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Abstract. The paper presents a novel method for improving the estimates of closely-spaced fre-
quencies of a short length signal in additive Gaussian noise based on the Burg algorithm with
extrapolation. The proposed method is implemented in two consecutive steps. In the first step, the
Burg algorithm is used to estimate the parameters of the predictive filter, while in the second step
the extrapolation technique of the signal is used to improve the frequency estimates. The experi-
mental results demonstrate that the frequency estimates of the short length signal, using the Burg
algorithm with extrapolation, are more accurate than the frequency estimates using the Burg algo-
rithm without extrapolation.
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1. Introduction

The autoregressive (AR) spectral analysis has become popular in many applications ar-
eas where harmonic components have to be detected and analyzed, e.g., radar (Haykin,
1979), geophysics (Yuou et al., 1996), economics (Box and Jenkins, 1970), and signal
processing (Waele and Broersen, 2000). In most problems of practical application, the
covariance sequence of a signal is not known a priori, and thus the criterion, used to
generate autoregressive model parameters for spectral estimation either directly from the
given signal samples, or through estimates of the covariance sequence, determines the
quality of the spectrum (Helme and Nikias, 1985). Linear prediction is useful in many
signal processing applications, including spectral estimation (Lee, 1989), system iden-
tification (Marple, 1982), time series extrapolation (Kay, 1983), and speech recognition
(Lipeika, 2010). Linear prediction estimates the current data sample as a linear combi-
nation of the past or future data samples. The optimal prediction coefficients are deter-
mined by minimizing the mean-square error. Since only the past or future data samples
are used to estimate the current data sample value, that is called a one-sided linear pre-
diction.

A better estimate of the present data sample would be expected, if we pre-
dict the present data sample based on both the past and future data samples simul-
taneously. The two-sided linear prediction (Hsue and Yagle, 1995) has been used
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in various signal processing applications, including spectral estimation (Lee, 1989),
speech coding (David and Ramamurthi, 1991), linear phase filter design (Farden and
Scharf, 1974), time series interpolation (Kay, 1983), and system identification (Marple,
1982).

A comparison of various estimators of AR parameters has showed that the Burg algo-
rithm (Burg, 1967; Kay and Marple, 1981) is the preferred estimator for AR parameters
(Broersen, 1997). The techniques choose the best set of AR parameters directly from the
given signal samples by minimizing the sum of the average energies of the forward and
backward linear prediction errors subject to the constraint that the optimum set of param-
eters satisfies the Levinson recursion. The Burg algorithm provides an increased spectral
resolution over the conventional methods and the Yule–Walker technique based on biased
autocorrelation estimates. The Yule–Walker algorithm can be severely biased. The least
squares estimator and the forward-backward least-squares estimator have a greater vari-
ance than the Burg algorithm. In addition, they may yield unstable models (Helme and
Nikias, 1985).

An important problem in several signal processing applications is the estimation of
the frequencies and powers of sinusoids observed in additive noise. Many high resolution
methods have been proposed, including the total least squares based autoregressive (AR)
modeling (Swami and Mendel, 1991), the ESPRIT and its various variants (Roy and
Kailath, 1989; Swindlehurst et al., 1992).

The resolution for the AR spectrum has not been well defined because of its nonlin-
ear dependence on signal power and model order. Since the denominator of AR spec-
trum is a polynomial of degree p with real coefficients, a maximum of p/2 independent
poles or real frequency components could be resolved. The frequency separation neces-
sary to resolve two neighboring components depends on the signal-to-noise ratio (SNR)
as well as on the model order, and it is sensitive to the accuracy of the autocorrelation
estimates.

It is well known that the spectral width of a peak decreases and therefore the resolu-
tion increases with an increasing signal power and model order. However, an excessive
model order may lead to line splitting or spurious spectral peaks (Quirk and Liu, 1983).
One of the most attractive features of the AR spectrum estimation algorithms, which em-
ploy data samples directly, bypassing covariance estimates, is their ability to estimate the
frequencies of closely-spaced spectral peaks. Therefore, it is very interesting to investi-
gate the ability to estimate the frequencies of a short length process consisting of two or
more sinusoids in additive Gaussian white noise.

