and Pickering, 1994). In time-domain representation, a formant can be
described as a damped sinusoid (Fant, 1970; Cook, 2002).

This, however, is true as a special case only. It has been shown that a formant has a
more general form Slivinskas and Šimonytė (1990). In this book, the rigorous definitions
of a signal, its order, formant of a signal were presented, and it was proved that in general
case the formant of a signal is a quasipolynomial. In this paper, we restrict ourselves to
second order quasipolynomials from practical considerations. Such a quasipolynomial
is a damped exponential multiplied by a second order polynomial whose coefficients
vary according to a sinusoidal law with the same frequency and different amplitudes and

Fig. 1. A MISO system diagram.
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phases. The mathematical description of a second order continuous-time quasipolynomial
is given below:

s(t) = eλt
(
a1 sin(2πft + ϕ1) + a2t sin(2πft + ϕ2)

+ a3t
2 sin(2πft + ϕ3)

)
, (11)

where t is a nonnegative real number t ∈ R+ ∪ {0}, λ < 0 – the damping factor, f – the
frequency, ak – amplitude, ϕk(−π � ϕk < π) – phase. If the coefficients a2 = a3 = 0,
then we obtain the usual mathematical description of a formant.

First, consider a discrete time SISO system whose impulse response hk(n) consists
of a single formant:

hk(n) = s(nΔt), n = 0, 1, 2, . . . , (12)

where the formant s(t) is defined by (11) with λ = λk, f = fk, a1 = ak1, a2 =
ak2, a3 = ak3, ϕ1 = ϕk1, ϕ2 = ϕk2, ϕ3 = ϕk3; Δt = 1/fs (fs is the sampling
frequency), k = 1, . . . , K.

Let N be a positive integer. Taking t = 0, Δt, 2Δt, . . . , (N − 1)Δt, we get from
(11) and (12) that

hk(0) = ak1 sin(ϕk1),

hk(Δt) = eΔtλk
(
ak1 sin(2πfkΔt + ϕk1) + ak2Δt sin(2πfkΔt + ϕk2)

+ ak3Δt2 sin(2πfkΔt + ϕk3)
)
,

hk(2Δt) = e2Δtλk
(
ak1 sin(2πfk2Δt + ϕk1) + ak22Δt sin(2πfk2Δt + ϕk2)

+ ak322Δt2 sin(2πfk2Δt + ϕk3)
)
,

...

hk((N − 1)Δt) = e(N −1)Δtλk
(
ak1 sin(2πfk(N − 1)Δt + ϕk1)

+ ak2(N − 1)Δt sin(2πfk(N − 1)Δt + ϕk2)

+ ak3(N − 1)2Δt2 sin(2πfk(N − 1)Δt + ϕk3)
)
. (13)

Denote by hN
k the following N × 1 vector :

hN
k =

[
hk(0), hk(Δt), hk(2Δt), . . . , hk((N − 1)Δt)

]T
. (14)

Let

Ωk = 2πfkΔt,

Λk = λkΔt,

Ak1 = ak1,

Ak2 = ak2Δt,

Ak3 = ak3Δt2, k = 1, . . . , K. (15)
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Collect the first N values of the output sequence into a vector yN :

yN =
[
y(0), y(1), y(2), . . . , y(N − 1)

]T
. (16)

Define by Ψk = Ψk(Λk, Ωk) the following N × 6 matrix:

Ψk = [Ψk1 Ψk2 Ψk3], (17)

where

Ψki =
[

δ(i − 1) 0
cki ski

] (
δ(i) =

{
1, i = 0
0, i �= 0

)
, (18)

with

cki =
[
eΛk cos Ωk, 2i−1e2Λk cos 2Ωk, . . . ,

(N − 1)i−1e(N −1)Λk cos(N − 1)Ωk

]T
, (19)

ski =
[
eΛk sin Ωk, 2i−1e2Λk sin 2Ωk, . . . ,

(N − 1)i−1e(N −1)Λk sin(N − 1)Ωk

]T
, (20)

and by αk = α(Ak1, Ak2, Ak3, ϕk1, ϕk2, ϕk3) the following 6 × 1 vector:

αk =
[
Ak1 sin(ϕk1), Ak1 cos(ϕk1), Ak2 sin(ϕk2), Ak2 cos(ϕk2),

Ak3 sin(ϕk3), Ak3 cos(ϕk3)
]T

. (21)

Collect all the matrices {Ψk } into an N × 6K matrix Ψ:

Ψ = [Ψ1 | Ψ2 | . . . | ΨK ], (22)

and all the vectors {αk } into a 6K × 1 vector α :

α =
[
αT

1 | αT
2 | . . . | αT

K

]T
. (23)

