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Abstract. This paper discusses the disease-free and endemic equilibrium points of a SVEIRS prop-
agation disease model which potentially involves a regular constant vaccination. The positivity of
such a model is also discussed as well as the boundedness of the total and partial populations. The
model takes also into consideration the natural population growing and the mortality associate to
the disease as well as the lost of immunity of newborns. It is assumed that there are two finite delays
affecting to the susceptible, recovered, exposed and infected population dynamics.
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1. Introduction

Important control problems nowadays related to Life Sciences are the control of ecolog-
ical models like, for instance, those of population evolution as, for instance, Beverton–
Holt model, Hassell model, Ricker model etc. via the online adjustment of the species
environment carrying capacity, that of the population growth or that of the regulated
harvesting quota as well as the disease propagation via vaccination control (De la Sen,
2008a, 2008b; De la Sen and Alonso-Quesada, 2008b, 2008c, 2009, 2010a). In a set of
papers, several variants and generalizations of the Beverton–Holt model (standard time-
invariant, time-varying parameterized, generalized model or modified generalized model)
have been investigated at the levels of stability, cycle-oscillatory behavior, permanence
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and control through the manipulation of the carrying capacity. See, for instance, De la
Sen (2008a, 2008b), De la Sen and Alonso-Quesada (2008b, 2008c, 2009). The design of
related control actions has been proved to be important in those papers at the levels, for
instance, of aquaculture exploitation or plague fighting. On the other hand, the literature
about epidemic mathematical models is exhaustive in many books and papers. A non-
exhaustive list of references is given in this manuscript, cf. (D’Amico et al., 2011; Ertuk
and Momani, 2008; Gao et al., 2008; Keeling and Rohani, 2008; Khan, Krishnan and
Al-Khodh, 2003; Khan et al., 2009; Mollison, 2008; Mukhopadhyay and Bhattacharyya,
2007; Ortega et al., 2003; Piccardi and Lazzaris, 1998; Song et al., 2009; Yildirim and
Cherruault, 2009; Zhang and Teng, 2008; Zhang et al., 2009). See also the references
listed therein. The sets of models include the most basic ones (Mollison, 2008; Keeling
and Rohani, 2008), namely:

– SI-models where not removed-by – immunity population is assumed. In other
words, only susceptible and infected populations are assumed.

– SIR-models, which include susceptible, infected and removed-by – immunity pop-
ulations.

– SEIR-models where the infected populations is split into two ones (namely, the “in-
fected” which incubate the disease but do not still have any disease symptoms and
the “ infectious” or “infective” which do exhibit the external disease symptoms).

The three above models have two possible major variants, namely, the so-called
“pseudo-mass action models”, where the total population is not taken into account as
a relevant disease contagious factor or disease transmission power, and the so-called
“true-mass action models”, where the total population is more realistically considered
as being an inverse factor of the disease transmission rates. There are other many vari-
ants of the above models, for instance, including vaccination of different kinds: constant
(Yildirim and Cherruault, 2009) impulsive (Song et al., 2009; Yu et al., 2010; Boichuk et
al., 2010), discrete-time etc., incorporating point or distributed delays (Song et al., 2009;
Zhang et al., 2009), oscillatory behaviors (Mukhopadhyay and Bhattacharyya, 2007) etc.
On the other hand, variants of such models become considerably simpler for the disease
transmission among plants (Mollison, 2008; Keeling and Rohani, 2008). Some general-
izations involve the use of a mixed regular continuous-time/impulsive vaccination control
strategies for generalized time-varying epidemic model which is subject to point and dis-
tributed either constant or time-varying delays (Song et al., 2009; Zhang et al., 2009; Bar-
reiro and Banos, 2010; De la Sen, 2007a, 2007b). Other well-known types of epidemic
models are the so-called SVEIRS epidemic models which incorporate the dynamics of
a vaccinated population and the “infected” population without external symptoms of the
SEIR-type models is replaced with an “exposed” population subject to a certain dynam-
ics (De la Sen et al., 2010b; Jiang et al., 2009; Song et al., 2009). Thus, in the context of
SVEIRS models, the infected and infectious populations of the SEIR models are joined in
a single “infected” population I(t) while there is an exposed population E(t) present in
the model. In this paper, we focus on the existence and some properties of disease-free and
endemic equilibrium points of a SVEIRS model subject to an eventual constant regular
vaccination rather than to an impulsive vaccination type. Some issues about boundedness
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and positivity of the model are also investigated. The following SVEIRS epidemic model,
of a modified true-mass action type, with regular constant vaccination is considered:

Ṡ(t) = b(1 − S(t)) − β
S(t)I(t)
1 + ηS(t)

+ γI(t − ω)e−bω + ν(1 − Vc)N(t), (1.1)

V̇ (t) = − δβV (t)I(t)
1 + ηV (t)

− (γ1 + b)V (t) + νVcN(t), (1.2)

E(t) = β

∫ t

t−ω

S(u)I(u)
1 + ηS(u)

+
δV (u)I(u)
1 + ηV (u)

e−b(t−u) du, (1.3)

İ(t) = βe−bτ

(
S(t − τ)I(t − τ)
1 + ηS(t − τ)

+
δV (t − τ)I(t − τ)

1 + ηV (t − τ)

)

− γ + b + α)I(t), (1.4)

Ṙ(t) = −bR(t) + γ1V (t) + γ
(
I()t − I(t − ω)e−bω

)
, (1.5)

where S, V, E, I and R are, respectively, the susceptible, vaccinated, exposed, infected
(or infective or infectious) and recovered (or removed-by-immunity) partial populations,
N(t) is the total population being the sum of the above ones, Vc ∈ [0, 1] is a constant
vaccination action. There are potential latent and immune periods denoted by τ and ω,
respectively, which are internal delays in the dynamic epidemic model (1.1)–(1.5), b is
the natural birth rate and death rate of the population. The parameter ν < b takes into
account a vaccination action on newborns which decreases the incremental susceptible
population through time, γ1 is the average rate for vaccines to obtain immunity and move
into recovered population, β (disease transmission constant) and δβ are, respectively,
average numbers for contacts of an infective with a susceptible and an infective with a
vaccinated individual per unit of time (Jiang et al., 2009; Song et al., 2009). The peri-
odic impulsive, rather than regular, vaccination action proposed in Jiang et al. (2009) can
be got from (1.1)–(1.5) with Vc = 0 and a regular impulsive vaccination period T > 0
consisting of a culling action on the susceptible plus the corresponding increase of the
vaccinated population. Impulsive vaccination has also been recently investigated in De la
Sen et al. (2010b) concerning generalized SEIR epidemic models involving time-varying
delays and presence of infected and infectious population thresholds. It has to be pointed
out that the epidemic model delays, representing in particular latent and immune peri-
ods, parameterize the epidemic model apart from the role they play through the delayed
model state in the dynamics and thus in the trajectory solution. This phenomenon is not
very common in standard time-delay systems where delays do not play usually a rel-
evant role in the parameterizations but only in the state-trajectory solution through the
delayed state dynamics (De la Sen, 2003; De la Sen and Luo, 2004; Luo et al., 1997).
It has to be pointed out that the use of mathematical models supported by electronics
instrumentation is also very relevant for the study of biological process such as models
of blood circulation because of its facility for discretized implementation of real test-
ing experiments (see, for instance, Maciulis et al., 2009). It has also to be pointed out
that epidemic models are not controllable in the sense that all the populations cannot
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be simultaneously governed (Nieto and Tisdell, 2010). Therefore, the main vaccination
objective is to reduce the infected population as faster and as close to zero as possible
(De la Sen and Alonso-Quesada, 2010b; De la Sen et. al. 2010b). This paper investigates
the disease-free and endemic equilibrium points, their local stability properties as well as
the positivity and boundedness properties of the state-trajectory solutions under optional
constant constrained vaccination.

2. The Disease-Free Equilibrium Point

The potential existence of a disease-free equilibrium point is now discussed which
asymptotically removes the disease if ν < b.