The aim of this paper is to present a new approach to improve the frequency estimates
of the short length signals in Gaussian additive noise, using the Burg algorithm and the
extrapolation technique. The organization of the paper is as follows. Section 2 provides
a description of the Burg algorithm. The power spectrum and frequency estimation tech-
nique are presented in Section 3. Section 4 is the core part of this paper. Finally, the paper
discusses the experimental results and gives conclusions.
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2. The Burg Algorithm

Suppose that we are given a signal x(n), n = 1, 2, . . . , N , and let us consider the forward
and backward linear prediction (LP) estimates of order m = 1, 2, . . . , p

x̂(n) = −
m∑

k=1

αm(k)x(n − k), (1.1)

x̂(n − m) = −
m∑

k=1

βm(k)x(n + k − m), (1.2)

where αm(k) and βm(k) are the forward and backward prediction coefficients respec-
tively, xt(n) = [x(n), x(n − 1), . . . , x(n − m)].

The Burg method is based on the concept of forward and backward finite impulse
response (FIR) filters of the signal x(n)

fm(n) = x(n) − x̂(n) =
m∑

k=0

αm(k)x(n − k), (2.1)

bm(n) = x(n − m) − x̂(n − m) =
m∑

k=0

βm(k)x(n + k − m), (2.2)

where fm(n) and bm(n) are the forward and backward prediction errors (residuals).
Note that αm(0) = βm(0) = 1 by definition.
The forward filter output fm(n) and the backward filter output bm(n) depend on the

column (m + 1)-dimensional vector x(n). In practice, we must choose m < N .
We assume that x(n) is only available over the interval 1 � n � N , so that FIR

outputs can only be formed over the interval m + 1 � n � N . The method combines
filtering of the signal x(n) in the forward and backward directions through the FIR filter
is presented in one variance expression. It is shown that the forward and backward LP
parameters for a stationary random process are complex conjugates, so the output bm(n)
of the backward FIR filter may be expressed as (Proakis and Manolakis, 1996)

bm(n) =
m∑

k=0

α∗
m(k)x(n + k − m), (3)

where the sign “*” means complex conjugate.
The coefficients in the backward FIR filter are the complex conjugates of the coeffi-

cients for the forward FIR filter, but they occur in the reverse order.
The FIR prediction error filter can be implemented through the lattice filter. The lattice

filter is described by the set of order-recursive equations

fm(n) = fm−1(n) + Kmbm−1(n − 1),

bm(n) = Kmfm−1(n) + bm−1(n − 1), m = 1, 2, . . . , p, (4)
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where Km are the reflection coefficients of the mth recursion step.
The initial values for the residuals are f0(n) = b0(n) = x(n). An essential character-

istic of the Burg algorithm is that the number of residuals decreases with each recursion
step. The Burg algorithm calculates the reflection coefficients Km so that they minimize
the sum of the forward and backward residual errors. This implies an assumption that the
same autoregressive (AR) model can predict the signal forward and backward.

The criterion Em to be minimized with respect to Km is the sum of squares of the
forward and backward residuals in the mth recursion step

Em =
N∑

n=p+1

{[
fm(n)

]2 +
[
bm(n)

]2}
, m = 1, 2, . . . , p. (5)

Minimization of Em with respect to the reflection coefficients Km yields

∂Em

∂Km
= 2

N∑

n=p+1

{[
fm−1(n) + Kmbm−1(n − 1)

]
bm−1(n − 1)

+
[
Kmfm−1(n) + bm−1(n − 1)

]
fm−1(n)

}
= 0, (6)

from which the reflection coefficients follow

Km =
−2

∑N
n=p+1 fm−1(n)bm−1(n − 1)

∑N
n=p+1{[fm−1(n)]2 + [bm−1(n)]2}

. (7)

The FIR filter coefficients αm(k) can be obtained from the reflection coefficients Km via
the Levinson–Durbin algorithm

αm(0) = 1,

αm(m) = Km, m = 1, 2, . . . , p,

αm(k) = αm−1(k) + Kmαm−1(m − k), k = 1, 2, . . . , m − 1.

(8)

At the end of the recursions, αp(k) gives the prediction error filter estimated coefficients
α̂(k). The absolute value of Km is always smaller than unity. Therefore, the stability of
the estimated AR model is guaranteed. The Burg method not only minimizes the com-
bined global error, but also it gives better estimates and a lower error, since it uses more
data. The Burg method results in a high frequency resolution and is computationally effi-
cient.

3. Estimation of the Power Density Spectrum

The algorithm computes the AR coefficients by (8). The frequency can be extracted from
the autoregressive parameters α̂(k). The signal is modeled as the output of the AR process
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with a zero mean white noise input w(n). From the estimates of AR parameters, we form
the power density spectrum estimate. The power density spectrum estimate of the signal
x(n) is given by Proakis and Manolakis (1996)

P̂ (f) =
1
fs

1
∣∣1 +

∑p
k=1 α̂(k)e−2πjkf/fs

∣∣2 , (9)

where f is the frequency, and fs is the sampling frequency.
Frequencies can be found by estimating the peaks of the power density spec-

trum P̂ (f). If there are several spectral peaks in the power density spectrum function,
a threshold must be set, and the peaks below this threshold belong to the noise. An-
other method to estimate the frequency is to form the estimation error filter polynomial
zp + α̂(1)zp−1 + · · · + α̂(p), and to calculate the roots zi. The frequency estimates are
the angles of the roots

f̂i =
fs

2π
angle

(
zi

)
. (10)

If the signal is real, then the roots are complex conjugate. In that case, the roots in the
upper or lower half of a complex plane are selected.