One can readily check that the vector yN can be expressed as the product of the matrix
Ψ and the vector α

yN = Ψ1α1 + · · · + ΨKαK = Ψ · α. (24)

If we have the matrix Ψ, obtaining of the α reduces to a simple least squares fit:

α = Ψ+ · yN , (25)

where Ψ+ denotes the pseudo-inverse of the matrix Ψ, i.e., a 6K × N matrix
Ψ+ = (ΨT Ψ)−1Ψ.
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Let z denotes the common shift operator. Then from (4) we can write

zH =

⎡
⎢⎣

zh1

...
zhK

⎤
⎥⎦ , (26)

where

zhk =
(
hk(1), hk(2), hk(3), . . .

)
, k = 1, . . . , K (27)

is the shifted sequence.
Suppose now that the system is excited by a periodic sequence of the vector delta

sequences:

δ(n), δ(n − M), δ(n − 2M), . . . , (28)

where 0 < M < N is the period of this sequence such that

zkH =

⎡
⎢⎣

0, 0, 0, . . .
...
0, 0, 0, . . .

⎤
⎥⎦
⎫⎪⎬
⎪⎭K rows, (29)

for all k � 3M . One can readily check that the output sequence then satisfies the follow-
ing relationships:

y(n) = 0 for n < 0,

y(n) =
K∑

k=1

hk(n) for � n < M,

y(n) =
K∑

k=1

(
hk(n) − hk(n − M)

)
for M � n < 2M,

y(n) =
K∑

k=1

(
hk(n) + hk(n − M) + hk(n − 2M)

)
for l · M � n < (l + 1) · M, l = 2, 3, . . . . (30)

Let θ = [Λ1, Ω1, . . . , ΛK , ΩK ]. Introduce the following M × 6K matrix Φ = Φ(θ)
(we call it the convoluted matrix):

Φ = Ψ(1 : M, :) + Ψ(M + 1 : 2M, :) + Ψ(2M + 1 : 3M, :), (31)

where Ψ(m : n, :) denotes a submatrix of the matrix Ψ consisting of all the columns and
the rows starting from the mth row and ending with the nth row. Note that the matrix Φ
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depends on the damping factors Λk and the angular frequencies Ωk(and does not depend
on the amplitudes Ak1, Ak2, Ak3 and phases ϕk1, ϕk2, ϕk3).

Collect all the M values of the first period of the periodic output sequence into a
vector yM :

yM =
[
y(0), y(1), y(2), . . . , y(M − 1)

]T
. (32)

Using (30), it is not difficult to check that

yM = Φ · α. (33)

Usually we measure the output y(t) with errors. Therefore we must incorporate an
error component into (33). This error is modelled by an additive white Gaussian noise.
Collect all the noise values into a vector e:

e =
[
e(0), e(1), e(2), . . . , e(N − 1)

]T
. (34)

Then the vector y can be written in the following form:

yM = Φ · α + e. (35)

We have to minimize the following functional:

r(a, θ) =
∥∥yM − Φ(θ)α

∥∥2
, (36)

where ‖ · ‖ is the Euclidian norm defined as ‖x‖2 = xT · x.
It is proved in the literature (Golub and Pereyra, 1973) that minimization of the r(a,θ)

is equivalent to minimization of the following functional:

r2(θ) =
∥∥P ⊥

Φ(θ)x
∥∥2

, (37)

where

P ⊥
Φ(θ) = IM − Φ

(
ΦTΦ

)−1
ΦT = IM − ΦΦ+. (38)

P ⊥
Φ(θ) is called the orthogonal projector onto the orthogonal complement of the matrix

Φ column space. P ⊥
Φ(θ) can be represented by an M × M matrix. Equivalence of mini-

mization can be explained as follows: Suppose we found the value θ̂ of the parameter θ

that minimizes r2(θ). Then the value (â,θ̂) where

â = Φ+(θ̂)y (39)

minimizes the functional r(a,θ). We use Levenberg–Marquardt approach to minimize the
functional (37). In the next section, we develop a new algorithm applied to the convoluted
data. The algorithm for nonconvoluted data was developed in Šimonytė and Slivinskas
(1997).



