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Abstract. Batch cryptography has been developed into two main branches – batch verification
and batch identification. Batch verification is a method to determine whether a set of signatures
contains invalid signatures, and batch identification is a method to find bad signatures if a set of
signatures contains invalid signatures. Recently, some significant developments appeared in such
field, especially by Lee et al., Ferrara et al. and Law et al., respectively. In this paper, we address
some weakness of Lee et al.’s earlier work, and propose an identification method in an RSA-type
signature. Our method is more efficient than the well known divide and conquer method for the
signature scheme. We conclude this paper by providing a method to choose optimal divide and
conquer verifiers.
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1. Introduction

Currently, digital signatures have been adapted in many industrial applications such as
electronic payment system, electronic voting system, etc. Some of the applications re-
quire multiple signatures to be verified faster than individual verification of the sig-
natures. For instance, in electronic payment system, typically customers interact with
a banking server, and then the banking server must verify a large number of signatures.
Concerning verification of multiple signatures there are mainly two questions: given sig-
nature/message pairs, without checking the validity of individual signatures, (i) determine
efficiently whether an instance contains invalid signatures; (ii) identify efficiently invalid
signatures, if any, in an instance.

A batch verification of a signature scheme provides a solution of the first question.
A batch verification algorithm (or a batch verifier) of signatures is defined as follows.
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A batch verifier of signatures is a probabilistic algorithm that takes as input a security
parameter � and a batch instance (signature/message pairs), satisfying (i) if all the mem-
bers of an instance are valid then it returns true, (ii) if there are invalid signatures then the
probability that it returns true is at most 2−�. A batch verification method verifies multiple
signatures altogether at once and reduces verification time compared with individual ver-
ification. The concept of batch cryptography was introduced by Fiat in 1984 for an RSA-
type signature (Fiat, 1989), and the first efficient batch verifier was proposed by Naccache
et al. (1994) for DSA-type signatures. Since then several batch verification methods have
been proposed for DSA-type, RSA-type, and pairing based systems. In particular, Ferrara
et al. (2009) proposed a first batch verifier for a short group signature scheme.

To the second question, a few methods have been proposed to identify bad signatures
efficiently. Pastuszak et al. (2004) proposed a divide and conquer verifier, which splits
an instance into sub-instances and applies the generic test to each sub-instance recur-
sively until all bad signatures are identified. Later, Lee (2006) proposed new methods
DBI basic and DBI α for identifying bad signatures efficiently in RSA-type batch signa-
tures. DBI basic is aimed to find bad one in case when there is one bad signature in input
instance. Stanek (2008) showed that this method was flawed and proposed an improved
method to repair his attack.

In this paper, we show that a theorem used by Lee et al. is incorrect and Stanek’s im-
provement is also miss-leaded. Indeed, Stanek’s improved method (Lee et al., 2006) does
not identify bad signatures. We give attacks against the batch identification method pro-
posed by Lee et al. and Stanek’s improvement. Furthermore, we propose an identification
method on a modified RSA signature scheme introduced by Gennaro et al. The proposed
identification method is a batch identification for the Boyd et al.’s batch verification.

2. Preliminaries

2.1. Batch Verification and Batch Identification

A batch verification of digital signatures was introduced by Naccache et al. (1994) to
verify multiple signatures in DSA signature scheme. The definition of batch verification
and the weaker notion, say screening, were formalized by Bellare et al. (1998). The fol-
lowing definition is due to Camenisch et al. (2007) in which they extended the definition
of Bellare et al. to deal with multiple signers.

DEFINITION 1 (Batch verification of signatures). Let � be the security parameter. Sup-
pose that (pk1, sk1), . . . , (pkn, skn) are generated independently according to Gen(1�).
Then we call probabilistic Batch a batch verifier (or batch verification) when following
conditions hold:

• If Verify(pkti , mi, σi) = 1 for all i ∈ [1, n], then Batch((pkt1 , m1, σ1), . . . ,
(pktn , mn, σn)) = 1.