4. The Proposed Method

In the proposed method, the given signal x(Nb + 1), . . . , x(N), is forward extrapolated
to get the next sample xf (N +1), using the Burg algorithm for signal model coefficients.
The coefficients, which were calculated by the Burg method, are updated each time to
find the next samples xf (N +1), . . . , xf (N +Nf ), and all the previous samples are used
to find the new AR coefficients. We repeated the extrapolation until we have got xf (N +
Nf ). Similarly, we also backward extrapolated the given signal x(Nb + 1), . . . , x(N), to
find the sample xb(Nb). This step was also repeated until we have got the sample xb(1).
The extrapolated samples xf (N +1), . . . , xf (N +Nf ) and xb(1), . . . , xb(Nb) are added
to the given signal x(Nb + 1), . . . , x(N) and the power density spectrum is calculated
from the signal

xe(n) =
{
xb(1), . . . , xb(Nb), x(Nb + 1), . . . , x(N),

xf (N + 1), . . . , xf (N + Nf )
}
,

where xe(n), n = 1, 2, . . . , Nb + N + Nf is the sequence of the signal after two-sided
extrapolation; Nb is the number of backward extrapolated samples; Nf is the number of
forward extrapolated samples.

We tried three different cases to find the power density spectrum. First, the extrap-
olated signals xe(n) are averaged in the time domain, and the power density spectrum
is calculated. Second, the coefficients of the predictive filters are averaged and then the
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power density spectrum is calculated from the averaged coefficients. Third, the power
density spectrums of extrapolated signals are averaged and the final power density spec-
trum is obtained.

We estimated the mean frequency error (MFE) as follows:

MFE =
1
M

M∑

i=1

∣∣fi − f̂i

∣∣, (11)

where M is the number of frequencies, fi are true frequency values, and f̂i are estimates
of the true frequency values. The normalized power density spectrum (NPDS) estimate
in dB is calculated according to the expression:

NPDS = 10 log
P̂ (f)

P̂max(f)
. (12)

5. Simulation Results

In this section, we examine the performance of the proposed method and compare the re-
sults with that of the Burg algorithm. To investigate the abilities of the proposed method,
we generated a signal from the signal generator comprised of two (M = 2), three
(M = 3) or four (M = 4) sinusoids embedded in the noise

x(n) = s(n) + w(n) =
M∑

i=1

cos(2πfin) + w(n), (13)

for n = 1, . . . , N ; fi are frequencies, and w(n) is a zero-mean white Gaussian noise
with the unit variance σ2

w = 1. To get the desired Signal-to-Noise Ratio (SNR) from the
signal generator, the output signal is defined by

x(n) = s(n) + kw(n), (14)

in which the coefficient k is computed such that

SNR = 10 log
Ps

k2Pw
, (15)

where Ps = 1
N

∑N
n=1 s2(n), Pw = 1

N

∑N
n=1 w2(n), and N is the length of the s(n) and

w(n).
From (15) we obtain that for desired SNR, the coefficient k is calculated as follows

k =
√

Ps√
Pw

10− SNR
20 . (16)
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Fig. 1. The normalized power density spectrum versus the normalized frequency. SNR = 15 dB,
N = 30, Nf = Nb = 15, p = 16; f1 = 0.3, f2 = 0.32. B is the Burg algorithm; BE is the Burg
algorithm with extrapolation. MFE1 = 0.0043 ± 0.0006, MFE2 = 0.0015 ± 0.0005. Monte Carlo runs are
200. The coefficients of the predictive filters are averaged (Case 2).

We have used L = 200 Monte Carlo simulations in the case of additive noise. The
same signals were used to demonstrate the superiority of the proposed method as com-
pared with the Burg algorithm. In Figs. 1–4, we show examples of the averaged normal-
ized power density spectrums versus the normalized frequency: the plots B are the spec-
trums obtained by the Burg algorithm, and the plots BE are the spectrums obtained by the
proposed method; MFE1 is the normalized mean frequency error of the Burg algorithm,
and MFE2 is the normalized mean frequency error of the proposed method. In Figs. 1–2,
we show a signal comprised of two sinusoids with frequencies f1 = 0.3 and f2 = 0.32
embedded in a noise. In Fig. 3, we show a signal comprised of three sinusoids with fre-
quencies f1 = 0.2, f2 = 0.24, and f3 = 0.28 embedded in a noise. In Fig. 4, we show
a signal comprised of four sinusoids with frequencies f1 = 0.2, f2 = 0.23, f3 = 0.26,
and f4 = 0.29 embedded in a noise.