Modelling of Lithuanian Speech Diphthongs 421

3. Parameter Estimation of the Diphthong Formant Synthesis Model

Levenberg–Marquardt approach (Levenberg, 1944; Marquardt, 1963) is an iterative pro-
cedure that corrects an initial parameter estimate according to the following formula:

θl+1 = θl −
(
VT (θl)V(θl) + clI2K

)−1
VT
(
θl
)
b
(
θl
)
, l = 0, 1, . . . , (40)

where

V(θ) = D
(
P⊥

Φ(θ)

)
y (41)

is an N × 2K matrix (the symbol D stands for differentiation operation D = ∂
∂θ , θl

denotes the value of the parameter θ in the lth iteration, P⊥
Φ(θ) is an orthogonal projector

onto the orthogonal complement of the matrix Φ(θ) column space),

b(θ) = P⊥
Φ(θ)y (42)

is an N ×1 vector, I2K is a 2K ×2Kunit matrix, cl is the Levenberg–Marquardt algorithm
constant in the lth iteration.

Levenberg–Marquardt equation (40) is not constructive, it is only a guideline to ob-
taining iteratively the formant parameter estimates. One can not use this equation directly.
In each case of data model, it is necessary to develop (40) computation algorithm in the
explicit form using constructive matrix operations (addition, subtraction, multiplication,
pseudoinverse, QR decomposition). Our data model is described in Section 2. One of such
unconstructive operations in (40)–(41) is differentiation. In order to implement (41), we
need to calculate D(P⊥

Φ(θ)) for our data model. This is a rather difficult task. Luckily

there exists a formula that simplifies calculation of D(P⊥
Φ(θ)). It is shown in Golub and

Pereyra (1973) that

D
(
P⊥

Φ(θ)

)
= −P⊥

Φ(θ)D(Φ)B −
(
P⊥

Φ(θ)D(Φ)B
)T

, (43)

where D(Φ) is a three-dimensional tensor formed of 2KM × 6K matrices each contain-
ing the partial derivatives of the elements of Φ, and B is a special generalized inverse of
the basis signal matrix Φ.

Denote by Gk an M × 6K matrix which is equal to the derivative of Φ with respect
to the kth component θk of the parameter vector θ:

Gk =
∂Φ
∂θk

. (44)

Then D(P⊥
Φ(θ)) is compounded of 2KM × M matrices of the form

(
D(P⊥

Φ(θ))
)
k

= −P⊥
Φ(θ)GkB −

(
P⊥

Φ(θ)GkB
)T

. (45)
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Thus D(P⊥
Φ(θ))x is formed of 2K M × 1 vectors (D(P⊥

Φ(θ)))kx (i = 1, . . . , 6K),
and hence V (θ) is an M × 2K matrix.

The generalized inverse matrix B can be calculated by means of a standard QR-
decomposition of the matrix Φ. Let S stands for a 6K × 6K permutation matrix, T1 –
for a 6K × 6K upper triangular matrix with decreasing diagonal elements, Q – for an
M × M orthogonal matrix. Then the matrix B is obtained using the formula:

B = S
[
T −1

1 06K×(M −6K)

]
QT. (46)

The orthogonal projector P ⊥
Φ(θ) onto the orthogonal complement of the matrix Φ col-

umn space can be calculated with a help of the orthogonal matrix Q (Golub and Pereyra,
1973):

P ⊥
Φ(θ) = QT

[
06K×6K 06K×(M −6K)

0(M −6K)×6K IM −6K

]
Q. (47)

The matrix Gk is equal to the partial derivative of the elements of the convoluted ma-
trix Φ with respect to the damping factor Λk or angular frequency Ωk of the kth output
signal component. Its size is the same as that of the matrix Φ, i.e., M × 6K. Denote for
k = 1, . . . , K:

G2k−1 =
∂Φ

∂θ2k−1
=

∂Φ
∂Λk

,

G2k =
∂Φ
∂θ2k

=
∂Φ
∂Ωk

. (48)

It is not difficult to check that:

G2k−1 =
∂Φ
∂Λk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

0
...
0

⎞
⎟⎠ , . . . ,

⎛
⎜⎝

0
...
0

⎞
⎟⎠

︸ ︷︷ ︸
6(k−1)

, Φ(:, 6k − 3), Φ(:, 6k − 2), Φ(:, 6k − 1),

Φ(:, 6k),

{
3∑

i=1

(im − 1)e(im−1)ΔtΛk cos(im − 1)Ωk

}M

m=1

,

{
3∑

i=1

(im − 1)e(im−1)ΔtΛk sin(im − 1)Ωk

}M

m=1

,

⎛
⎜⎝

0
...
0

⎞
⎟⎠, . . . ,

⎛
⎜⎝

0
...
0

⎞
⎟⎠

︸ ︷︷ ︸
6(K−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(49)
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and

G2k =
∂Φ
∂Ωk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

0
...
0

⎞
⎟⎠ , . . . ,

⎛
⎜⎝

0
...
0

⎞
⎟⎠

︸ ︷︷ ︸
6(k−1)

