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Abstract. In this paper we have proposed a novel method for image denoising using local polyno-
mial approximation (LPA) combined with the relative intersection of confidence intervals (RICI)
rule. The algorithm performs separable column-wise and row-wise image denoising (i.e., indepen-
dently by rows and by columns), combining the obtained results into the final image estimate. The
newly developed method performs competitively among recently published state-of-the-art denois-
ing methods in terms of the peak signal-to-noise ratio (PSNR), even outperforming them for small
to medium noise variances for images that are piecewise constant along their rows and columns.
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1. Introduction

Noise appears in almost all real images due to imperfections of image acquisition sys-
tems. That is why image denoising is one of the fundamental problems in the field of
image processing, needed for improving image quality before performing different high-
level vision tasks (e.g., object detection (Serackis et al., 2010), image completion (Wu
et al., 2010), etc.). Consequently, various denoising methods have been proposed, many
of which can be found in Buades et al. (2004) where their characteristics are described
and compared. A brief overview of image denoising methods is given in Section 2.

However, each of those methods has its advantages, as well as the limitations (for
example the type of the images when a particular method performs best). The main ob-
jective of this paper is to develop an improved denoising method for a class of piece-wise
constant images, the model of which was given in Ausbeck (2000). The proposed method
is then compared to several newly developed hybrid methods which combine two or more
existing methods, such as for example the recently proposed shape adaptive DCT (SA-
DCT) method (Foi and Egiazarian, 2007), the block-matching and 3D filtering (BM3D)
algorithm (Dabov et al., 2007), or the method that combines the intersection of confi-
dence intervals (ICI) rule (Katkovnik et al., 2004) and local polynomial approximation
(LPA-ICI) for spatially adaptive image restoration (Katkovnik et al., 2004). The SA-DCT
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method is based on the ICI rule (Katkovnik, 1999) and it uses arbitrarily-shaped 2D sup-
ports which are adapted with respect to the image features, hence reducing unwanted
artifacts in the image. The BM3D algorithm uses 2D image fragments and groups them
into 3D data, resulting in the improved sparse representation of the image in the trans-
form domain. In addition, collaborative Wiener filtering leads to further improvements
in denoised image. In the anisotropic implementation of the LPA-ICI, LPA is used in
designing kernels with a desirable polynomial smoothness, while the ICI rule results in
adaptive varying scales of the kernel estimates.

Unlike the above mentioned methods, the method proposed in this paper is based on
1D filtering that is locally tuned to the signal (image) according to the improved ICI rule –
the relative intersection of confidence intervals (RICI) rule (Lerga et al., 2008). The RICI
rule is combined with local polynomial approximation (LPA), hence allowing to have an
adaptive data-driven LPA-based filter for each image pixel. The 1D filtering along image
rows and columns makes the proposed method computationally more efficient than its
two-dimensional counterparts.

The paper is organized as follows. Section 2 gives the summary of existing image de-
noising techniques. In Section 3 the RICI rule is briefly outlined. The proposed denoising
algorithm based on the RICI rule is described in Section 4. Section 5 presents the exper-
imental results for different test images, and gives a comparison of the proposed method
and other popular image denoising techniques.

2. A Brief Review of Image Denoising Methods

Image denoising methods can be divided, as in Motwani et al. (2004), into two main
groups: spatial filtering methods and transform domain filtering methods.

Spatial filtering methods can be linear (as, for example, the one using the Wiener
filtering) or non-linear (such as low filtering methods or various spatial filtering methods
using median filters).

The transform domain filtering methods are categorized as either adaptive (for exam-
ple, independent component analysis (ICA) method) or non-adaptive methods (as spatial-
frequency filtering and wavelet domain filtering methods). The ICA method was proposed
for the case of non-Gaussian noise. However, it is time consuming, as it is the spatial-
frequency filtering method based on the fast Fourier transform which is highly affected
by the selected cut-off frequency and the filter design.

As in Motwani et al. (2004), the wavelet based image denoising methods can be cate-
gorized as linear filtering methods (such as the one using the Wiener filter in the wavelet
domain, which is optimal in terms of the mean square error for images corrupted by
Gaussian noise), non-linear threshold filtering (which apply hard or soft thresholding with
the threshold chosen using different adaptive or non-adaptive methods), non-orthogonal
wavelet transforms methods (including undecimated wavelet transform, shift invariant
discrete wavelet transform and multiwavelets) and wavelet coefficient model methods
(which can be deterministic or statistical). The statistical wavelet coefficient models can
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be further classified as marginal probabilistic model and joint probabilistic model meth-
ods.