PROPOSITION 1. Assume that ν < b. Then the disease-free equilibrium point E∗ =
I∗ = 0 fulfils

R∗ =
νγ1VcN

∗

b(γ1 + b)
=

νγ1Vc

(b − ν)(γ1 + b)
= γ1

(b − ν(1 − Vc))N ∗ − b

(γ1 + b)b
,

V ∗ =
νVcN

∗

γ1 + b
=

(b − ν(1 − Vc))N ∗ − b

γ1 + b
,

S∗ = 1 +
νN ∗(1 − Vc)

b
= 1 +

ν(1 − Vc)
b − ν

,

with N ∗ = b
b−ν so that V ∗ + R∗ = νVcN ∗

b = νVc

b−ν .

Two particular disease-free equilibrium points are S∗ = N ∗ = b
b−ν , E∗ = I∗ =

V ∗ = R∗ = 0 if Vc = 0, and S∗ = 1, V ∗ = νN ∗

γ1+b = νb
(γ1+b)(b−ν) , R∗ =

νγ1
(γ1+b)(b−ν) , E∗ = I∗ = 0 if Vc = 1.

If ν � b then there is no disease-free equilibrium point.

Proof. The equilibrium points are calculated by zeroing (1.1), (1.2), (1.4) and (1.5) and
making (1.3) identical to a disease-free equilibrium value E∗ what leads to:

b −
(

b +
βI∗

1 + ηS∗

)
S∗ + γI∗e−bω + νN ∗(1 − Vc) = 0, (2.1)

−
(

δβI∗

1 + ηV ∗ + γ1 + b

)
V ∗ + νN ∗Vc = 0, (2.2)

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗, (2.3)

βe−bτ

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ − (γ + b + α)I∗ = 0, (2.4)

γ1V
∗ − bR∗ + γ

(
1 − e−bω

)
I∗ = 0. (2.5)

Thus, the disease-free equilibrium point satisfies the constraints:
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E∗ = I∗ = 0, (2.6)

b(1 − S∗) + νN ∗(1 − Vc) = 0 ⇒ S∗ = 1 +
νN ∗(1 − Vc)

b
, (2.7)

γ1V
∗ − bR∗ = 0 ⇒ V ∗ =

bR∗

γ1
, (2.8)

− (γ1 + b)V ∗ + νN ∗Vc = 0 ⇒ V ∗ =
νN ∗Vc

γ1 + b
=

bR∗

γ1
, (2.9)

N ∗ = S∗ + V ∗ + R∗ = 1 +
νN ∗(1 − Vc)

b
+

(
1 +

b

γ1

)
R∗, (2.10)

= 1 +
νN ∗(1 − Vc)

b
+

νN ∗Vc

b
=

b + νN ∗
b

⇒ N ∗ =
b

b − ν
, (2.11)

provided that ν < b.

The proof follows directly from the above equations.

REMARK 1. Note from (2.4) that the identity S∗

1+ηS∗ + δV ∗

1+ηV ∗ = (γ+b+α)ebτ

β has always
to be fulfilled by endemic equilibrium points, if any, but non-necessarily by disease-free
equilibrium points for which I∗ = 0. Note also that if γ1 = b then R∗ = V ∗ = νVcN ∗

2b =
νVc

2(b−ν) . Note also that if ν = 0, as in the particular case of impulsive-free SVEIRS model
obtained from that discussed in Jiang et al. (2009) and Song et al. (2009) then the disease-
free equilibrium satisfies E∗ = V ∗ = I∗ = R∗ = 0, N ∗ = S∗ = 1. In such a case, the
model can be ran out with population normalized to unity. Note that that the recovered
population increases at the equilibrium as the vaccination increases while the susceptible
one decreases.

Note that the exposed population at the equilibrium defined by (1.3) can be equiva-
lently described by a differential equation obtained by applying the Leibniz differentia-
tion rule under the integral symbol to yield:

˙̃E(t) = −bẼ(t) + β

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)(
Ĩ(t) − Ĩ(t − ω)e−bω

)
. (2.12)

Note also from the equalities of Proposition 1 that

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ = K∗

:=
b − νVc

(1 + η)b − ν(1 + ηVc)
+

δνbVc

(γ1 + b)(b − ν) + ηνbVc
.

(2.13)
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Also, since max(S∗, V ∗) � N ∗ = b
b−ν , the following relation (2.14) follows irrespec-

tive of the vaccination Vc provided that the transmission constant is sufficiently small
satisfying β = (γ + b + α − εβ)ebτ b(1+η)−ν

b(1+δ) � (γ + b + α)ebτ b(1+η)−ν
b(1+δ) for some real

constant 0 � εβ < γ + b + α:

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ � 1 + δ

N ∗ −1 + η
=

b(1 + δ)
b(1 + η) − ν

=
(γ + b + α − εβ)ebτ

β
. (2.14)

The local stability of the disease-free equilibrium point independent of the sizes of the
delays τ and ω is discussed in the sequel for the particular case of sufficiently small β

satisfying (2.14) and for the general case (2.13). Also, the local asymptotic stability of the
disease-free equilibrium point is guaranteed by that of the linearized incremental system
about it. The linearized model about the equilibrium becomes to be defined from (1.1)–
(1.2), (2.12) and (1.4)–(1.5) by the state vector x̃(t) := (S̃(t), Ṽ (t), Ẽ(t), Ĩ(t), R̃(t))T

which satisfies the differential system:

˙̃x(t) = A∗
0x̃(t) + A∗

τ x̃(t − τ) + A∗
ωx̃(t − ω); x̃(0) = x̃0, (2.15)

where

A∗
0 = A∗

0d + Ã∗
0

:=

⎡
⎢⎢⎢⎣
ν(1 − Vc) − b ν(1 − Vc) ν(1 − Vc) ν(1 − Vc) − βS∗

1+ηS∗ ν(1 − Vc)

νVc νVc − (γ1 + b) νVc νVc − δβV ∗

1+ηV ∗ νVc

0 0 −b β
(

S∗
1+ηS∗ + δV ∗

1+ηV ∗
)

0

0 0 0 −(γ + b + α) 0

0 γ1 0 γ −b

⎤
⎥⎥⎥⎦ (2.16)

=

⎡
⎢⎢⎢⎣
ν(1 − Vc) − b ν(1 − Vc) ν(1 − Vc)ν(1 − Vc) − β(b+ν(1−Vc)N ∗)

b+η(b+ν(1−Vc)N ∗)
ν(1 − Vc)

νVc νVc − (γ1 + b) νVc νVc − δβνVcN ∗

γ1+b+ηνVcN ∗ ν Vc

0 0 −b (γ + b + α − ε̄β)ebτ 0

0 0 0 −(γ + b + α) 0
0 γ1 0 γ −b

⎤
⎥⎥⎥⎦.

(2.17)

for sufficiently small transmission constant if (2.14) holds for some positive real constant
ε̄β > εβ where the diagonal and non-diagonal matrix additive decomposition of A∗

0 is
given from (2.17) by

A∗
0d := Diag(ν(1 − Vc) − b, νVc − (γ1 + b), −b, −(γ + b + α), −b). (2.18)

Ã∗
0 := A∗

0 − A∗
0d obtained from (2.17)–(2.18), so that its off-diagonal part is identical

to that of A∗
0d while the diagonal is identically zero, and the matrices A∗

τ and A∗
ω are



On the Equilibrium Points, Boundedness and Positivity of a Sveirs Epidemic Model 345

entry-wise defined by:

(A∗
τ )44 = γ + b + α − ε̄β , (A∗

ω)14 = γe−bω,

(A∗
ω)34 = −(γ + b + α − ε̄β)eb(τ −ω), (A∗

ω)54 = −γe−bω,
(2.19)

with all the remaining entries being zero. The following inequalities apply for equivalent
norms of vectors and square matrices M of dimension or, respectively, order n:

n−1‖M ‖2 � n−1/2‖M ‖ ∞ � ‖M ‖2 � n1/2‖M ‖1 � n‖M ‖2. (2.20)

Thus, one gets from the above inequalities (2.20) that

‖A∗
τ ‖2 + ‖A∗

ω ‖2 �
√

5(‖A∗
τ ‖ ∞ + ‖A∗

ω ‖ ∞ )

�
√

5(γ + b + α) max(1, eb(τ −ω)) � γ̄. (2.21)

where

γ̄ =
{ √

5(γ + b + α), if τ � ω,√
5(γ + b + α)eb(τ −ω), if τ > ω.