• If Verify(pkti , mi, σi) = 0 for any i ∈ [1, n], then Batch((pkt1 , m1, σ1), . . . ,
(pktn , mn, σn)) = 0 except with probability negligible in �, taken over the ran-
domness of Batch.
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DEFINITION 2 (Batch identification). Under the same assumption as in the above defini-
tion, a probabilistic polynomial time algorithm is secure batch identifier (or batch identi-
fication) relative to a batch verifier if it satisfies the followings: for any input instance x,

• if x has no invalid signature then it outputs “true”, meaning every signature in x is
valid.

• if x contains invalid signatures, then it outputs the invalid ones contained in the
instance except with probability negligible in �.

2.2. Divide and Conquer Approach

The most popular batch identification method is so-called the divide and conquer verifier
(DCV) suggested by Pastuszak et al. (2000), which splits an instance into sub-instances
and applies the generic test (GT) to each sub-instance recursively until all bad signatures
are identified. In more details, DCV α is defined as follows:

Algorithm DCV α(x, t)

Given a batch instance x = ((s1, m1), . . . , (st, mt)),
1. If t = 1 then

(a) If GT(x, 1) is “true” then return “true” and exit.
(b) If GT(x, 1) is “false” then return x as a bad signature.

2. If GT(x, t) is “true”, then return “true” and exit.
3. Divide x into α sub-instances (x1, . . . , xα) containing t

α signatures each.
4. Run DCV α(x1,

t
α ), . . . ,DCV α(xα, t

α ).

3. Lee et al.’s Batch Identification and Stanek’s Improvement

Lee et al. (2006) proposed two efficient methods DBI basic and DBI α of identifying bad
signatures in the batch verifier of the RSA signature scheme. Later, Stanek (2006) showed
that their methods were flawed and suggested a possible improvement without giving
its analysis. In this section, we briefly overview Lee et al.’s method and the Stanek’s
improved version.

The methods DBI basic and DBI α assume a generic test (GT; Bellare, 1998) to check
validity of a batch instance (s1, m1), . . . , (st, mt). The authors claimed that their method
could not only detect the existence of bad signatures but also identify the positions of bad
signatures in a batch instance. The algorithms are described as follows:

Algorithm DBI basic(x, t)

Given a batch instance x = ((s1, m1), . . . , (st, mt)),
1. If GT(x, t) is “true” then return “true”.
2. M ←

∏t
i=1 mi; M ∗ ←

∏t
i=1 mi

i.
3. S ←

∏t
i=1 si; S∗ ←

∏t
i=1 si

i.

4. Find k ∈ {1, . . . , t} such that (Se

M )k = (S∗)e

M ∗ .
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5. If k does not exist then return “false”.
6. If GT(x\(sk, mk), t − 1) is “true” then return k.
7. Return “false”.

In Lee et al. (2006), it was claimed that DBI basic returns “true” when all signatures are
valid, the position of bad signature when there is only one bad signature, and “false”,
when there are two or more bad signatures, respectively.

Algorithm DBI α(x, t)

Given a batch instance x = ((s1, m1), . . . , (st, mt)),
1. If t = 1 then

(i) If GT(x, t) is “true” then return “true”.
(ii) Else return 1.

2. If t = 2 then

(i) If GT(x, t) is “true” then return “true”.
(ii) Else find k ∈ {1, 2} such that

(
(s1s2)e

m1m2

)k

=
(s1s

2
2)

e

m1m2
2

.

– If k = 1 return 1.
– If k = 2 return 2.
– Else return 1,2.

3. If GT(x, t) is “true” then return “true”.
4. M ←

∏t
i=1 mi; M ∗ ←

∏t
i=1 mi

i.
5. S ←

∏t
i=1 si; S∗ ←

∏t
i=1 si

i.

6. Find k ∈ {1, . . . , t} such that (Se

M )k = (S∗)e

M ∗ .
7. If k exists then

– If GT(x\(sk, mk), t − 1) is “true” then return k.
8. Divide x into α batch instances (x1, . . . , xα) containing (approximately) t

α signa-
tures each.