,Φ(:, 6k − 2),Φ(:, 6k − 3),Φ(:, 6k),

Φ(:, 6k − 1), −
{

3∑
i=1

(im − 1)e(im−1)ΔtΛk sin(im − 1)Ωk

}M

m=1

,

{
3∑

i=1

(im − 1)e(im−1)ΔtΛk cos(im − 1)Ωk

}M

m=1

,

⎛
⎜⎝

0
...
0

⎞
⎟⎠ , . . . ,

⎛
⎜⎝

0
...
0

⎞
⎟⎠

︸ ︷︷ ︸
6(K−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(50)

Since the columns of the matrix Φ and their products with scalars belong to its column
space, the products of the projector matrix P⊥

Φ(θ) and the (6k−5)th, (6k−4)th (6k−3)rd,
(6k − 2)nd columns of the matrices G2k−1 and G2k are equal to the null vector of length
M . Thus P⊥

Φ(θ)Sk is an M × 6K matrix whose all columns are zero except the two ones
(the (6k − 1)st and (6k)th columns).

4. Formant Parameter Estimation Algorithm

All the formulas that we derived in Section 3 ((42)–(50)) are constructive. Using these
formulas, we can present a stepwise algorithm for calculating formant parameter esti-
mates from convoluted data.

Given:

1. The index k of the formant under investigation.
2. The sequence y obtained from the pitch samples using the inverse Fourier transform

in the frequency range corresponding to the kth formant.
3. The initial parameter vector θ0 = [Ω0

k
Λ0

k
]T .

4. The initial value of Levenberg–Marquardt constant c0 = 0.001.
5. The iteration number l = 0.
6. The maximal iteration number lmax.
7. The signal estimation relative accuracy in percents εmin.
8. The initial signal estimation relative accuracy in percents ε−1, for example

ε−1 = 100.
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9. The allowed limit damping factor value Λlim, for example Λlim = −0.006.
10. The allowed maximal Levenberg–Marquardt constant cmax, for example cmax =

1010.
11. Stop criterion is εl < εmin or l � lmax or cl > cmax or Λl

k > Λlim.

Step 1. Compute the quasipolynomial matrix Ψ = Ψk(θl) using (17)–(20).
Step 2. Compute the convolution matrix Φ = Φk(θl) by equation (31).
Step 3. Using the standard QR decomposition of the matrix Φ, find the general inverse

matrix B according to formula (46).
Step 4. Compute the projector onto the noise subspace P ⊥

Φ(θl) by formula (38).
Step 5. Find the projection of y onto the noise subspace by formula (42).
Step 6. Determine the error εl = r2(θl)/‖y‖2 · 100% where r2(θl) is defined by (37).
Step 7. If (εl < εl−1) then

cl = cl−1/10
Go to Step 8

else
cl = cl−1 · 10
θl = θl−1

Go to Step 11.
Step 8. Compute the partial derivative of the elements of the matrix Φ with respect to Λk

and Ωk using formulas (49)–(50).
Step 9. Find the derivative of the projector D(P⊥

Φ(θl)) according to equation (45).

Step 10. Calculate the matrix V (θl)by formula (41).
Step 11. Compute the parameter vector θl+1 by (40) and return to Step 1.
END

A comment on this algorithm:

The algorithm would be valid in the case when parameters were estimated not for a single
formant but for several ones. Practice, however, shows that the results are unstable due to
the ill-conditioned matrix Ψ.

5. Experiment Results

We considered an utterance of the Lithuanian word “laimė” (“happiness“). Its duration
was 1.34 s. This utterance was recorded to a wav file of the audio format with the follow-
ing parameters: PCM 48 kHz; 16 bit; stereo. Since both channel data sets were identical,
we examined the data from a single channel. We considered not all of these samples, but
a part of them corresponding to the compound diphthong /ai/. The duration of this part
was 0.47 s. Let y = (y1, y2, . . . , yN ) be equidistant samples of the diphthong /ai/ where
N = 0.47 · 48000 = 22 560 samples. These samples are shown in Fig. 2. It is not diffi-
cult to see that this discrete signal exhibit a relative periodicity. One can count 44 periods
in total. The first periods belong to the vowel /a/, the last – to the vowel /i/. The middle
periods represent transition from the first vowel to the second one.

We select two periods corresponding to the vowel /a/ and the vowel /i/. We choose the
period in such a way that: (1) the first sample of the period be as near as possible to the
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Fig. 2. The samples of a discretized version of the diphthong “ai” of the Lithuanian word “laimė”.

Fig. 3. The pitch corresponding (a) to the vowel “a” and (b) to the vowel “i”.