(2.22)

Note from (2.22) that
√

5(γ +b+α)eb(τ −ω) � b − b0 for a given b and any given positive
real constant b0 < b if (γ + b + α) and (τ − ω), if positive, are small enough such that,
equivalently,

− ∞ � 1
2

ln 5 + ln(γ + b + α) + b(τ − ω) � ln(b − b0). (2.23)

Thus, one gets from (2.21)–(2.23)

‖A∗
τ ‖2 + ‖A∗

ω ‖2 � γ̄ � b − b0. (2.24)

On the other hand, we can use from L’Hopital rule the following limit relations in the
entries (1, 4) and (2, 4) of Ã∗

0:

β(b + ν(1 − Vc)N ∗)
b + η(b + ν(1 − Vc)N ∗)

→ β

1 + η
;

δβνVcN
∗

γ1 + b + ηνVcN ∗ → 0 as b → ∞,
(2.25)

if the remaining parameters remain finite and then N ∗ = S∗ = 1 and E∗ = I∗ = V ∗ =
R∗ = 0 from Proposition 1. By continuity with respect to parameters, for any sufficiently
large M ∈ R+, ∃ε1,2 = ε1,2(M) ∈ R+ with ε1,2 → 0 as t → ∞ such that for b � M :

β(b + ν(1 − Vc)N ∗)
b + η(b + ν(1 − Vc)N ∗)

� β + ε1

1 + η
;

δβνVcN
∗

γ1 + b + ηνVcN ∗ � ε2, (2.26)
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and, one gets for Ã∗
0 being obtained from (2.16)–(2.18),

|Ã∗
0| =

⎡
⎢⎢⎢⎢⎢⎣

0 ν(1 − Vc) ν(1 − Vc) |ν(1 − Vc) − β+ε1
1+η | ν(1 − Vc)

νVc 0 νVc |νVc − ε2| νVc

0 0 0 (γ + b + α − ε̄β)ebτ 0
0 0 0 0 0
0 γ1 0 γ 0

⎤
⎥⎥⎥⎥⎥⎦

,

(2.27)

and for the parameter b being large enough such that it satisfies:

b � max
(

1
τ

max
(

ln
γ + γ1

γ + b + α
, ln

4 max(1, ν)
γ + b + α

)
, ba

)
, (2.28)

with ba being some existing real positive constant, depending on the vaccination constant
Vc, such that ν(1−Vc) � β+ε1

1+η , it follows from inspection of (2.26)–(2.27) that ‖Ã∗
0‖ ∞ �

(γ + b + α)ebτ . Using again (2.20)–(2.21), it follows that the following close constraint
to (2.23):

−∞ � 1
2

ln 5 + ln(γ + b + α) + b(τ − ω)

� 1
2

ln 5 + ln(γ + b + α) + bτ + ln(1 + e−bω) � ln(b − b0), (2.29)

guarantees

∥∥A∗
τ

∥∥
2
+

∥∥A∗
ω

∥∥
2
+

∥∥Ã∗
0

∥∥
2

�
√

5
(∥∥A∗

τ

∥∥
∞

+
∥∥A∗

ω

∥∥
∞

+
∥∥Ã∗

0

∥∥
∞

)
�

√
5(γ + b + α)

(
max

(
1, eb(τ −ω)

)
+ ebτ

)
� γ̄1, (2.30)

where

γ̄1(> γ̄) =
{ √

5(γ + b + α)(1 + ebτ ), if τ � ω,√
5(γ + b + α)(ebτ (1 + e−bω)), if τ > ω.

(2.31)

On the other hand, note that the linearized system (2.15)–(2.19) is asymptotically stable
if and only if

det(sI − A∗
0d − Ã∗

0 − Ã∗
τe−τs − Ã∗

ωe−ωs) 
= 0;

∀s ∈ C0+ := {s ∈ C: Res � 0}, (2.32)

which is guaranteed under the two conditions below:

(1) det(sI − A∗
0d) 
= 0, ∀s ∈ C0+, equivalently, A∗

0d is a stability matrix
(2) The �2-matrix measure μ2(A∗

0d) of (A∗
0d) is negative, and, furthermore, the follow-

ing constraint holds

γ̄1 � b − max
(

|γ1 − νVc|, ν(1 − Vc)
)
,
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which guarantees the above stability condition 2 via (2.30)–(2.31) if β is suffi-
ciently small to satisfy (2.14) and, furthermore,

∥∥Ã∗
0

∥∥
2
+

∥∥Ã∗
τ

∥∥
2
+

∥∥Ã∗
ω

∥∥
2

�
√

5
(
γ + b + α

)(
max

(
1, eb(τ −ω)

)
+ ebτ

)

� γ̄1 <
∣∣μ2

(
A∗

0d

)∣∣ =
1
2

∣∣λmax

(
A∗

0d + A∗T

0d

)∣∣ =
∣∣λmax

(
A∗

0d

)∣∣
= b − max(|γ1 − νVc|, ν(1 − Vc)). (2.33)

The following result is proven from Proposition 1, the above asymptotic stability con-
ditions for the linearized incremental system about the disease-free equilibrium point,
which implies the local asymptotic stability of the nonlinear one (1.1)–(1.5) about the
equilibrium point, and the related former discussion for β being small enough fulfilling
(2.14).

PROPOSITION 2. Assume that β � (γ + b+α)ebτ b(1+η)−ν
b(1+δ) . Then it exists a sufficiently

large b > max(|γ1 − νVc|, ν(1 − Vc)) such that the disease-free equilibrium point is
locally asymptotically stable for any constant vaccination Vc ∈ [0, 1] and a sufficiently
small amount (γ + b + α), a sufficiently small delay τ and a sufficiently small difference
delay (τ − ω) (this being applicable if τ > ω) such that (2.33) holds.

An alternative result to Proposition 2 concerned with the asymptotic stability of the
linearized SVEIRS model (and then the local asymptotic of that of the nonlinear SVEIR
model) around the disease-free equilibrium for sufficiently small delays based on their
parameterized quotient is given and proven in Appendix B. The result and its proof are
based on an existence theorem of the first destabilizing delay and the use of the Jacobian
matrix of the linearized system about the disease-free equilibrium. A more general re-
lated result can be obtained from (2.13), rather than from (2.14), without involving any
“a priori” constraint on the transmission constant. By using (2.13), the following changes
appear in the parameterization (2.16)–(2.19) of the linearized system about the disease
free equilibrium with the auxiliary real constant K∗ being defined in (2.13):

(Ã∗
0d)34 = βK∗, (A∗

τ )44 = βe−bτK∗, (A∗
ω)34 = −βe−bωK∗. (2.34)

The basic relation (2.30) used for stability independent of the delays in Proposition 2
becomes accordingly modified as follows:

∥∥A∗
τ

∥∥
2

+
∥∥A∗

ω

∥∥
2

+
∥∥Ã∗

0

∥∥
2

�
√

5
(∥∥A∗

τ

∥∥
∞ +

∥∥A∗
ω

∥∥
∞ +

∥∥Ã∗
0

∥∥
∞

)
�

√
5
(
β
(
1 + e−bτ

)
K∗ + e−bω max

(
γ, βK∗))

(2.35a)

�
√

5
(

2β

1 + η
+ max

(
γ,

β

1 + η

))
� γ̄1 as b → ∞, (2.35b)

where (2.35a) holds for any positive parameter b and (2.35b) holds as such a parameter
tends to infinity and also for a sufficiently large parameter b since K∗ → 1

1+η < 1 as
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b → ∞ from (2.13). Thus, for a sufficiently large bM ∈ R+ and b � bM , γ̄1 may be
taken as follows:

γ̄1 =
√

5 max
(

2β

1 + η
+ γ,

3β

1 + η

)
, (2.36)

and the former stability sufficient condition (2.33), derived from (2.14), is modified as
follows for the general case from (2.13):

∥∥Ã∗
0

∥∥
2
+

∥∥Ã∗
τ

∥∥
2
+

∥∥Ã∗
ω

∥∥
2

�
√

5
(

2β

1 + η
+ max

(
γ,

β

1 + η

))
� γ̄1

< b − max(|γ1 − νVc|, ν(1 − Vc)). (2.37)

PROPOSITION 3. Assume that b > max(bM , max(|γ1 − νVc|, ν(1 − Vc))) and (2.37)
holds. Then it exists a sufficiently large bM ∈ R+ such that the disease-free equilibrium
point is locally asymptotically stable for any constant vaccination Vc ∈ [0, 1] such that
(2.37) holds.