9. Return DBI α(x1,
t
α ) ∪ · · · ∪ DBI α(xα, t

α ).
The algorithm DBI α uses DBI basic as a subroutine and its correctness and complex-

ity.

4. Analysis of Lee et al.’s Scheme and Stanek’s Improvement

As mentioned previously, Lee et al. claimed that their algorithms can detect the existence
of bad signatures and, in addition, identify the the position of the bad signatures in a
batch instance. But, Stanek pointed out a weakness of the methods and suggested an
improvement. In this section, we point out another problem of Lee et al.’s methods, and
then show that Stanek’s improvement also suffers from an attack.
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4.1. On the Usage of Small Exponent Test for GT

It was claimed that GT in the above algorithms could be initiated as small exponent test
or random subset test described in Lee et al. (2006) and that the presented tests were
suggested by Bellare et al. In fact, these are different from the tests of Bellare et al.
(1998) and, in particular, the Lee et al.’s small exponent test is not batch verifier for RSA
signature scheme.

Algorithm (Lee et al.’s small exponent test)
On input (s1, m1), . . . , (st, mt) and a security parameter �,

1. Pick h1, . . . , ht ∈ {0, 1}� at random.
2. Compute m =

∏t
i=1 mhi

i and s =
∏t

i=1 shi
i .

3. If m = se (mod N) then return “true”; else return “false”.

Given a valid batch instance (s1, m1), . . . , (st, mt), we let s̄1 = −s1, s̄i = si

(i = 2, . . . , t). Then (s̄1, m1), . . . , (s̄t, mt) passes their small exponent test with proba-
bility 1/2. That is, the test is not a batch verifier. In addition, DBI α could not return any
bad signature(s) even though there are invalid signatures. Therefore we conclude that GT
must not be initiated as their small exponent test.

4.2. Stanek’s Improvement and an Essential Problem

The algorithm DBI basic and Stanek’s improvement find the bad signature using Theo-
rem 1 in Lee et al. (2006). And the underlying idea of Theorem 1 in Lee et al. (2006) is
the following.

Given an RSA modulus N and g ∈ Z
∗
N , gk = gj (mod N) implies k = j. (†)

Now we shall show that the statement (†) is not true. In practice, the condition gk =
gj (mod N) is equivalent to that the order of g is a divisor of j − k. Especially, when
g = −1, we have gk ≡ gj (mod N) if and only if j and k have the same parity. Therefore,
if we use only odd exponents as Stanek suggested to repair the problem of DBI basic,
Theorem 1 is of no use.

Moreover, if one has a set of pairs of valid signature and message, then it is possible
to generate a set of pairs of signature and message with one bad signature where the
DBI basic and the Stanek’s improvement outputs “false”.

For instance, we consider the Stanek’s improvement. Stanek’s improvement is al-
most the same as the Lee et al.’s method except it uses M ∗ ←

∏t
i=1 m2i−1

i , S∗ ←∏t
i=1 s2i−1

i , and (Se

M )2k−1 ≡ (S∗)e

M ∗ . That is, it uses the following equation

(( ∏t
i=1 si

)e∏t
i=1 mi

)2k−1

=

( ∏t
i=1 s2i−1

i

)e∏t
i=1 m2i−1

i

. (1)

Given a batch instance (s1, m1), . . . , (st, mt) where all signatures are valid, we let
s̄i = si for i = 1, . . . , t − 1 and s̄t = −st. Clearly, the set of pairs (s̄1, m̄1), . . . , (s̄t, m̄t)
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has one bad signature (s̄t, m̄t). But for all k(1 � k � t),

(( ∏t
i=1 s̄i

)e∏t
i=1 mi

)2k−1

=
(

(−st)
e

mt

)2k−1

≡ −1 (mod N),

( ∏t
i=1 s̄2i−1

i

)e∏t
i=1 m2i−1

i

=

(
(−st)2k−1

)e

mt
2k−1

≡ −1 (mod N).