Fig. 4. The magnitude response of the vowels “a” and “i”.

zero value; (2) the energy of the first half of the period be larger than that of the second
half. We call the selected periods pitches. The pitch corresponding to the vowel /a/ is the
10th period of the diphthong /ai/, and the pitch corresponding to the vowel /i/ is the 38th
period. These pitches are shown in Fig. 3.

One can see that the pitch corresponding to the vowel /a/ has four “teeth” while the
pitch of the vowel /i/ has two shorter “teeth”.

The magnitude responses of the vowels /a/ and /i/ are presented in Fig. 4.
In the frequency range 700–950 Hz, the magnitude of the vowel /i/ decreases almost

ten times, i.e., 20 dB. That is a distinctive feature of this vowel. Another distinctive feature
is a peak in the range 950–1100 Hz.
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Table 1

Formant intervals for the vowels /a/ and /i/

Interval Formant intervals Formant intervals

number for the vowel /a/ for the vowel /i/

1 30–200 Hz 30–180 Hz

2 201–265 Hz 181–440 Hz

3 266–380 Hz 441–545 Hz

4 381– 600 Hz 546–645 Hz

5 601–740 Hz 646–760 Hz

6 741– 885 Hz 761– 870 Hz

7 886–1000 Hz 871–990 Hz

8 1001–1105 Hz 991–1170 Hz

9 1106–1220 Hz 1171–1300 Hz

10 1221– 1430 Hz 1301– 1475 Hz

11 1431–1550 Hz 1476–1650 Hz

12 1551–1650 Hz 1651–1770 Hz

13 1651–1785 Hz 1771–1885 Hz

14 1786–1890 Hz 1886–2020 Hz

15 1891–2075 Hz 2021–2190 Hz

16 2076–2180 Hz 2191–2285 Hz

17 2181–2300 Hz 2286–2410 Hz

18 2301–2445 Hz 2411–2590 Hz

19 2446–2600 Hz 2591–2810 Hz

20 2601–2675 Hz

21 2676–2820 Hz

After analyzing the magnitude responses of the vowels /a/ and /i/, we selected 19
formant intervals (regions) for the vowel /a/, and 21 intervals for the vowel /i/. The proce-
dure of selection of these intervals is as follows: first, we choose a peak of the magnitude
response and go down along this response to the left from the peak until we reach the
nearest local minimum. The frequency corresponding to this minimum is the start point
of the formant interval. The end point is obtained analogously going down to the right
from the peak. The formant intervals for the vowels /a/ and /i/ are shown in Table 1.

In each of these intervals we carried out the inverse Fourier transform. We obtained
21 signals of length 504 points for the vowel /a/, and 19 signals of length 532 points
for the vowel /i/. For each of these signals, we estimated parameters of the quasipolyno-
mial model (11). Estimation was done using Levenberg–Marquardt method described in
Section 3 of this paper.

We will describe the procedure of the quasipolynomial model obtaining from the data
of a single formant interval in more detail. Consider the 3rd formant interval of the vowel
/a/. First, we select the initial estimates of the damping factor and angular frequency:
Λ0 = −0.02, Ω0 = 0.046 [rad/sample]. We use these estimates in the iterative proce-
dure described by (40) where θ = [Λ, Ω]T . This procedure is repeated until the number
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Fig. 5. The data and estimated model for the 3-rd formant interval.

Fig. 6. The vowel /a/ and /i/ formants with frequencies from the bandwidth of 30–1000 Hz (the upper plot –
formants of the vowel /a/, the lower plot – formants of the vowel /i/).

of iterations is less than 100 or the estimation error is less than 0.5. We obtained the
following estimates Λ = −0.0095, Ω = 0.044[rad/sample].

The model and the data for the 3-rd formant interval are shown in Fig. 5.
The root-mean-square estimation error is equal to 3.93 %.
Quasipolynomial parameters of the vowels /a/ and /i/ for all the formant intervals are

presented in Tables 2 and 3, respectively.
With a help of the obtained parameters, we got 21 quasipolynomial models for the

vowel /a/, and 19 quasipolynomial models for the vowel /i/. The plots of these models are
shown in Figs. 6 and 7.

After adding the estimated quasipolynomials we obtained the model signal. These
models along with the true vowel /a/ and /i/ signals are shown in Fig. 8.