Note that the statement of Propositions 2–3 guarantee the local stability of the disease-
free equilibrium point under its existence condition of Proposition 1 requiring ν < b.

3. The Existence of Endemic Equilibrium Points and Some Characterizations

The existence of endemic equilibrium points which keep alive the disease propagation is
now discussed:

PROPOSITION 4. Assume that ω > 0. Then, the following properties hold:

(i) Assume β � ηebτ (γ+b+α)
1+δ for Vc > 0 and β � ηebτ (γ + b + α) for Vc = 0. It

exists at least one endemic equilibrium point at which the susceptible, vaccinated,
infected, exposed and recovered populations are positive and the vaccinated pop-
ulation is zero if and only if Vc = 0 (i.e., in the absence of vaccination action).
Furthermore, such an equilibrium point satisfies the constraints:

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ > 0,

min
(

S∗ + δV ∗,
1 + δ

η

)
� S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
ebτ (γ + b + α)

β
> 0,

R∗ =
γ1V

∗ + γ(1 − e−bω)I∗

b
� γ(1 − e−bω)I∗

b
> 0.

(ii) If the transmission constant is small enough satisfying β < β̄ := ηebτ (γ+b+α)
1+δ for

Vc > 0 and β < ηebτ (γ + b + α) for Vc = 0 then there is no reachable endemic
equilibrium point.
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Proof. The endemic equilibrium point is calculated as follows:

βe−bτ

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
− (γ + b + α) = 0, (3.1)

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ > 0 (3.2)

with

E∗ > 0, I∗ > 0, (3.3)

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
ebτ (γ + b + α)

β
> 0 (3.4)

(since, otherwise, the above disease-free equilibrium point would be being considered).
S∗ > 0 since, otherwise, the following contradiction would follow:

0 < b + γI∗e−bω + νN ∗(1 − Vc) = 0, (3.5)

V ∗ = 0 if and only if Vc = 0, since otherwise for Vc > 0 and V ∗ = 0, it would follow
that νN ∗Vc = 0 which is only possible in the disease-free equilibrium point if the total
population is extinguished what is a contradiction at the endemic point.

R∗ =
γ1V

∗ + γ(1 − e−bω)I∗

b
� γ(1 − e−bω)I∗

b
> 0 for ω 
= 0. (3.6)

Property (i) has been proven. Property (ii) follows from the fact that the second separate
condition for the endemic equilibrium point in Property (i) fails if

1
1 + η

<
ebτ (γ + b + α)

β
for Vc = 0,

1 + δ

1 + η
<

ebτ (γ + b + α)
β

for Vc > 0,

since S∗ = V ∗ = 0 is impossible at the endemic equilibrium point from such a second
condition of Property (i). Hence, the proof of Property (ii).

REMARK 2. Note that if ω = 0 then it follows from (1.3) and (2.3) that E(t) = E∗ =
0; ∀t ∈ R0+ so that the SVEIRS model (1.1)–(1.5) becomes a simpler SVIRS one
without specification of the exposed population dynamics.

REMARK 3. Note that, under the constraints in Proposition 4 (ii) for α−1
S +α−1

V +α−1
E +

α−1
I + α−1

R = 1, if there is no reachable endemic equilibrium point because β < β̄

then the solution trajectory of (1.1)–(1.5) can only either converge to the disease-free
equilibrium point provided that it is at least locally asymptotically stable or to be bounded
converging or not to an oscillatory solution or to diverge to an unbounded total population
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depending on the values of the parameterization of the model (1.1)–(1.5). Note that the
endemic free transmission constant upper-bound β̄ increases as η, τ and (γ + b + α)
increase and also as δ decreases.

If Vc > 0 then it follows from Proposition 4 that there exist positive constants
αS , αV , αE , αI and αR satisfying α−1

S + α−1
V + α−1

E + α−1
I + α−1

R = 1 such that the
endemic equilibrium points, if any, satisfy the constraints:

N ∗ = αSS∗ = αV V ∗ = αEE∗ = αII
∗ = αRR∗, (3.7)

so that, one gets from (3.6) that

R∗ =
γ1/αV + γ(1 − e−bω)/αI

b
αRR∗ =

γ1αI + γ(1 − e−bω)αV

bαIαV
αRR∗, (3.8)

β

b

(
1 − e−bω

)1 + δ

1 + η
� E∗/I∗ = αI/αE

=
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)

� β

b

(
1 − e−bω

)1 + δ

η
. (3.9)

if min(S∗, V ∗) � 1, otherwise, only the upper-bounding constraint holds strictly in (3.9).
Moreover, (2.1) and (3.1) may be equivalently written, respectively, as

b −
(

b +
βαSS∗

αI(1 + ηS∗)

)
S∗ + γ

αS

αI
S∗e−bω + ναSS∗(1 − Vc) = 0, (3.10)

αV V ∗

αS + αV ηV ∗ +
δV ∗

1 + ηV ∗ =
ebτ (γ + b + α)

β
. (3.11)

Equation (3.8) is equivalent, since R∗ > 0 at the endemic equilibrium point, to

γ1αIαR + γ(1 − e−bω)αV αR

bαIαV
= 1. (3.12)

Equation (3.10) is equivalent to

[
αSη

(
ναI(1 − Vc) + γe−bω

)
+ βαS − bαIη

]
S∗2

+
[
αS

(
γe−bω + ναI(1 − Vc)

)
+ bαI(η − 1)

]
S∗ + bαI = 0. (3.13)

Equation (3.13) is an algebraic equation of real coefficients of the form aS∗2
+dS∗ +c =

0 with c > 0. Such an equation has two positive real roots if a > 0, d < 0 and d2 � 4ac

and one positive real root if a < 0 and d > 0. Thus, since there is a nonzero susceptible
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population at an endemic equilibrium point then either (3.14)–(3.16) below hold:

αSη
(
ναI(1 − Vc) + γe−bω

)
+ βαS > bαIη, (3.14)

αS

(
γe−bω + ναI(1 − Vc)

)
< bαI(1 − η) provided that η < 1, (3.15)[

αS

(
γe−bω + ναI(1 − Vc)

)
+ bαI(η − 1)

]2

� 4bαI

[
αSη

(
ναI(1 − Vc) + γe−bω

)
+ βαS − bαIη

]
, (3.16)

or, alternatively,

β <
αI

αS
bη −

(
ναI(1 − Vc) + γe−bω

)
η

=
η

I∗
[
bS∗ −

(
νN ∗(1 − Vc) + γe−bω

)]
, (3.17)

and

b <
αS(γe−bω + ναI(1 − Vc))

αI(1 − η)
=

γe−bωI∗ + νN ∗(1 − Vc)
S∗(1 − η)

, (3.18)

with η < 1 hold. On the other hand, (3.11) is equivalent to

αV β0

(
1 + ηV ∗)

V ∗ + δβ0V
∗(

αS + ηαV V ∗)
=

(
1 + ηV ∗)(αS + ηαV V ∗)

, (3.19)

where β0 := β
ebτ (γ+b+α)

so that (3.19) is of the form

aV ∗2
+ dV ∗ + c ≡ η

(
η − (1 + δ)β0

)
αV V ∗2

+
(
αV (η − β0) + (η − δβ0)αS

)
V ∗ + αS = 0. (3.20)

Now, a close reasoning to that used for the susceptible endemic equilibrium component is
applied to (3.20) to construct the subsequent reasoning for a potential nonzero vaccinated
population at most two possibly existing endemic equilibrium points. Note that either

αV η
(
η − (1 + δ)β0

)
> 0 ⇐⇒ β0 <

η

1 + δ
, (3.21)

αV (η − β0) + αS(η − δβ0) = η(αV + αs) − β0(αV + δαS) < 0

⇐⇒
(

β0 > η
αV + αS

αV + δαS
⇐⇒ β > η

αV + αS

αV + δαS
(γ + b + α)ebτ

)
, (3.22)

and

(
αV (η − β0) + (η − δβ0)αs

)2
> 4

(
η − (1 + δ)β0

)
ηαV αS , (3.23)
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or, alternatively,

αV η
(
η − (1 + δ)β0

)
< 0 ⇐⇒ β0 >

η

1 + δ
, (3.24)

αV (η − β0) + αS(η − δβ0) > 0

⇐⇒
(

β0 < η
αV + αS

αV + δαS
⇐⇒ β < η

αV + αS

αV + δαS
(γ + b + α)ebτ

)
. (3.25)

However, note that (3.21)–(3.23) imply that

η
αV + αS

αV + δαS
< β0 =

β

ebτ (γ + b + α)
<

η

1 + δ
,

which is well-posed if and only if δ < −αS/αV < 0 which contradicts the positivity
of the parameter δ. As a result, only the alternative constraints (3.24)–(3.25) need to be
considered with a non-zero vaccinated population at the endemic equilibrium point which
is always the case under a nonzero regular constant vaccination Vc � 1.