However, during the last decades various hybrid methods which combine wavelet
based methods and some other image processing techniques were developed, such as the
one proposed in Tomic et al. (2008) which uses the ICI rule for adaptive wavelet support
selection.

Here proposed method can be classified as a spatial filtering image denoising method,
using the improved ICI rule (called the RICI rule) as the tool for the adaptive filter support
size selection and the LPA for the filter design.

3. The RICI Rule

For the purpose of signal denoising, in this paper we have used LPA-based filters. For
each signal sample, the LPA filter with the appropriate support is chosen using the RICI
rule (Lerga et al., 2008). The RICI rule allows us to choose filters with long supports in
smooth signal regions, and short supports near signal discontinuities. For that purpose,
a set of LPA based filters of growing supports is applied to each signal sample, resulting
in a set of estimates of the noise-free sample value.

The RICI rule chooses the estimate which gives the best compromise between the
estimation bias and variance. This choice is based on tracking the intersection of confi-
dence intervals of estimates x̂l(k)(n) obtained for growing filter supports with length l(k),
where k stands for the filter support index and n is the signal sample index. The largest
lower and the smallest upper limit of the confidence intervals are respectively defined as:

L̄(n, k) = max
i=1,...,k

[x̂l(k)(n) − Γσl(k)(n)], (1)

U(n, k) = min
i=1,...,k

[
x̂l(k)(n) + Γσl(k)(n)

]
, (2)

where σl(k) is the standard deviation of the estimation error, and Γ is the confidence level
of the confidence intervals. The number of filter taps is chosen as the largest one for which
it is still true that:

L̄(n, k) � U(n, k), (3)

and

R(n, k) � Rc, (4)

where R(n, k) is the ratio of the size of the intersection of all confidence intervals ob-
tained so far and the size of the current confidence interval, that is:

R(n, k) =
U(n, k) − L̄(n, k)

2Γσl(k)(n)
. (5)
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Fig. 1. Example of symmetrical and asymmetrical filter support selection.

The parameter Rc in (4) is empirically chosen, as described in Lerga et al. (2008).
An advantage of the proposed algorithm, as well as the original ICI rule, is that it

requires only the knowledge of the noise variance σ2
n and not the estimation of the bias,

which is needed by other methods based on asymptotic formulae where the optimal filter
support is defined as a function of both the bias and the variance; see for example Fan
and Gijbels (1996) and Ruppert (1997).

The proposed LPA-RICI method, unlike the LPA-ICI method, allows us to select
larger Γ and so achieve better estimation accuracy in terms of the peak signal-to-noise
ratio (PSNR) by selecting the appropriate Rc value (Lerga et al., 2008). In the case of
LPA-ICI, a larger Γ results in wider confidence intervals, as it can be observed from (1)
and (2), hence resulting into signal oversmoothing due to the longer filter support. This
problem is avoided with the additional criterion (4) which ensures that the most appro-
priate filter support is selected.

We have used asymmetrical filter supports by allowing them to grow independently
both to the left-hand and to the right-hand side from the estimated sample, hence giving
us a more accurate estimate of the denoised signal. The Fig. 1 shows a sketch of a noisy
image row/column, and a difference between symmetrical and asymmetrical filter support
selection for one pixel. Estimating the noise-free pixel value using the asymmetrical filter
support (for example as the mean value of the selected region) results in better noise
suppression than for the case when the symmetrical filter support is used. This is a result
of the central limit theorem whereby the lager number of samples (the asymmetrical
region) results in an estimate closer to the true value and thus in better noise elimination.

4. Image Denoising Algorithm

Let us consider a noisy image y(i, j), obtained as:

y(i, j) = x(i, j) + n(i, j), (6)
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where x(i, j) is the clean image and n(i, j) is zero-mean additive white Gaussian noise
(AWGN) with the variance σ2

n.
Let us also define operators Hr and Hc which perform row-wise and column-wise

image denoising, respectively. Each operator uses the 1D adaptive data-driven LPA based
filter whose support is determined by the RICI rule, explained above, for each signal
sample.