The vowel /a/ root-mean-square estimation error is equal to 4.69 %, and this error for
the vowel /i/ is equal to 5.22 %.
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Table 2

Formant parameters of the vowels /a/

Formant Frequency Damping Amplitude 1 Amplitude 2 Amplitude 3 Phase 1 Phase 2 Phase 3

number [Hz] [unit] [unit] [unit/s] [unit/s2] [rad] [rad] [rad]

k fk λk A1k A2k A3k ϕ1k ϕ2k ϕ3k

1 73 −932 2481720 24388 77.88 −0.001 −1.784 2.572

2 235 −334 2184.06 9.29 0.09 1.229 2.001 1.027

3 339 −458 3460.81 17.09 0.36 0.213 0.946 −0.189

4 468 −572 3308.13 91.00 2.44 −3.001 0.324 −2.858

5 659 −491 1032.77 6.11 0.32 −0.386 −2.310 −0.346

6 786 −451 1053.00 9.85 0.15 2.365 1.927 −3.036

7 925 −365 294.06 1.87 0.02 0.818 0.367 0.664

8 1056 −335 50.62 0.51 0.01 −2.358 −1.926 −1.929

9 1195 −371 239.50 1.92 0.01 2.856 2.984 2.003

10 1381 −607 260.03 17.23 0.24 −0.830 0.689 −1.425

11 1466 −418 477.75 3.91 0.04 2.719 2.387 −2.824

12 1590 −382 190.98 1.16 0.01 1.223 0.902 1.131

13 1699 −434 62.46 0.42 0.01 −0.656 −1.854 −0.888

14 1845 −390 78.45 0.44 0.00 2.435 2.607 2.526

15 1983 −578 101.14 0.47 0.04 0.739 2.727 0.397

16 2115 −344 52.12 0.36 0.00 2.815 2.932 −2.553

17 2252 −443 70.47 0.46 0.01 1.788 1.928 1.335

18 2375 −508 45.18 0.14 0.02 −0.403 0.672 −0.724

19 2513 −578 82.48 0.44 0.02 2.466 1.294 2.802

20 2628 −960 48.34 1.69 0.04 0.822 −2.103 0.937

21 2752 −476 36.67 0.20 0.01 −0.548 −0.189 −1.058

Fig. 7. The vowel /a/ and /i/ formants with frequencies from the bandwidth of 1001–2000 Hz (the upper plot –
formants of the vowel /a/, the lower plot – formants of the vowel /i/).
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Table 3

Formant parameters of the vowels /i/

Formant Frequency Damping Amplitude 1 Amplitude 2 Amplitude 3 Phase 1 Phase 2 Phase 3

number [Hz] [unit] [unit] [unit/s] [unit/s2] [rad] [rad] [rad]

k fk λk A1k A2k A3k ϕ1k ϕ2k ϕ3k

1 96 −753 293950 3968.39 16.29 −0.008 −1.927 2.323

2 258 −695 8874.42 268.77 3.40 0.188 −2.751 0.639

3 476 −430 357.74 2.55 0.03 1.716 1.302 2.474

4 580 −404 234.94 1.61 0.01 0.830 0.621 1.377

5 692 −394 135.78 0.68 0.01 0.012 −0.250 −0.115

6 817 −352 23.64 0.20 0.00 2.951 −2.872 −2.826

7 951 −397 199.66 1.38 0.01 1.605 1.896 1.152

8 1070 −546 204.68 2.30 0.10 −0.628 2.756 −0.891

9 1242 −502 171.85 0.73 0.03 2.011 2.354 1.646

10 1422 −628 182.92 6.47 0.11 −1.621 −0.215 −2.301

11 1529 −563 162.86 5.64 0.10 1.546 −0.042 2.061

12 1682 −423 84.11 0.75 0.01 −1.283 −1.955 −0.844

13 1836 −411 51.27 0.25 0.01 2.372 2.720 2.427

14 1955 −441 54.94 0.13 0.01 −0.129 0.654 −0.499

15 2092 −575 65.85 0.58 0.02 2.187 0.704 2.645

16 2237 −410 33.13 0.19 0.00 0.520 0.420 0.246

17 2350 −499 31.86 0.12 0.01 −1.543 −1.371 −1.560

18 2466 −627 40.69 0.95 0.02 2.087 0.763 2.789

19 2700 −514 10.69 0.57 0.02 −1.638 0.304 −2.517

Fig. 8. The true and estimated signal for the 3rd formant interval.

In order to get the system input impulse amplitudes, we calculated the Fourier trans-
form of the diphthong /ai/. This transform was then filtered in the intervals shown in
Table 1. After filtering we obtained 21 signals for the vowel /a/ and 19 signals for the
vowel /i/ in these intervals. For each of the obtained signals, we computed the inverse
Fourier transform and got signals in the time domain whose length was 22,560 each. We
then searched the local maxima of each of these signals and stored them in columns of
two matrices corresponding to the vowels /a/ and /i/. The values of these columns are
shown in Fig. 9.
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Fig. 9. The input impulse amplitudes (the left figure – for the vowel /a/, the right figure – for the vowel /i/).