The above discussion concerning the endemic equilibrium point is summarized as
follows:

PROPOSITION 5. Assume that V c ∈ (0, 1] and that β � (γ+b+α)ebτ η
1+δ so that N ∗ =

αSS∗ = αV V ∗ = αEE∗ = αII
∗ = αRR∗ for some positive constants αS , αV , αE , αI

and αR. Then, it exists at least one endemic equilibrium point, and at most two endemic
equilibrium points, with all the corresponding partial populations being positive and the
following parametrical constraints hold:

α−1
S + α−1

V + α−1
E + α−1

I + α−1
R = 1, αI/αE � β

b

(
1 − e−bω

)1 + δ

η
.

Also, the constants αS , αI and αV satisfy either (3.14)–(3.16), or (3.17)–(3.18), and
(3.24)–(3.25).

REMARK 4. Note that if min(S∗, V ∗) � 1 then

(γ + b + α)ebτ η

1 + δ
� β � (γ + b + α)ebτ 1 + η

1 + δ
. (3.26)

This implies that the coefficient a in (3.20) is non-positive. If a = 0 then

V ∗ =
αs

|αV (η − β0) + (η − δβ0)αs| > 0,

if αV (η − β0)+ (η − δβ0)αs < 0. This implies that β0 > η αV +αS

αV +δαS
which is compatible

with (3.26) if

β � (γ + b + α)ebτη max
(

1
1 + δ

,
αV + αS

αV + δαS

)
, (3.27)
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and η � αV +αS

αV +δαS
so that η αV +αS

αV +δαS
� 1+η

1+δ . On the other hand, if a < 0 then β <

η αV +αS

αV +δαS
ebτ (γ + b + α) from (3.25) which is coherent with (3.26) if

β � (γ + b + α)ebτ min
(

1 + η

1 + δ
, η

αV + αS

αV + δαS

)
, (3.28)

since 1
1+δ � αV +αS

αV +δαS
for any δ > 0, min(αV , αS) > 1.

The existence of a unique endemic equilibrium point under zero vaccination is dealt
with in Appendix C.

4. About Infection Propagation, the Uniform Boundedness of the Total Population
and the Positivity of the Partial Populations

This section discuses briefly the monotone increase of the infected population and the
boundedness of the total population as well as the positivity of the model:

PROPOSITION 6. If the infection propagates through (t − τ, t) with the infected popula-
tion being non-decreasing then

S(σ)
1 + ηS(σ)

+
δV (σ)

1 + ηV (σ)
� γ + b + α

β
ebσ; ∀σ ∈ (t∗ − 2τ, t∗ − τ).

Proof. Note from (1.4) that for t ∈ (t∗ − 2τ, t∗)

İ(t) > 0 ⇐⇒ I(t)
I(t − τ)

<
βe−bτ

γ + b + α

(
S(t − τ)

1 + ηS(t − τ)
+

δV (t − τ)
1 + ηV (t − τ)

)
,

and if, furthermore, I(t) � I(t − τ) for t ∈ (t∗ − τ, t∗), thus

1 � I(t)
I(t − τ)

<
βe−bτ

γ + b + α

(
S(t − τ)

1 + ηS(t − τ)
+

δV (t − τ)
1 + ηV (t − τ)

)
.

Now, rewrite (1.3) in differential equivalent form by using Leibniz’s rule as follows:

Ė(t) = −bE(t) + β

[(
S(t)I(t)
1 + ηS(t)

+
δV (t)I(t)
1 + ηV (t)

)

−
(

S(t − ω)I(t − ω)
1 + ηS(t − ω)

+
δV (t − ω)I(t − ω)

1 + ηV (t − ω)

)
e−bω

]
. (4.1)

PROPOSITION 7. Assume that ν < b. Then, the following properties hold provided that
the SVEIR epidemic model (1.1)–(1.5) has non-negative solution trajectories of all the
partial populations for all time:
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(i) Assume furthermore that ψ := (eντ + β(1+δ)(1−e−(b−ν)τ )
η(b−ν) )e−bτ < 1. Then, the

total population is uniformly bounded for all time, irrespective of the susceptible
and vaccinated populations, for any bounded initial conditions and
lim sup

t→∞
N(t) � 1−e−(b−ν)τ

b−ν (1 − ψ)
−1

< ∞.

(ii) Assume that the transmission constant is large enough satisfying β � 1
1+δ ·

sup
t∈R0+

( bη(1+η)
ηe−bωI(t−ω)−(1+η)e−bτ I(t−τ)

) subject to η
1+η > eb(ω−τ) and ω < τ . Then

N : R0+ → R0+ is monotone decreasing and of negative exponential order so that
the total population exponentially extinguishes as a result.

Proof. Consider the SVEIRS model in differential form described by (1.1), (1.2), (1.4),
(1.5) and (4.1). Summing up the five equations, one gets directly:

Ṅ(t) = (ν − b)N(t) + b − αI(t)

+ β

[(
S(t − τ)I(t − τ)
1 + ηS(t − τ)

+
δV (t − τ)I(t − τ)

1 + ηV (t − τ)

)
e−bτ

−
(

S(t − ω)I(t − ω)
1 + ηS(t − ω)

+
δV (t − ω)I(t − ω)

1 + ηV (t − ω)

)
e−bω

]
. (4.2)

� (ν − b)N(t) + b + β

(
S(t − τ)I(t − τ)
1 + ηS(t − τ)

+
δV (t − τ)I(t − τ)

1 + ηV (t − τ)

)
e−bτ

� (ν − b)N(t) + b + β
1 + δ

η
e−bτI(t − τ)

� (ν − b)N(t) + b + β
1 + δ

η
e−bτN(t − τ). (4.3)

since S(t)
1+ηS(t)+

δV (t)
1+ηV (t) � 1+δ

η ; ∀t ∈ R0+ . Then, N(t) � ψ sup N(σ)
t−τ�σ�t

+ b(1−e−(b−ν)τ )
b−ν <

∞; ∀t ∈ R0+., and Property (i) follows since ψ < 1. Two cases are now discussed sepa-
rately concerning the proof of Property (ii):

(a) Note that if the solution trajectory is positive subject to min(S(t), V (t)) � 1
(equivalently if max(S−1(t), V −1(t)) � 1) then

0 <
1 + δ

1 + η
� S(t)

1 + ηS(t)
+

δV (t)
1 + ηV (t)

� 1 + δ

η
, (4.4)

so that one gets from (4.2):

Ṅ(t) � (ν − b)N(t) − αI(t)

+
(

b − β

[
1 + δ

1 + η
I(t − ω)e−bω − 1 + δ

η
I(t − τ)e−bτ

])

� −(b − ν)N(t) − αI(t) � −(b − ν)N(t) < 0. (4.5)
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if N(t) > 0 since b > ν and N(t) = 0 if and only if N(t) = I(t) = 0 since
β � 1

1+δ ( bη(1+η)
ηe−bωI(t−ω)−(1+η)I(t−τ)e−bτ ) > 0 provided that η

1+η > eb(ω−τ) with

ω < τ . Then, N(t) � e−(b−ν)tN(0) < N(t′); ∀t, t′(< t) ∈ R0+.
(b) If max(S(t), V (t)) � 1 (equivalently, if min(S−1(t), V −1(t)) � 1) then

0 � S(t)
1 + ηS(t)

+
δV (t)

1 + ηV (t)
� 1 + δ

1 + η
� 1 + δ

η
.

so that (4.5) still holds and the same conclusion arises. Thus, Property (ii) is proven.