The algorithm consists of three stages:
First stage: The operator Hr is applied to the noisy image y(i, j), resulting in the

image x̂r(i, j):

x̂r(i, j) = Hr

{
y(i, j)

}
. (7)

Next, the operator Hc is applied to x̂r(i, j) resulting in the image x̂rc(i, j):

x̂rc(i, j) = Hc

{
x̂r(i, j)

}
. (8)

Second stage: In this stage of the algorithm, the order of the operators Hr and Hc is
reversed. The operator Hc is used first, giving the image x̂c(i, j):

x̂c(i, j) = Hc

{
y(i, j)

}
. (9)

Then, the operator Hr is applied to x̂c(i, j) resulting in the image x̂cr(i, j):

x̂cr(i, j) = Hr

{
x̂c(i, j)

}
. (10)

Note that the first and the second stage of the algorithm are performed in parallel, which
significantly speeds up its execution time. Since the operators Hr and Hc simultaneously
denoise each row and column respectively, an additional reduction in the computation
time is also achieved. A more detailed study of the ICI method complexity can be found
in Katkovnik et al. (2006).

Third stage: The final image estimate is obtained as a weighted sum of the results
from the previous two stages:

x̂(i, j) = wrc(i, j) · x̂rc(i, j) + wcr(i, j) · x̂cr(i, j), (11)

where wrc(i, j) and wcr(i, j) denote weighting factors. Here we will consider two sets of
the weights. In the first case, the weighting factors are chosen as wrc(i, j) = wcr(i, j) =
0.5. In the second case, the weights are computed as:

wrc(i, j) =
lrc(i, j)

lrc(i, j) + lcr(i, j)
, (12)

wcr(i, j) =
lcr(i, j)

lrc(i, j) + lcr(i, j)
. (13)
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where lrc(i, j) and lcr(i, j) respectively denote the number of filter taps used for the point
estimation of each image pixel of x̂rc(i, j) and x̂cr(i, j). The motivation for the second
set of the weighting factors comes from the fact that the image pixel estimate obtained by
the LPA filter with larger number of filter taps can be considered to be more accurate and
reliable, hence such an estimate will have a larger weight and it will contribute more to
the final estimate. The used weighting factors are inversely proportional to the estimation
variances (Katkovnik, 1999).

5. Experimental Results and Discussion

We have used two 256 × 256 test images, Rectangles and Stains (Figs. 2(a) and 2(b)). The
Rectangles image contains overlapping grayscale rectangles of different sizes, while the
Stains image contains grayscale regions of irregular shapes. The parts of those images,
both corrupted with zero mean additive white Gaussian noise with σn = 20 are shown
in Figs. 3(b) and 4(b), respectively. The filters used in this paper are zero-order LPA
based filters with the number of taps being determined by the RICI rule for each pixel
independently. Rectangular windows are used in the kernel design. The filter supports
were allowed to grow independently to the left-hand and to the right-hand side from the
estimated signal sample, hence allowing to have asymmetrical estimation regions. Due to
the central limit theorem, this results in larger filter supports and more precise estimates
of the noise free pixel value. The pixel estimate is obtained using the filter whose support
is the union of the two obtained subsupports (on the left hand side and the right hand side
to the considered pixel). Note that, as in Lerga et al. (2008), in the presented results we
have used Γ = 4.4 and Rc = 0.85.

The RICI rule, as described in Section 3, introduces a sequence of increasing filter
supports. For each pixel value of the considered noisy image row (column), a sequence
of confidence intervals is calculated using each of the filter supports from a set of increas-
ing supports. Next, the algorithm tracks the intersection of confidence intervals and the
amount of their intersection in order to find a proper filter support for the considered pixel
as the largest one satisfying (3) and (4). The procedure is repeated for each image pixel,
resulting in the image denoised by rows (columns). The same denoising procedure is then

Fig. 2. Noise-free 256 × 256 test images. (a) Rectangles image. (b) Stains image.
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Fig. 3. Segment of the 256 × 256 Rectangles image. (a) Noise-free image. (b) Noisy image with zero-mean
AWGN with σn = 20 (PSNR = 22.08 dB). (c) Image x̂r(i, j) (PSNR = 35.98 dB). (d) Image x̂rc(i, j)
(PSNR = 40.14 dB). (e) Image x̂c(i, j) (PSNR = 35.99 dB). (f) Image x̂cr(i, j) (PSNR = 40.39 dB).
(g) Final estimated image calculated using fixed weights (PSNR = 41.32 dB). (h) Final estimated image
calculated using variable weights (PSNR = 41.30 dB). (i) Image denoised using undecimated wavelet
shrinkage (Haar wavelet, hard thresholding with the threshold 3.5 × σn and 8 decomposition levels)
(PSNR = 37.14 dB). (j) Image denoised using the BM3D algorithm (PSNR = 41.08 dB). (k) Image
denoised using the SA-DCT algorithm (PSNR = 40.94 dB). (l) Image denoised using the LPA-ICI method
(threshold Γ = 1.05) (PSNR = 36.59 dB).

applied on the obtained image, only this time denoising is done by columns (rows), re-
sulting in two images needed for the final stage of the algorithm, in which the images are
combined into one final denoised image.