Since (s̄t, m̄t) is invalid, GT(x\(s̄k, m̄k)) outputs “false” for all k (k �= t). If the
first tested value k is less than t then the improved method by Stanek will return “false”
meaning the input instance contains two or more bad signatures. That is, it outputs “false”
even when there is only one bad signature in the instance of t pairs of signature and
message. Hence the output “false” of Stanek’s method as well as DBI basic does not
imply the existence of two or more invalid signatures for the given instance.

Since improved DBI α uses improved DBI basic as subroutine and the subroutine
DBI basic doesn’t correctly identify the bad signature when there is only one bad sig-
nature, the resultant complexity of the improved DBI α is not better than Divide and
Conquer Verifier method (Pastuszak et al., 2000).

Remark 1. In order to correct Theorem 1, one needs a condition for the above statement
(†) ‘g ∈ Z

∗
N , gk = gj implies k = j’ to be true.

5. Finding Invalid Signatures in Boyd et al.’s Batch Verifier

As we have shown, Lee et al.’s method of identifying bad signatures is not correct in their
context. Though, since the underlying idea is useful, we adopt their idea for an efficient
identifying method of bad signatures in a batch verification designed for Gennaro et al.’s
modified RSA signature scheme after correcting the theorem in our case.

5.1. Gennaro et al.’s Signature Scheme and Boyd et al.’s Batch Verifier

Gennaro et al. (1997) introduced a modified RSA signature scheme that defined as fol-
lows:

(i) Assume that we have a hash function h() and an RSA modulus N = pq with safe
primes p and q (that is, p, q, (p − 1)/2, and (q − 1)/2 are odd primes).

(ii) A signature of a message m is σ = αh(m)d (mod N) for some α with ord(α) � 2,
where ord(α) denote the multiplicative order of α modulo N .

(iii) (σ, h(m)) is a valid signature if σe

h(m) is an element in Z∗
N of order � 2, i.e.,

σ2e = h(m)2 (mod N).
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For the notational simplicity, we shall write the input message for the signature as m

instead of h(m).
Boyd and Pavlovski (2000) proposed a batch verifier of Gennaro et al.’s modified

RSA signature scheme. We describe the batch verification proposed by Boyd et al.
Assume p and q are safe primes with p − 1 = 2p′, q − 1 = 2q′ and let N = pq

and e, d be parameters of a signer. Suppose � is the security parameter and assume that
2� < min(p′, q′). For given x of t pairs of signature and message the algorithm of batch
verification is denoted by BP(x, t) or simply BP .

Algorithm BP(x, t)

Given an instance (s1, m1), . . . , (st, mt),

1. Check that gcd(si, N) = 1 for all i = 1, . . . , t.
2. Pick h1, . . . , ht ∈ {0, 1}� at random.
3. Compute s = (

∏t
i=1 shi

i )e (mod N) and m =
∏t

i=1 mhi
i (mod N).

4. If s2 = m2 (mod N) then accept, else reject.

5.2. The Proposed Method DBI bp of Identifying Bad Signature in BP

In this section, we construct an efficient identification method in the modified RSA sig-
nature scheme suggested by Gennaro et al. and, then, show the correctness of our method
by modifying the theorem we have shown in the above section.

We shall describe our proposed batch identification method and call our method as
DBI bp(x, t) or simply DBI bp .

Algorithm DBI bp(x, t)

Given a batch instance x = ((s1, m1), . . . , (st, mt)),
1. If BP(x, t) is “accept” then return “true”.
2. M ←

∏t
i=1 mi; M ∗ ←

∏t
i=1 mi

i.
3. S ←

∏t
i=1 si; S∗ ←

∏t
i=1 si

i.

4. Find k ∈ {1, . . . , t} such that (Se

M )2k = ( (S∗)e

M ∗ )2.
5. If k does not exist then return “false”.
6. If BP(x\(sk, mk), t − 1) is “true” then return k.
7. Return “false”.