A brief discussion about positivity is summarized in the next result:

PROPOSITION 8. Assume that Vc ∈ [0, 1]. Then, the SVEIRS epidemic model (1.1)–
(1.5) is positive in the sense that no partial population is negative at any time if its initial
conditions are non-negative and the vaccinated population exceeds a certain minimum
measurable threshold in the event that the recovered population is zero as follows: V (t) �
max( γ

γ1
(I(t − ω)e−bω − I(t)), 0) if R(t) = 0. The susceptible, vaccinated, exposed and

infected populations are nonnegative for all time irrespective of the above constraint. If,
in addition, Proposition 7 (i) holds then all the partial populations of the SVEIRS model
are uniformly bounded for all time.

Proof. First note that all the partial populations are defined by continuous-time differen-
tiable functions from (1.1)–(1.5). Then, if any partial population is negative, it is zero at
some previous time instant. Assume that S(σ) � 0 for σ < t and S(t) = 0 at some time
instant t. Then from (1.1):

Ṡ(t) = b + γI(t − ω)e−bω + ν(1 − Vc)N(t) � 0; ∀Vc ∈ [0, 1].

Thus, S(t+) � 0. As a result, S(t) cannot reach negative values at any time instant.
Assume that V(σ) � 0 for σ < t and V(t)=0 at some time instant t. Then, V̇ (t) =
νVcN(t) � 0 from (1.2) so that V (t+) � 0. As a result, V (t) cannot reach negative
values at any time. E(t) � 0 for any time instant t from (1.3). Assume that I(σ) � 0 for
σ < t and I(t) = 0 at some time instant t. Then, İ(t) � 0 from (1.4). As a result, I(t)
cannot reach negative values at any time. Finally, assume that R(σ) � 0 for σ < t and
R(t) = 0 at some time instant t. Thus, Ṙ(t) = γ1V (t) + γ(I(t) − I(t − ω)e−bω) � 0
from (1.5) if V (t) � max( γ

γ1
(I(t − ω)e−bω − I(t)), 0). Thus, if V (t) � max( γ

γ1
(I(t −

ω)e−bω −I(t)), 0) when R(t) = 0 then all the partial populations are uniformly bounded,
since they are nonnegative and the total population N(t) is uniformly bounded from
Proposition 7(i).

5. Simulation Results

This Section contains some simulation examples which are concerned with the existence
and alllocation of disease-free and endemic equilibrium points. The objective of these
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examples is to numerically show the potential existence of both types of equilibrium
points and that the calculated values for their coordinates are given by the presented
expressions. The particular values for the equilibrium points as well as the time taken
by the model to converge to them depend on the specific choice of the parameter values
which correspond to the particular disease under study and the species being considered
in the epidemic model. For a different parameterization, these values would be different.
Also, simulations have been run for a long time interval in order to show that the reached
steady-state values are true equilibrium points. The parameters of the epidemic model
are: b = 0.05, γ = 0.005, 1/γ1 = 15 days, β1 = β/2, δ = β1/β, τ = 6 days,
η = 0.5, α = 0.005 and ω = 10 days. It can be pointed that in the case that the
parameters for a particular epidemic model are unknown they can be estimated from
the analysis of population data by using, for instance, either statistical methods, see for
instance, Zutautaite-Seputiene et al. (2010), Bougeard et al. (2011), or heuristic methods,
as for instance in Dzemyda and Sakalauskas (2011), or adaptive methods by using either
batch or recursive parametrical estimation algorithms. See, for instance, Ibeas and De
la Sen (2004), Pupeikis( 2010) being updated from collected real measured data on the
partial populations through time.

5.1. Disease-Free Equilibrium Point

Consider now β = 0.0166 and ν = 0.2b. The two particular cases corresponding to Vc =
0 and Vc = 1 in Section 2 will be studied separately. Thus, the following simulations
have been obtained for the SVEIR system (1.1)–(1.5) and Vc = 0.

Figure 2 shows a zoom on the equilibrium point reached by the model in Fig. 1.

Fig. 1. Solution trajectories for Vc = 0.
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Fig. 2. Zoom on the solution trajectories for the disease-free equilibrium point for Vc = 0.

Note from Figs. 1–2 that the vaccinated, exposed, infected and removed-by-
immunity(recovered) populations converge to zero. This situation corresponds to the case
when the disease is naturally eradicated from the population. On the other hand, the
susceptible presents a different dynamics, converging to a non-zero equilibrium point.
Figure 2 shows that the vaccinated, exposed, infectious and recovered populations are
actually zero (which is represented by the superimposed graphics) while the susceptible
converges to 1.25. Furthermore, these values correspond to the ones stated in Proposi-
tion 1 for Vc = 0, since all the populations vanish except the susceptible which converges
to S∗ = b

b−ν = 1.25. If Vc = 1 then the solution trajectories converge to the equilibrium
point as depicted in Fig. 3.

In this case, only the exposed and infected tend to zero while the remaining popula-
tions tend to the values calculated in Proposition 1 when Vc = 1:

S∗ = 1, V ∗ =
νb

(γ1 + b)(b − ν)
= 0.107,

R∗ =
νγ1

(γ1 + b)(b − ν)
= 0.14, E∗ = I∗ = 0.

5.2. Endemic Equilibrium Point

In order to study the endemic equilibrium point, the value of β is changed now to a new
value β = 0.099 satisfying the condition β � ηebτ (γ + b + α) stated in Proposition 4(i)
for Vc = 0 and ν = 0.65b. Thus, the model trajectory solutions are depicted in Fig. 4:

A zoom on Fig. 4 will show the equilibrium point of the system as represented in
Fig. 5.
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Fig. 3. Disease-free equilibrium point for Vc = 1.

Fig. 4. Solution trajectories converging to an endemic equilibrium point.

Figure 5 shows that there is an endemic equilibrium point, associated to non-zero
populations of exposed and infectious, whose coordinates in view of Proposition 4(i)
satisfy the constraints:

E∗ =
β

b
(1 − e−bω)(

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ )I∗ = 0.7,

R∗ =
γ1V

∗ + γ(1 − e−bω)I∗

b
= 0.043.

while the remaining variables, which are not given explicitly in Proposition 4(i), are
I∗ = 1.1, V ∗ = 0 and S∗ = 1.38. Thus, the validity of the results is numerically verified.
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Fig. 5. Zoom of the solution trajectories showing the endemic equilibrium point.

5.3. The Epidemic Model Versus the Evolution of Fractional Partial Populations

It is interesting to discuss the practical use of the model with fractional or percentage of
populations with respect to a total population by making the model to be more versatile.
Such fractions of the partial total populations can be taken, for instance, with respect to
the initial total population of the habitat under study or with respect to that of the disease-
free equilibrium. Note that in time-varying models or even in time-invariant ones with
external interchange of population, newborn vaccination strategy or mortality associated
with the disease, it can happen that overshoots and undershoots with respect to the unit
Heaviside function of some of the total population evolution through time can occur.
The reason is that the total population is not necessarily constant. The percentages of the
partial populations can be manipulated by using initial conditions in the model which are
themselves percentages or by using absolute values of populations and then displaying
the percentage evolution of the populations through time. A numerical simulation is made
with initial conditions S(0) = 25, V (0) = 15, E(0) = 15, I(0) = 25, R(0) = 20.
The parameters of the model are b = 0.075 days −1, ν = 0.995b < b and N(0) =
N ∗ = S∗ = b

b−ν = 200. The results are depicted in Figs. 6 and 7 for Vc = 0 and
Vc = 1, respectively. Figure 8 displays a zoom of the final evolution of the vaccinated
and recovered populations towards the disease-free equilibrium for Vc = 1.

6. Concluding Remarks and Several Recommendations

This paper has investigated the disease-free and endemic equilibrium points of a modi-
fied epidemic SVEIRS model with the five typical populations of susceptible, vaccinated,
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Fig. 6. Percentages of populations evolving to the disease-free equilibrium point for Vc = 0.

Fig. 7. Percentages of populations evolving to the disease-free equilibrium point for Vc = 1.

exposed, infected and recovered populations. The model is of true-mass action type and
takes into account the loss of immunity of newborns. It contains potential latent and im-
mune periods, which are internal delays in the model, and the total population is not
considered constant, in general. A constant regular vaccination forcing term is incorpo-
rated to interchange numbers of susceptible and vaccinated populations. The incorpora-
tion of such a term is one of the main novelties of the proposed SVEIRS model since
SVEIRS models do not incorporate usually such a vaccination action being common in
SEIRS models for interchanging of susceptible and immune populations. The existence
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Fig. 8. Zoom of the final evolution of the fractional vaccinated and recovered populations towards the dis-
ease-free equilibrium point for Vc = 1.

and uniqueness of a disease-free equilibrium point as well as that of an endemic equi-
librium point have been proven, and also, conditions of positivity and stability have been
formulated and proven for reasonable constraints on the parameterization. A reproduction
number threshold has been computed to elucidate the maintenance of the local asymp-
totic stability of the disease-free equilibrium for sufficiently small delays in the model.
Roughly speaking, the disease-free equilibrium stability margin increases with the value
of the constant vaccination while it decreases as the disease transmission constant in-
creases.