Our proposed method is compared to the LPA-ICI method (with Γ = 1.05, belong-
ing to the interval (0.8, 1.5) shown to be optimal for the LPA-ICI method; Katkovnik,
1999), the SA-DCT method (Foi et al., 2007), the BM3D algorithm (Dabov et al.,
2007), and the conventional undecimated wavelet shrinkage method (Coifman and
Donoho, 1994). It was shown in Foi et al. (2007) and Dabov et al. (2007), see
also http://www.cs.tut.fi/∼foi/GCF-BM3D/ for additional results that the
BM3D and SA-DCT methods outperform many other popular denoising methods, such
as BLS-GSM (Portilla et al., 2003), the patch-based method (Kervrann and Boulanger,
2006), MGGD (Cho and Bui, 2005), or the recursive anisotropic LPA-ICI method (Foi
et al., 2004).
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Fig. 4. Segment of the 256 × 256 Stains image. (a) Noise-free image. (b) Noisy image with zero-mean
AWGN with σn = 20 (PSNR = 22.08 dB). (c) Image x̂r(i, j) (PSNR = 35.53 dB).
(d) Image x̂rc(i, j) (PSNR = 38.73 dB). (e) Image x̂c(i, j) (PSNR = 35.78 dB). (f) Image x̂cr(i, j)

(PSNR = 38.82 dB). (g) Final estimated image calculated using fixed weights (PSNR = 39.47 dB). (h) Final
estimated image calculated using variable weights (PSNR = 39.30 dB). (i) Image denoised using undecimated
wavelet shrinkage (Haar wavelet, hard thresholding with the threshold 3.5 × σn and 8 decomposition levels)
(PSNR = 31.89 dB). (j) Image denoised using the BM3D algorithm (PSNR = 34.07 dB). (k) Image de-
noised using the SA-DCT algorithm (PSNR = 37.36 dB). (l) Image denoised using the LPA-ICI method
(threshold Γ = 1.05) (PSNR = 37.17 dB).

A segment of the image x̂r (of the Rectangles and Stains test images) obtained in the
first stage of the proposed algorithm is shown in Figs. 3(c) and 4(c). The algorithm has
reduced the noise in the input noisy image, however some artifacts have been introduced
in the horizontal direction. A segment of the image x̂rc, shown in Figs. 3(d) and 4(d), has
the noise and the horizontal artifacts further reduced.

Figures 3(e), 3(f), 4(e) and 4(f) show the parts of the images x̂c and x̂cr obtained in the
second stage of the algorithm. Unlike x̂r which has artifacts in the horizontal direction,
x̂c has artifacts in the vertical direction, which get reduced in the image x̂cr.

Figures 3(g), 3(h), 4(g) and 4(h) show the segments of the final images obtained with
the fixed and adaptive weights, respectively. In both cases, the undesirable visual artifacts
are significantly reduced and the PSNR is increased.

Figure 5 presents the PSNR results as a function of σn for the Rectangles and Stains
images. It can be seen that for small to medium σn values the proposed method out-
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Fig. 5. PSNR as a function of σn for different denoising methods. (a) Rectangles image. (b) Stains image.

performs other considered denoising methods in terms of PSNR, even outperforming the
state-of-the-art SA-DCT method (Figs. 3(k) and 4(k)), the LPA-ICI method (Figs. 3(l) and
4(l)), and the BM3D algorithm (Figs. 3(j) and 4(j)), as well as the undecimated wavelet
shrinkage with Haar wavelet and hard thresholding (Figs. 3(i) and 4(i)).

The PSNR results for the Rectangles and Stains images are summarized in Tables 1
and 2 respectively. The second column of the tables gives PSNR of the noisy image, while
the third column gives PSNR of the image denoised using the undecimated wavelets
(Haar wavelet, hard thresholding with the threshold set to 3.5 × σn and with 8 decom-
position levels). The fourth and fifth columns are PSNRs for images denoised using the
BM3D method and the SA-DCT method, respectively. The sixth column gives PSNR for
the two images denoised using the anisotropic LPA-ICI method. The last two columns of
the tables are the PSNR results obtained with the here-proposed algorithm with the fixed
and variable weights, respectively.