Fig. 10. The values of the arccotangent function arccot(x) and those of the arctangent function arctan(x) +π/2

used to decrease/increase the input impulse amplitudes for the vowels /a/ and /i/.

Fig. 11. Input amplitude dynamics.

After analyzing the values of these matrices, we see, that these values are rather large.
Therefore we norm them using the following formula:

aij = 1 + (aij − 1) · c, (51)

where aij is the (i, j)th entry of the appropriate matrix, and c is a constant: c = 0.0001.
The normed values are multiplied by values of the tangent and cotangent function.

The values corresponding to the vowel /a/ are multiplied by the arccotangent function
arcctg (x) while these corresponding to the vowel /i/ – by the arctangent function (more
precisely, by the function arctg (x)+π/2 (see Fig. 10). The result is shown in Fig. 11. We
use multiplication by these functions in order to decrease the input impulse amplitudes
for the vowel /i/ in the first half of the diphthong /ai/, and to decrease these amplitudes
for the vowel /a/ in the second half of the diphthong /ai/.
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Fig. 12. The Fourier transform of the output process of the synthesyzer “ai”: (a) the output signal ; (b) the
magnitude response in the range 1–1200 Hz; (c) the magnitude response in the range 1200–2400 Hz.

Now when we have calculated the inputs and impulse response of our MISO system,
we obtain the system output using formula (8). In Fig. 12, we present a fragment of the
modelled signal (the diphthong /ai/) and its magnitude response.

6. Conclusions

1. High modelling quality was achieved due to: (a) the high order of quasipolynomial
models, (b) the large number of formants (about 40), (c) separate excitation impulse
sequences for each formant.



432 G. Pyž et al.

2. The convoluted system matrix (that is used for parameter estimation) is ill-
conditioned, therefore each formant’s parameters were estimated separately. We
filtered data for each formant band using the inverse Fourier transform. That al-
lowed to estimate all formant parameters sufficiently stable.

3. We used the assumption that the impulse response of the SISO system correspond-
ing to a single formant decays after three fundamental periods. This assumption
allowed us to apply Levenberg–Marquardt method to estimate formant parameters
from convoluted data.

4. It was almost impossible to distinguish between real and simulated diphthongs in
various Lithuanian words with a help of audiotesting. The accuracy of the selected
two pitches (one for vowel /a/, and one for vowel /i/) modells was high (about
5%). Only the magnitude response of the whole signal of the simulated diphthong
differed a little from the magnitude response of the recorded data in some frequency
regions.

5. We think that the same approach can also be applied to other diphthongs. The ad-
ditional research, however, is needed.

6. Our study shows that it is possible to develop an automatic system that generates a
diphthong model using recorded speaker data. A certain programming work should
be done in the future.

References

Bastys, A., Kisel, A., Šalna, B. (2010). The use of group delay features of linear prediction model for speaker
recognition. Informatica, 1(21), 1–12.

Borzone De Manrique, A.M. (1979). Acoustic analysis of the Spanish diphthongs. Phonetica, 3(36), 194–206.
Collins Concise English Dictionary (2009).

http://www.thefreedictionary.com/diphthong.
Cressey, W.W. (1978). Spanish Phonology and Morphology. A Generative View. Georgetown University Press,

Georgetown.
Cook, P.R. (2002). Real Sound Synthesis for Interactive Applications, Vol. 1. A.K. Peters Ltd, Natick.
Driaunys, K., Rudžionis, V.E., Žvinys, P. (2009). Implementation of hierarchical phoneme classification ap-

proach on LTDIGITS corpora. Information Technology and Control, 4(38), 303–310.
Fant, G. (1970). Acoustic Theory of Speech Production. Mouton & Co.
Fox, A. (2005). The Structure of German. Oxford University Press, London.
Fry, D. (1977). Man as a Talking Animal. Cambridge University Press, Cambridge.
Garšva, K. (2001). Complex diphthongs ie, uo and their phonological interpretation. A man and a word. Didac-

tic linguistics. 3(1), 23–26 (in Lithuanian).
Geumann, A. (1997). Formant trajectory dynamics in Swabian diphthongs. Forschungsberichte des Instituts für

Phonetik und Sprachliche Kommunikation der Universität München, 35, 35–38.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.5424.

Golub, G., Pereyra, V. (1973). The differentiation of pseudo-inverses and nonlinear least squares problems
whose variables separate. SIAM Journal or Numerical Analysis, 2(10), 413–432.