The main vaccination recommendation is to increase the constant vaccination effort as
much as possible to a threshold value being compatible with the stability of the disease-
free equilibrium point given by the reproduction number. This strategy has a triple joint
objective, namely, (a) to increase the recovered population at a stable disease-free equi-
librium point while jointly decreasing the susceptible one, (b) to increase the effective
value of the disease transmission constant being compatible with the stability of such an
equilibrium, and (c) to avoid the convergence of the trajectory solutions to the endemic
equilibrium point for larger values of the transmission constant compared to the case of
absence of vaccination.

Another recommendation on a practical way of proceeding with the model use, pro-
vided that either the disease-free equilibrium point is known or the various formulas
defining such an equilibrium are known, is as follows: (1) Firstly, consider that the sus-
ceptible, vaccinated and recovered disease-free equilibrium populations are multiplicative
coefficients of a given standard testing total population while, obviously, the exposed and
infected populations are zero at a stable disease-free equilibrium. This is a logic strategy
to evaluate the partial populations evolving through time versus the disease-free equilib-
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rium since their numbers are not ensured to be integer numbers without incorporating a
discrete quantization model; (2) Secondly, perform an initialization at zero time of in-
terest of the model time with values of the initial susceptible, vaccinated and recovered
populations being close to their corresponding above mentioned equilibrium suscepti-
ble and recovered equilibrium coefficients while the exposed and infected populations
are initially close to zero, but nonzero (otherwise, the infection would never appear and
propagate); (3) Run the model evolution through time. The total and the various partial
real populations are calculated at any time instant with the various multiplicative coeffi-
cients applied to the standard testing population. This set up would be a logic scenario
to model common infectious diseases since, in these situations, the exposed and infected
populations remain for all time within small deviations with respect to the whole popula-
tion under study.

A relevant extension of this formalism could be devoted to the incorporation of the
hybrid modeling by a simultaneous consideration of both discrete-time modeling (for in-
stance, for the system’s dynamics) and continuous time-modeling (for instance, for the
vaccination effort). Hybrid systems are of greate interest in different problems of Control
Theory because of their ability to a combined treatment of the formal accommodation and
use of models which have continous-time and discrete-time (or eventually digital) cou-
pled dynamics or for the use of discrete-controllers operating on continuous time systems.
See, for instance, De la Sen (2006), Marchenko and Zaczkiewicz (2009a), Marchenko and
Loiseau (2009b).

On the other hand, work is in progress concerning the design strategies of non-
constant regular vaccination strategies by taking into account the measurable total and
partial populations through time and the design of impulsive vaccination rules to remove
the convergence to the endemic equilibrium point of the state trajectory solutions for
larger values of the disease transmission constant.
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Appendix A: Solution Trajectory of the SVEIRS Model

The solution trajectories of the SVEIRS differential model (1.1)–(1.5) are given below.
Equation (1.1) yields:

S(t) = e
−

∫ t

0
(b+β

I(ξ)
1+ηS(ξ) ) dξ

S(0)

+
∫ t

0

e
−

∫ t

ξ
(b+β

I(σ)
1+ηS(σ) ) dσ(

γI(ξ − ω)e−bω+ ν(1 − Vc)N(ξ)+ b
)
dξ. (A.1)

Equation (1.2) yields:

V (t) = e
−

∫ t

0
(γ1+b+

δβI(ξ)
1+ηV (ξ) ) dξ

V (0)

+ νVc

∫ t

0

e
−

∫ t

ξ
(γ1+b+

δβI(σ)
1+ηV (σ) ) dσ

N(ξ) dξ. (A.2)

Equation (1.3) is already in integral form. Equation (1.4) yields:

I(t) = e−(γ+b+α)t[I(0) + βe−bτ

∫ t

0

e(γ+b+α)ξ

(
S(ξ − τ)I(ξ − τ)
1 + ηS(ξ − τ)

+
δV (ξ − τ)I(ξ − τ)

1 + ηV (ξ − τ)

)
dξ]. (A.3)
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Equation (1.5) yields:

R(t) = e−bt

[
R(0) +

∫ t

0

ebξ
(
γ1V (ξ) + γ(I(ξ) − I(ξ − ω)e−bω)

)
dξ

]
. (A.4)

Appendix B: Disease-Free Equilibrium Stability for Sufficiently Small Delays
with Quotient Parameterization

The following alternative result to Proposition 2 is based on an existence of the first
sufficiently small destabilizing delay size of the linearized system about the equilibrium
provided that the linearized zero-delay model is asymptotically stable about the disease-
free equilibrium point.

Proposition B.1. Assume that b > ν and

Rp0 = β

(
b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)
1

b + α + γ
< 1.

Then, the SVEIRS epidemic model is locally asymptotically stable about the disease-
free equilibrium point for τ = λω; ∀ω ∈ [0, ω∗), any prefixed λ ∈ R+ and some
ω∗ ∈ R+ if the so-called reproduction number satisfies the following constraint:

Rp

(
λ, ω∗)

:= βe−bλω∗
(

b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)

× 1
b + α + γ

< 1.

For any prefixed, (λ, ω) ∈ R2
+, the above property holds for sufficiently small disease

transmission constant that satisfies:

β < ebλω∗
(b + α + γ)

(
b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)−1

.

Proof. Consider the linearized system about the disease-free equilibrium point of state
vector x̃(t) := (S̃(t), Ṽ (t), Ẽ(t), Ĩ(t), R̃(t))T characterized in Proposition 1 which sat-
isfies the differential system (2.15) which becomes for x∗(t) = x∗(t − τ) = x∗(t − ω):

˙̃x(t) = A∗(τ, ω)x̃(t) = (A∗
0 + A∗

τ + A∗
ω)x̃(t); x̃(0) = x̃0. (B.1)

where A∗(τ, ω) = . ∂ ˙̃x
∂x̃T ]

(S∗ ,V ∗ ,0,0,R∗)T
is the Jacobian matrix of (1.1)–(1.5) at the

disease-free equilibrium point. Define the delay quotient λ = τ/ω for ω 
= 0, result-
ing in λ = ∞ if ω = 0 and τ 
= 0, with such a definition modified as λ = 0 if τ = ω = 0.
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Then, there is a bijective mapping from the Jacobian matrix A∗(τ, ω) to Ā∗(λ, ω), for a
such a definition of λ, for any triple (τ, ω, λ) ∈ R3

0+ where:

Ā∗(λ, ω)

:=

⎛
⎜⎜⎝

−b + (1 − Vc)ν (1 − Vc)ν (1 − Vc)ν e−bωγ − βS∗
1+ηS∗ + (1 − Vc)ν (1 − Vc)ν

νVc −b − γ1 + νVc νVc − δβV ∗
1+ηV ∗ + νVc νVc

0 0 −b β(1 − e−bω)( S∗
1+ηS∗ + δV ∗

1+ηV ∗ ) 0

0 0 0 −b − α − γ + βe−bλω( S∗
1+ηS∗ + δV ∗

1+ηV ∗ ) 0

0 γ1 0 (1 − e−bω)γ −b

⎞
⎟⎟⎠.

The eigenvalues of Ā∗(λ, ω) are:

(
− b, −b, −b − γ1, − (b + α + γ)

+ βe−bλω

(
b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)
, −b + ν

)
.

Assume that Ā∗(0, 0) is a stability matrix so that the above matrix has eigenvalues of
negative real parts, i.e., b > ν, and

Rp(λ, ω) := βe−bλω

(
b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)

× 1
b + α + γ

< 1.