We analyze a signal comprised of two sinusoids with frequencies f1 = 0.3 and
f2 = 0.32 embedded in a noise. Table 1 illustrates the normalized frequency er-
ror estimates averaged by L = 200 experiments and their confidence intervals
Δ = ±tα/2;L−1

σ̂√
L

, in which σ̂ is the estimate of the standard deviation and α is the
significance level. The value tα/2;L−1 is the point of Student’s distribution with L − 1
degrees of freedom which cuts the α/2 part of the distribution. In case α = 0.05 and
L = 200, we find from Student’s distribution table that t0.025;199 = 1.9720.

In the column “Case 1” of Table 1, the signal x(n), n = 1, 2, . . . , N (rows B) and
the extrapolated signal xe(n), n = 1, 2, . . . , Nb + N + Nf (rows BE) are averaged
in the time domain for L = 200 experiments, and then the power density spectrums
are calculated using (9). Then, from (10), we calculate the frequency estimates f̂1 and f̂2,
and from (11), we obtain the mean frequency error estimates. In the column “Case 2”, the
coefficients of the predictive filters of the Burg algorithm (rows B) and the coefficients
of the Burg algorithm with extrapolation (rows BE) are averaged and then the power
density spectrums are calculated. In the column “Case 3”, the power density spectrums
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Fig. 2. The normalized power density spectrum versus the normalized frequency. SNR = 15 dB,
N = 20, Nf = Nb = 10, p = 12; f1 = 0.3, f2 = 0.32. B is the Burg algorithm; BE is the Burg
algorithm with extrapolation. MFE1 = 0.0081 ± 0.00019, MFE2 = 0.0037 ± 0.00021. Monte Carlo runs are
200. The coefficients of the predictive filters are averaged (Case 2).

Fig. 3. Normalized power density spectrum versus normalized frequency. SNR = 15 dB, N = 30,
Nf = Nb = 10, p = 12, f1 = 0.2, f2 = 0.24, f3 = 0.28. B – Burg algorithm;
BE – Burg algorithm with extrapolation. MFE1 = 0.0054 ± 0.00036, MFE2 = 0.00318 ± 0.00032.
Monte Carlo runs are 200. The coefficients of the predictive filters are averaged (Case 2).

of the signals x(n) are averaged (rows B) and the power density spectrums of the signals
xe(n) are averaged (rows BE), and then the power density spectrums are calculated.

Analysis of the results presented in Table 1 shows that the frequency estimates ob-
tained by the proposed method (BE) are more accurate as compared with the Burg algo-
rithm (B) in cases where SNR changes from −5 to 50 dB, signal length N changes from
15 to 40 points, and the predictive filter order p changes from 10 to 20.

The performance of the considered methods has been compared by varying the num-
ber of available data from N = 20 to N = 60. For each value of N , a Monte Carlo
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Fig. 4. The normalized power density spectrum versus the normalized frequency. SNR = 30 dB,
N = 30, Nf = Nb = 10, p = 14, f1 = 0.2, f2 = 0.23, f3 = 0.26, f4 = 0.29. B is the Burg algorithm;
BE is the Burg algorithm with extrapolation. MFE1 = 0.00745 ± 0.00025, MFE2 = 0.00566 ± 0.00053.
Monte Carlo runs are 200. The coefficients of the predictive filters are averaged (Case 2).

Table 1

The normalized mean frequency error (MFE) estimates and their confidence intervals Δ