Handbook of the International Phonetic Association. International Phonetic Association (1999), Cambridge.
Holmes, J., Holmes, W. (2001). Speech Synthesis and Recognition. CRC Press.
Hopcroft, J.E., Ullman, J.D. (1979). Introduction to Automata Theory, Languages and Computation. Addison-

Wesley, Reading.
Huang, Y., Benesty, J., Chen, J. (2010). Acoustic MIMO Signal Processing. Springer, Berlin.
Kajackas, A., Anskaitis, A. (2009). An investigation of the perceptual value of voice frames. Informatica, 4(20),

487–498.



Modelling of Lithuanian Speech Diphthongs 433

Kasparaitis, P. (1999). Transcribing of the Lithuanian text using formal rules. Informatica, 10(4), 367–376.
Kasparaitis, P. (2000). Automatic stressing of the Lithuanian text on the basis of a dictionary. Informatica,

11(1), 19–40.
Kasparaitis, P. (2001). Text-to-speech synthesis of Lithuanian language. Doctoral dissertation. Vilnius Univer-

sity, Vilnius [in Lithuanian].
Kasparaitis P. (2008). Lithuanian speech recognition using the English recognizer. Informatica, 4(19), 505–516.
Kazlauskas, K. (1999). Noisy speech intelligibility enhancement. Informatica, 2(10), 171–188.
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Šveikauskienė, D. (2005). Graph representation of the syntactic structure of the Lithuanian sentence. Informat-
ica, 3(16), 407–418.

Welling, L., Ney, H. (1998). Formant estimation for speech recognition. IEEE Transactions on Speech and
Audio Processing, 1(6), 36–48.

G. Pyž received her BS degree in mathematics and MS degree in informatics (with hon-
ours) from Vilnius Pedagogical University, Lithuania, in 2007 and 2009 respectively. She
is currently a PhD student in Vilnius University Institute of Mathematics and Informatics.
Her research interests include speech modelling and synthesis.
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Lietuvi ↪u šnekos dvibalsi ↪u modeliavimas

Gražina PYŽ, Virginija ŠIMONYTĖ, Vytautas SLIVINSKAS

Straipsnio tikslas yra sukurti lietuvi ↪u šnekos dvibalsi ↪u modeliavimo metod ↪a. Modeliavimui yra
naudojamas formantinis sintezatorius. Antros eilės kvazipolinomas yra pasirinktas kaip formantinis
modelis laiko srityje. Daugelio ↪iėjim ↪u ir vieno išėjimo (D ↪IVI) sistema yra dvibalsio modelis. Ši sis-
tema susideda iš dviej ↪u dali ↪u: pirmoji dalis atitinka pirm ↪aj ↪a dvibalsio bals ↪e, o antroji dalis – antr ↪aj ↪a
bals ↪e. Sistema yra žadinama pusiauperiodini ↪u impuls ↪u seka, naudojant perėjim ↪a iš vienos balsės

↪i kit ↪a. Straipsnyje yra išvestos parametrinės ↪iėjimo–išėjimo lygtys kvazipolinomini ↪u formanči ↪u
atveju, apibrėžta nauja konvoliuotos bazini ↪u signal ↪u matricos s ↪avoka, išvestos parametrinės mini-
mizavimo funkcionalo formulės konvoliuotiems duomenims. Taip pat straipsnyje yra sukurtas nau-
jas formanči ↪u parametr ↪u ↪ivertinimo algoritmas konvoliuotiems duomenims, pagr↪istas Levenbergo–
Markvarto metodu, ir pateikti šio algoritmo realizavimo žingsniai. Kaip nagrinėjimo pavyzdys, yra
pasirinktas lietuvi ↪u šnekos dvibalsis /ai/. Šis dvibalsis ↪irašytas su tokiais parametrais: 48 kHz mo-
duliacijos dažniu, 16 bit ↪u rezoliucija, stereo režimu. Tyrimui naudojami du charakteringi balsi ↪u /a/
ir /i/ periodai. Ši ↪u balsi ↪u D ↪IVI formantini ↪u modeli ↪u parametr ↪u ↪ivertinimui naudojami minėt ↪u pe-
riod ↪u vienodai nutolusios atskaitos. Perėjimas tarp balsi ↪u /a/ ir /i/ yra gaunamas, keičiant žadinimo
impuls ↪u amplitudes pagal arktangento dėsn↪i. Sukurtajam metodui atliktas audio testavimas bei pa-
lygintos reali ↪u duomen ↪u ir D ↪IVI modelio išėjimo Furjė transformacijos. Audiotestas parodė, kad
ne↪imanoma atskirti realaus ir modeliuoto dvibalsi ↪u. Palyginus ši ↪u dvibalsi ↪u amplitudines ir fazines
charakteristikas, pastebėti tik labai nežymūs skirtumai.