Thus the linearized system about the disease-free equilibrium is asymptotically stable
and the nonlinear one is locally asymptotically stable for zero delays ω = 0, τ = λω =
0 (λ = 0). By continuity arguments of the eigenvalues with respect to the parameters, for
any prefixed λ ∈ R+, there exist ω∗ ∈ R+ and τ ∗ = λω∗ ∈ R+ such that the linearized
system about the disease-free equilibrium is asymptotically stable and also the nonlinear
one is locally asymptotically stable for τ = λω; ∀ω ∈ [0, ω∗), that is if b > ν and the
reproduction number

Rp

(
λ, ω∗)

:= βe−bλω∗
(

b − νVc

b − ν + η(b − νVc)
+

δbνVc

(b + γ1)(b − ν) + ηbνVc

)

× 1
b + α + γ

< 1.

If Rp(λ, ω∗) � 1 then the linearized system is either critically stable or unstable.

Remark B.1. Note that for small model delays, the disease-free equilibrium stability
margin decreases as the transmission constant increases for a given vaccination term.
However, the modification of the value of the vaccination effort to a new appropriate
value can compensate a certain increase of the transmission constant to still keep the
disease-free equilibrium point stability.
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Appendix C: Allocation of a Unique Endemic Equilibrium Point
for the Vaccination-Free Case Vc = 0

This appendix contains the location of the endemic equilibrium points in the special case
corresponding to Vc = 0 so that (2.2) implies V ∗ = 0. Furthermore, (2.4) yields for the
endemic point:

βe−bτ

(γ + b + α)

(
S∗

1 + ηS∗

)
= 1. (C.1)

whence the value of S∗ can be obtained:

S∗ =
γ + b + α

βe−bτ − (γ + b + α)η
. (C.2)

In order to obtain a positive value for S∗ the constraint β > ηebτ (γ + b + α) must
be satisfied which is the one required in Proposition 4(i) for the presence of an endemic
equilibrium point. The remaining variables can be deduced from Equations (2.1), (2.3)
and (2.5) by using the value of the total population in the equilibrium is the sum of
all partial populations at such an equilibrium point. Hence, the total population in the
equilibrium is obtained by zeroing the left-hand side of (4.2), i.e.:

0 = (ν − b)N ∗ + b − αI∗ + β
S∗I∗

1 + ηS∗
(
e−bτ − e−bω

)
. (C.3)

Thus,

N ∗ =
b

(b − ν)
+

1
(b − ν)

[
β

S∗

1 + ηS∗
(
e−bτ − e−bω

)
− α

]
I∗

=
b

(b − ν)
+

1
(b − ν)

[
(γ + b + α)(1 − eb(τ −ω)) − α

]
I∗. (C.4)

On the other hand, (2.3) together with (C.2) implies that:

E∗ =
(γ + b + α)

b
(ebτ − eb(τ −ω))I∗. (C.5)

and (2.5) becomes

R∗ =
γ

b

(
1 − e−bω

)
I∗, (C.6)

for Vc = 0. The total population is then given using (C.1)–(C.6) by:

N ∗ =
b

(b − ν)
+

1
(b − ν)

[
(γ + b + α)

(
1 − eb(τ −ω)

)
− α

]
I∗

=
γ + b + α

βe−bτ − (γ + b + α)η
+ 0 +

(γ + b + α)
b

(
ebτ − eb(τ −ω)

)
I∗

+ I∗ +
γ

b

(
1 − e−bω

)
I∗. (C.7)
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and the value of I∗ is given by:

I∗ =
(γ + b + α)b(b − ν) − b2(βe−bτ − (γ + b + α)η)

(βe−bτ − (γ + b + α)η)

× 1
[(−b + ν(1 − e−bω))(γ + b + α)ebτ + ν(b + γ) + γ(b − ν)e−bω]

. (C.8)

Thus, the remaining components of the endemic equilibrium point, which is seen to be
unique, are given by (C.6) and (C.7) by using (C.8):

E∗ = (γ + b + α)
(
ebτ − eb(τ −ω)

)

× (γ + b + α)(b − ν) − b(βe−bτ − (γ + b + α)η)
(βe−bτ − (γ + b + α)η)

× 1
[(−b + ν(1 − e−bω))(γ + b + α)ebτ + ν(b + γ) + γ(b − ν)e−bω]

,

R∗ = γ
(
1 − e−bω

) (γ + b + α)(b − ν) − b(βe−bτ − (γ + b + α)η)
(βe−bτ − (γ + b + α)η)

× 1
[(−b + ν(1 − e−bω))(γ + b + α)ebτ + ν(b + γ) + γ(b − ν)e−bω]

.

(C.9)



On the Equilibrium Points, Boundedness and Positivity of a Sveirs Epidemic Model 369

M. De la Sen was born in Arrigorriaga, Bizkaia, Basque Country, Spain. He received the
MSc degree (honors) in applied physics (electronics and automation) and the PhD de-
gree (high honors and special mention) in applied physics from the University of Basque
Country, Bilbao, Spain in 1975 and 1979, respectively, and the degree of docteur – d’Etat
es – sciences physiques (specialite automatique et traitement du signal, high honors) from
the University of Grenoble, France, in 1987. He is currently professor of systems engi-
neering and automatic control at the University of Basque Country where he serves as
the head of the Institute of Research and Development of Processes. He has co-authored
about seven hundred papers in scientific journals and proceedings of conferences.

Professor De la Sen was a visiting professor at the universities of Grenoble (France),
Newcastle (Australia) and Australian National University (Canberra, Australia) and he
was formerly a member of the Editorial Board of the Electrosoft Journal (CML Mechan-
ical and Computational Engineering Publications). He is currently associate editor of the
following journals: Applied Mathematical Sciences; Nonlinear Analysis, Modelling and
Control; Mathematics in Engineering, Science and Aerospace – the Transdisciplinary In-
ternational Journal; Discrete Dynamics in Nature and Society; Nonlinear Studies – the
International Journal; and Fixed Point Theory and Applications.

His main interest research areas are: discrete and sampled-data control systems, non-
periodic and adaptive sampling, adaptive control, fixed point theory, positive systems,
stability, models for ecology, epidemic models, time-delay systems, artificial intelligence
tools for dynamic systems and ordinary differential equations.

A. Ibeas was born in Bilbao, Spain, on July 7, 1977. He received the MSc degree in
applied physics and the PhD degree in automatic control from University of the Basque
Country, Spain, in 2000 and 2006, respectively. He is currently working as lecturer of
electrical engineering at Autonomous University of Barcelona, Spain. His research inter-
ests include mathematical systems theory, time-delayed systems, robust adaptive control
and applications of artificial intelligence to control systems design.

S. Alonso-Quesada was born in Bilbao, Bizkaia, in the Spanish Basque Country. He
obtains the MSc degree in automatic and electronics physics from the Faculty of Sci-
ences of the Basque Country University in 1992 and the PhD degree in physics from
the Department of Electricity and Electronics of the same University in 2001. He has
had several teaching and research positions in the Basque Country University where he
is currently doctor aggregate professor in the area of engineering system and automatic
in the Department of Electricity and Electronics. He has been co-author of some papers
in the fields of adaptive control systems and control applications in biological systems.
His research interest is in the adaptive control, control theory and control applications in
epidemics models. He acts and has acted as reviewer for some international journals and
conferences of control theory and control applications.

R. Nistal graduated in physics at the Science Faculty of University of the Basque Country
in 2008. He received a MS degree in biophysics from University of Barcelona in 2010
where he worked on mathematical models for organ differentiations and gene networks.
He is currently a PhD student at the University of Basque Country working on disease
propagation models and the efficiency of possible responses.



370 M. De la Sen et al.

Apie SVEIRS epideminio modelio pusiausvyros taškus, apribojimus
bei privalumus esant reguliariai ir apribotai vakcinacijai

Manuel De la SEN, Asier IBEAS, Santiago ALONSO-QUESADA, Raul NISTAL

Straipsnyje nagrinėjami ligos plitimo SVEIRS modelio pusiausvyros taškai, modelio privalu-
mai bei apribojimai esant pastoviai ir reguliariai vakcinacijai. ↪I model↪i ↪itrauktos prielaidos apie
natūral ↪u populiacijos augim ↪a, išmirim ↪a ir naujagimi ↪u imuniteto praradim ↪a, priklausant↪i nuo ligos
išplitimo. Daroma prielaida, kad yra du riboti vėlavimai, kurie veikia ↪itariamos, stebimos, pagydy-
tos ir infekuotos populiacijos dinamik ↪a.