DBI bp returns “true” if all signatures are valid, the position of bad signature if there is
only one bad signature, and “false” if there are two or more bad signatures. Note that for
the RSA-type signature scheme, the batch verifier BP can be done only for the signatures
with the same signer. So it is reasonable to assume that the number t of the signatures in
the batch instance is less than p and q.

Before showing the correctness of our method, let us consider the case when a batch
instance (s1, m1), . . . , (st, mt) has exactly one bad signature (sk, mk). In this case, since
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se
j = mj for all j �= k, we obtain the following equation:

(( ∏t
i=1 si

)e∏t
i=1 mi

)2k

=

(( ∏t
i=1 si

i

)e∏t
i=1 mi

i

)2

. (2)

Theorem 1. Suppose that p ≡ 3 (mod 4) and q ≡ 3 (mod 4), for example p and q

are safe primes, t be an integer less than the smallest odd prime factor of φ(N), and
gcd(φ(N), e) = 1. If (s1, m1), . . . , (st, mt) has only one bad signature and if k is a
positive integer satisfying (2) then (sk, mk) is the bad signature.

Proof. Let (sj , mj) be the bad signature and k be the smallest positive integer satisfy-
ing (2). Then s2e

j �= m2
j , and so we have two nonidentity quantities:

(( ∏t
i=1 si

)e∏t
i=1 mi

)2k

=
(

se
j

mj

)2k

,

and

(( ∏t
i=1 si

i

)e∏t
i=1 mi

i

)2

=
(

se
j

mj

)2j

.

By the assumption on k, the two equations are equal. Letting αj = se
j

mj
�= 1, we have

α
2(j−k)
j ≡ 1 (mod N).

Suppose that j−k > 0. Then the order of αj must be a divisor of gcd(φ(N), 2(j−k)).
Note that j − k is less than the smallest odd prime factor of φ(N) and φ(N) = 4a for
some odd number a. So, the order of αj must be 1, 2 or 4. Since p, q ≡ 3 (mod 4), Z

×
N

has no element of order 4 and thus the order of α is 1 or 2. This contradicts to the fact
(sj , mj) is bad signature. Thus we conclude j − k = 0 and j = k. �

In order to identify multiple bad signatures in batch instances, one can generalize the
DBI bp by employing the divide and conquer approach as Lee et al. (2006) did. However,
the straightforward generalization is not as efficient as the Pastuszak et al.’s DCV when an
instance contains multiple bad signatures, because such a generalization deals with entire
signatures without considering efficiency. Hence, instead of using direct generalization,
we use the basic idea of the divide and conquer in a slightly different approach. Note
that in practical situations and literatures, a set of signatures to be batched contains very
small number of invalid signatures. For given an instance, we first randomly shuffle the
signatures, and then splits the instance into several blocks depending on the number of
input signatures before calling batch verifier. That is, we take the size of each block such
that the probability that each block contains two or more bad signatures is negligible
and the efficiency is assured over well known methods assuming each block has at most
one bad signature. To claim this method is sufficiently efficient, it is enough to find the
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suitable size of blocks to run DBI bp in the presence only one bad signature. We will
investigate the efficiency issues in the next section.

We now show the proposed method is a batch identifier for the RSA-type signature
scheme with respect to the batch verifier.

Theorem 2. The proposed method is a secure batch identifier relative to the batch veri-
fier BP . That is, given an instance x, if x contains invalid signatures then DBI bp finds
the invalid ones.

Proof. As we have shown in the above, it is enough to show the method correctly find
the invalid signature in the presence of single one. We assume that an instance x =
((s1, m1), . . . , (st, mt)) contains one bad signature, say (sk, mk). Since BP is a secure
batch verifier (Boyd and Pavlovski, 2000), BP (x) returns “reject” except with negligible
probability. Now, by applying Theorem 1 into Steps 2–4 in DBI bp , we have the invalid
signature (sk, mk). This completes the proof. �

6. Efficiency Analysis

In this section, we estimate the computational cost of DBI bp in terms of the required
number of modular multiplications, and compare DBI bp with Pastuszak et al.’s divide
and conquer verifier method.