As it can be seen from Tables 1 and 2, the newly developed LPA-RICI algorithm out-
performs all of the considered methods for small to medium (σn � 20) noise deviations
when applied to images that are piecewise constant along their rows and columns (such
as the test images used in this paper). Also, unlike any of the other considered methods,
our method uses 1D image processing, making it much simpler and computationally less
complex. Note that in the case of larger σn values, the image property of being piecewise
constant becomes significantly disturbed, hence resulting in lower PSNRs than those ob-
tained by the SA-DCT method, the anisotropic LPA-ICI method or the BM3D algorithm,
which, on the other hand, use computationally more demanding 2D approaches.
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Table 1

Rectangles image PSNR obtained by different denoising methods

σn Noisy Wavelets BM3D SA LPA LPA LPA

image DCT ICI RICI RICI

fixed variable

5 34.12 49.85 52.87 55.38 47.90 58.21 58.25

10 28.10 43.87 47.29 49.70 42.64 55.48 55.21

15 24.58 40.02 43.61 44.52 39.21 47.44 47.28

20 22.08 37.14 41.08 40.94 36.59 41.32 41.30

25 20.14 34.62 38.97 38.39 34.40 35.35 35.48

30 18.56 32.27 37.43 36.38 32.52 29.79 29.50

50 14.12 26.71 29.95 30.24 27.06 20.67 20.62

75 10.60 22.70 27.07 26.06 23.19 14.63 14.56

100 8.10 20.82 24.60 23.37 20.64 11.32 11.32

Table 2

Stains image PSNR obtained by different denoising methods

σn Noisy Wavelets BM3D SA LPA LPA LPA

image DCT ICI RICI RICI

fixed variable

5 34.12 47.02 47.27 57.05 46.53 65.35 66.11

10 28.10 40.23 40.87 49.41 43.05 58.90 59.09

15 24.58 35.11 36.87 41.95 40.12 46.35 46.07

20 22.08 31.89 34.07 37.36 37.17 39.47 39.30

25 20.14 29.81 32.00 34.71 34.74 33.74 33.56

30 18.56 27.80 30.60 32.83 32.65 28.95 28.84

50 14.12 23.57 24.21 27.61 27.17 19.56 19.59

75 10.60 20.90 22.39 24.51 23.23 13.90 13.92

100 8.10 19.26 21.14 22.47 20.88 11.16 11.19

6. Conclusions

In this paper we have proposed a new algorithm for image denoising which is based on
the LPA-RICI method. It uses the LPA-based filters and the RICI rule for their support se-
lection. This three-stage algorithm is based on separable row-wise and column-wise pixel
processing (meaning that denoising was done independently by rows and by columns),
resulting in the final image whose significant features are well preserved, and with the
noise being well suppressed not only in the homogeneous regions but in the areas around
the edges as well.

Due to its separable nature, the first and the second stage of the algorithm are per-
formed simultaneously, hence making it computationally more efficient, the efficiency
being even further improved by having all image rows and columns denoised simultane-
ously.
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The obtained results are compared with the current state-of-the-art methods for re-
moving additive white Gaussian noise from images. It was shown that the proposed
method outperforms other considered image denoising methods for small to medium
noise levels and for images that are piecewise constant along their rows and columns.
For other types of images and larger σn values two-dimensional anisotropic LPA-RICI
method would have to be considered, which is the topic of our ongoing research.
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Separabilus skaitmenini ↪u vaizd ↪u triukšmo mažinimas gr ↪istas
pasikliautin ↪u interval ↪u santykine sankirtos taisykle

Jonatan LERGA, Victor SUCIC, Miroslav VRANKIĆ

Šiame straipsnyje autoriai pristato nauj ↪a metod ↪a skaitmeninio vaizdo triukšmams šalinti. Meto-
das apjungia lokali ↪a polinomin ↪e aproksimacij ↪a (LPA) ir pasikliautin ↪u interval ↪u santykin ↪e sankir-
tos (RICI) taisykl ↪e. Siūlomas algoritmas šalina triukšm ↪a atskirai skaitmeninio vaizdo eilutėse ir
stulpeliuose bei vėliau apjungia apdorojimo rezultatus ↪i nauj ↪a skaitmenin↪i vaizd ↪a. Šiame straip-
snyje pristatomo metodo rezultatas, signalo atsako ↪i triukšm ↪a (PSNR) prasme, yra labai panašus

↪i neseniai mokslinėje spaudoje paskelbt ↪u algoritm ↪u rezultatus ir juos lenkia, kada triukšmo išsi-
barstymas yra mažas ar vidutinis vaizdo vietose kuriose tašk ↪u intensyvumas kinta labai nežymiai.