Case 1 Case 2 Case 3

SNR = 50, N = 15, p = 10, B - - - - 0.0079 ± 0.00011 0.0085 ± 0.00011 0.0083 ± 0.00015

Nf = Nb = 10 BE - - - - 0.0072 ± 0.00009 0.0072 ± 0.00006 0.0073 ± 0.00008

SNR = 20, N = 30, p = 20, B - - - - 0.0059 ± 0.00014 0.0064 ± 0.00017 0.0062 ± 0.00017

Nf = Nb = 15 BE - - - - 0.0027 ± 0.00012 0.0029 ± 0.00017 0.0029 ± 0.00017

SNR = 20, N = 20, p = 15, B - - - - 0.0076 ± 0.00033 0.0067 ± 0.00053 0.0072 ± 0.00042

Nf = Nb = 10 BE - - - - 0.0051 ± 0.00045 0.0042 ± 0.00046 0.0045 ± 0.00035

SNR = 15, N = 30, p = 20, B - - - - 0.0061 ± 0.00015 0.0075 ± 0.00026 0.0062 ± 0.00015

Nf = Nb = 15 BE - - - - 0.0030 ± 0.00099 0.0038 ± 0.00019 0.0033 ± 0.00019

SNR = 15, N = 20, p = 12, B - - - - 0.0089 ± 0.00027 0.0108 ± 0.00019 0.0098 ± 0.00050

Nf = Nb = 10 BE - - - - 0.0045 ± 0.00075 0.0069 ± 0.00021 0.0062 ± 0.00055

SNR = 10, N = 40, p = 20, B - - - - 0.0079 ± 0.00033 0.0074 ± 0.00013 0.0077 ± 0.00021

Nf = Nb = 15 BE - - - - 0.0037 ± 0.00014 0.0036 ± 0.00011 0.0042 ± 0.00015

SNR = 10, N = 30, p = 20, B - - - - 0.0067 ± 0.00024 0.0081 ± 0.00028 0.0071 ± 0.00014

Nf = Nb = 15 BE - - - - 0.0045 ± 0.00017 0.0050 ± 0.00026 0.0045 ± 0.00018

SNR = 5, N = 30, p = 20, B - - - - 0.0071 ± 0.00033 0.0086 ± 0.00046 0.0080 ± 0.00033

Nf = Nb = 15 BE - - - - 0.0063 ± 0.00031 0.0069 ± 0.00038 0.0062 ± 0.00021

SNR is the signal-to-noise ratio; N is the signal length; p is the order of the predictive filter; Nf , Nb are numbers
of forward and backward extrapolation points. B is the Burg algorithm; f1 = 0.3 and f2 = 0.32. BE is the Burg
algorithm with extrapolation. Monte Carlo runs are equal to 200.
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Fig. 5. The normalized MFE versus N : B is the Burg algorithm, BE is the Burg algorithm with extrapolation.
SNR = 15, Nf = Nb = 15, p = 15.

Fig. 6. The normalized MFE versus SNR: B is the Burg algorithm, BE is the Burg algorithm with extrapolation.
N = 30, Nf = Nb = 15, p = 15.

simulation of 200 independent runs has been carried out. The mean frequency error (11)
has been used as the performance index. The results are reported in Fig. 5. Finally, a set of
Monte Carlo simulations with an SNR ranging from −10 to 40 dB has been performed,
using N = 30 and MFE as the performance index. The results are shown in Fig. 6. It can
be observed that the proposed algorithm outperforms the Burg algorithm and allows us to
obtain a better frequency estimation accuracy. Other Monte Carlo simulations, performed
by using different lengths of signals and SNRs, have led to the same conclusion.

6. Conclusion

The limitations of the Burg algorithm for the AR power spectrum estimation are the
frequency bias and line-splitting in processing the sinusoidal signals in noise. On the
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other hand, its attractive features are high-resolution spectral estimates with short signal
records, an efficient recursive implementation, and guaranteed stable models. In this pa-
per, a new method, based on the Burg algorithm and extrapolation technique, has been
proposed for estimating closely-spaced frequencies of the short length signals in the noisy
environment. The simulation results have shown that in many cases the proposed method
considerably reduces the frequency bias and the confidence intervals of frequency esti-
mates as compared with the Burg algorithm.
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Dažni ↪u ↪iverči ↪u pagerinimas naudojant Burgo algoritm ↪a
ir ekstrapoliacij ↪a

Kazys KAZLAUSKAS

Straipsnyje pasiūlytas naujas metodas, pagr↪istas Burgo algoritmu ir signalo reikšmi ↪u ekstrapo-
liacija, skirtas trump ↪u signal ↪u stebim ↪u Gauso triukšmuose dažni ↪u skiriamosios gebos pagerini-
mui. Metod ↪a sudaro dvi dalys: pirma, naudodami Burgo algoritm ↪a, ↪ivertiname prognozės filtro
parametrus, ir antra, ekstrapoliuojame signalo reikšmes pirmyn ir atgal bei apskaičiuojame taip
“pailginto“ signalo spektr ↪a. Eksperimento rezultatai parodė, kad trump ↪u signal ↪u stebim ↪u triukš-
muose dažni ↪u skiriamoji geba yra didesnė, kai naudojamas Burgo algoritmas bei signalo reikšmi ↪u
ekstrapoliavimas pirmyn ir atgal.