6.1. Complexity of DBI bp

In Boyd (2000), it was proved that the cost of the batch verifier BP(x, t) is approximately
�(t + 2) + 3

2 |e| + t − 1 modular multiplications. It was noted that the algorithm is faster

than individual verification when e is large enough and satisfies |e| � 3�(t+2)
2(t−1) + 2

3 . So
BP(x, t) is useful if the exponent e is chosen to be |e| � 2� for reasonable size �, and we
assume so.

DBI bp requires the same number of modular multiplications as in DBI basic. The
difference occurred is from the cost of underlying batch verifier and 2 modular squares
additionally needed in DBI bp . According to Lee (2006), DBI basic takes one modular
exponentiation plus 2t + 3

2

√
t modular multiplications (excluding the cost of the batch

verifier). And thus DBI bp requires to perform BP(x, t), BP(x\(sk, mk)), t − 1), and
2t + 3

2

√
t + 3/2|e| + 2 modular multiplications. We let Vt be the number of modular

multiplications of BP(x, t) and Ft be 2t+ 3
2

√
t+ 3

2 |e|+2. Then Vt = �(t+2)+ 3
2 |e|+t−1

and the computational cost of DBI bp is as follows:

Vt + Ft + Vt−1 = (2� + 4)t +
3
2

√
t +

9
2

|e| + 3� − 1.

6.2. DCV α and Efficient Choices of α in DCV α

Pastuszak et al. proposed a method so called divide and conquer verifier DCV α (or
DCV α(x, t)) to identify bad signatures in a batch instance in Pastuszak et al. (2000).
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The computational cost of DCV α was evaluated in terms of the number of GT call and
estimated for the number of signatures in batch instances. It was also noted that 2 and 4
are optimal α when there is single bad signature. In practice, their choice of α may not be
optimal by considering the computational cost of underlying verifiers. Most known batch
verifiers have linear complexity with respect to the number of signatures (Camenish et al.,
2007; Naccache et al., 1994; Pastuszak et al., 2000) and we assume a batch verifier takes
computational cost Vt = at + b for some constant a, b, where t is the number of input
signatures. When there is one bad signature in a batch instance, DCV α takes the cost:

Vt + αVt/α + · · · + αVt/αδ = (at + b) +
αδ − 1

αδ−1(α − 1)
at + bαδ

≈ (at + b) +
t − 1

t
α (α − 1)

at + bα logα t

= (at + b) + A
α

α − 1
+ B

α

lnα
, (3)

where A = a(t − 1), B = b ln t, and δ = 
logα t�.
Let φt(x) = A x

x−1 + B x
ln x and αt be the ceiling of the value x at which φt(x)

is minimum. Then DCV αt is almost optimal method among the divide and conquer
verifiers DCV α.

For instance, we investigate the optimal choice of α in DCV α and compare our choice
of α with the Pastuszak et al.’s optimal divide and conquer method (α = 2, 4) in the
Boyd et al.’s batch verifier BP(x, t). We assume that the exponent e is large so that
|e| ≈ 2� in our selection of efficient choice of α. Then Vt = (� + 1)t + 5� − 1 and
Ft = 2t+ 3

2

√
t+3�+2. Thus the DBI bp is done in (2�+4)t+ 3

2

√
t+12� − 1 modular

multiplication. And the cost of DCV α can be computed by the above equation (3) with
a = � + 1 and b = 5� − 1. The security parameter � of the batch verifier was set to
60 in Pastuszak et al. (2000), but we choose � to be 30 which is enough for practical
requirement meaning the error probability will be 2−30. All the results are shown in
Tables 1 and 2.

From the results, we can observe that DCV αt shows better performance than DCV 2

and DCV 4 in the case when the underlying batch verifier is BP(x, t). In fact, DCV αt

is more efficient than DCV α for α( �= αt), and the same results can be made for large
number of signatures.

Table 1

Optimal choice of α for each t signatures

t 32 64 128 256 512 1024 2048 4096

αt 6 4 6 7 8 11 13 18

# mult 4086 6525 11,539 20,446 37,701 71,702 138,195 269,593
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Table 2

Number of multiplication for α = 2, 4

t 32 64 128 256 512 1024 2048 4096

α = 2 4553 7827 14,077 26,279 50,385 98,299 19,3829 384,591

α = 4 4231 6525 11,771 21,009 40,143 77,157 151,843 299,961

Table 3

The number of multiplications in DCV αt and DBI ∗
basic

t 64 128 256 512 1024 2048 4096

DCV αt 6525 11,539 20,446 37,701 71,702 138,195 269,593

DBI ∗
basic 4467 8568 16,767 33,161 65,943 131,499 262,599

6.2.1. Comparison of DBI bp with DCV α in the Presence of One Bad Signature
Finally, we compare our method DBI bp with DCV α when an input instance contains
one bad signature out of t signatures and BP is used as underlying batch verifier. DBI bp

requires Vt + Ft + Vt−1 multiplications. On the other hand, DCV α takes Vt + αVt/α +
· · · + αVt/αδ multiplications where δ = 
logα t�.

We estimated the number of multiplications of DBI bp and optimal divide and conquer
verifiers. The results are shown in Table 3. In the table, t is the number of signatures to
be verified, and DCV αt is the optimal choice of α in divide and conquer verifier taken
by the method with the underlying batch verifier BP(x, t) that was computed in the
previous section. The results are evaluated for the number of signatures � 10000. Since
most known RSA-type batch verifiers as well as Pastuszak’s BP are for single signer, it
is reasonable to assume that t is less than or equal to 10 thousands practically.

As we note in Table 3, we can observe that DBI bp reduces the number of modu-
lar multiplications by 2971, 5759, and 6994 compared with the optimal DCV αt when
t = 128, 1024, and 4096, respectively. In fact, DBI bp takes less modular multiplication
than DCV αt for all t � 10000, and so our method DBI bp is reduces the computational
cost compared with the divide and conquer verifier DCV α for any α in the case when
there is one bad signature in the instance. As mentioned previously, by shuffling and
partitioning, we may assume that each partitioned block contains at most one invalid sig-
nature. Therefore, we can conclude that our method is better than the well known divide
and conquer verifier in the Gennaro et al.’s signature scheme.

7. Conclusion

In this paper, we have pointed out a flaw (different from the Stanek’s attack) on the Lee
et al.’s batch identification method and described an attack on the Stanek’s improved
method. From the analysis, their methods could not find out bad signatures even if batch
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instances contain invalid signatures. Furthermore, we have proposed a batch identification
method to identify the bad signatures in Gennaro et al.’s signature scheme. Our method
might be thought of as a modification of Lee et.’s scheme so as to apply Gennaro et al.’s
signature scheme. The proposed method is more efficient than the divide and conquer
verifier for the signature scheme.
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Blog ↪u paraš ↪u suradimo metodas RSA tipo paketinio tikrinimo
sistemoje

Kitae KIM, Ikkwon YIE, Seongan LIM, Haeryong PARK

Paketinė kriptografija skirstoma ↪i paketin ↪e identifikacij ↪a ir paketin ↪e verifikacij ↪a. Paketinė veri-
fikacija nustato ar paraš ↪u aibėje yra negaliojanči ↪u paraš ↪u, o paketinė identifikacija suranda blogus
parašus, jei paraš ↪u aibėje yra negaliojanči ↪u paraš ↪u. Neseniai š↪i uždavin↪i sprendė Lee et al., Fer-
rara et al. ir Law et al. Šiame straipsnyje parodyti tam tikri Lee et al. darbo trūkumai ir pasiūlytas
RSA tipo parašo identifikavimo metodas. Pasiūlytasis metodas yra efektyvesnis negu gerai žino-
mas parašo schemos išskaidymo metodas. Pasiūlytas optimali ↪u išskaidymo verifikatori ↪u parinkimo
algoritmas.




