INFORMATICA, 2011, Vol. 22, No. 2, 189-201 189
© 2011 Vilnius University

A Method of Finding Bad Signatures
in an RSA-Type Batch Verification

Kitae KIM!, Ikkwon YIE!, Seongan LIM?*, Haeryong PARK?

! Department of Mathematics, Inha University
Yonghyun-dong 253, Nam-gu, Incheon, 402-751, Korea
2Department of Mathematics, Ewha Womans University
Daehyun-dong 11-1, Seodaemun-gu, Seoul, 120-750, Korea
3KISA, IT Venture Tower
Garak-dong 78, Songpa-gu, Seoul, 138-950, Korea
e-mail: ktkim@inha.ac.kr, ikyie@inha.ac.kr, seongannym@yahoo.co.kr, snupark@kisa.or.kr

Received: July 2009; accepted: January 2011

Abstract. Batch cryptography has been developed into two main branches — batch verification
and batch identification. Batch verification is a method to determine whether a set of signatures
contains invalid signatures, and batch identification is a method to find bad signatures if a set of
signatures contains invalid signatures. Recently, some significant developments appeared in such
field, especially by Lee et al., Ferrara et al. and Law et al., respectively. In this paper, we address
some weakness of Lee et al.’s earlier work, and propose an identification method in an RSA-type
signature. Our method is more efficient than the well known divide and conquer method for the
signature scheme. We conclude this paper by providing a method to choose optimal divide and
conquer verifiers.

Keywords: batch verification, batch identification, RSA-type signature.

1. Introduction

Currently, digital signatures have been adapted in many industrial applications such as
electronic payment system, electronic voting system, etc. Some of the applications re-
quire multiple signatures to be verified faster than individual verification of the sig-
natures. For instance, in electronic payment system, typically customers interact with
a banking server, and then the banking server must verify a large number of signatures.
Concerning verification of multiple signatures there are mainly two questions: given sig-
nature/message pairs, without checking the validity of individual signatures, (i) determine
efficiently whether an instance contains invalid signatures; (ii) identify efficiently invalid
signatures, if any, in an instance.

A batch verification of a signature scheme provides a solution of the first question.
A batch verification algorithm (or a batch verifier) of signatures is defined as follows.

“This work was supported by Priority Research Centers Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093827).

190 K. Kim et al.

A batch verifier of signatures is a probabilistic algorithm that takes as input a security
parameter ¢ and a batch instance (signature/message pairs), satisfying (i) if all the mem-
bers of an instance are valid then it returns true, (ii) if there are invalid signatures then the
probability that it returns true is at most 2. A batch verification method verifies multiple
signatures altogether at once and reduces verification time compared with individual ver-
ification. The concept of batch cryptography was introduced by Fiat in 1984 for an RSA-
type signature (Fiat, 1989), and the first efficient batch verifier was proposed by Naccache
et al. (1994) for DSA-type signatures. Since then several batch verification methods have
been proposed for DSA-type, RSA-type, and pairing based systems. In particular, Ferrara
et al. (2009) proposed a first batch verifier for a short group signature scheme.

To the second question, a few methods have been proposed to identify bad signatures
efficiently. Pastuszak et al. (2004) proposed a divide and conquer verifier, which splits
an instance into sub-instances and applies the generic test to each sub-instance recur-
sively until all bad signatures are identified. Later, Lee (2006) proposed new methods
DBlyasic and DBI, for identifying bad signatures efficiently in RSA-type batch signa-
tures. DBy ,sic 1s aimed to find bad one in case when there is one bad signature in input
instance. Stanek (2008) showed that this method was flawed and proposed an improved
method to repair his attack.

In this paper, we show that a theorem used by Lee et al. is incorrect and Stanek’s im-
provement is also miss-leaded. Indeed, Stanek’s improved method (Lee et al., 2006) does
not identify bad signatures. We give attacks against the batch identification method pro-
posed by Lee et al. and Stanek’s improvement. Furthermore, we propose an identification
method on a modified RSA signature scheme introduced by Gennaro et al. The proposed
identification method is a batch identification for the Boyd et al.’s batch verification.

2. Preliminaries

2.1. Batch Verification and Batch Identification

A batch verification of digital signatures was introduced by Naccache et al. (1994) to
verify multiple signatures in DSA signature scheme. The definition of batch verification
and the weaker notion, say screening, were formalized by Bellare er al. (1998). The fol-
lowing definition is due to Camenisch et al. (2007) in which they extended the definition
of Bellare et al. to deal with multiple signers.

DEFINITION 1 (Batch verification of signatures). Let ¢ be the security parameter. Sup-
pose that (pky, sk1), ..., (pky,, sky) are generated independently according to Gen(1).
Then we call probabilistic Batch a batch verifier (or batch verification) when following
conditions hold:

o If Verify(pk;,, m;,0;) = 1 for all i € [1,n], then Batch((pk,,m1,01),...,
(pke, ymp,04,)) = 1.

o If Verify(pk:,,m;,0;) = 0 for any ¢ € [1,n], then Batch((pk,, m1,01),...,
(pkt,,, mn,0,)) = 0 except with probability negligible in ¢, taken over the ran-
domness of Batch.

A Method of Finding Bad Signatures 191

DEFINITION 2 (Batch identification). Under the same assumption as in the above defini-
tion, a probabilistic polynomial time algorithm is secure batch identifier (or batch identi-
fication) relative to a batch verifier if it satisfies the followings: for any input instance x,

e if 2 has no invalid signature then it outputs “true”, meaning every signature in x is
valid.

e if x contains invalid signatures, then it outputs the invalid ones contained in the
instance except with probability negligible in ¢.

2.2. Divide and Conquer Approach

The most popular batch identification method is so-called the divide and conquer verifier
(DCV) suggested by Pastuszak et al. (2000), which splits an instance into sub-instances
and applies the generic test (GT) to each sub-instance recursively until all bad signatures
are identified. In more details, DCV ,, is defined as follows:

Algorithm DCV 4 (z, t)

Given a batch instance z = ((s1,m1), ..., (st,m4)),
1. If t =1 then
(a) If GT(x, 1) is “true” then return “true” and exit.
(b) If GT(x, 1) is “false” then return x as a bad signature.
2. If GT(x, t) is “true”, then return “true” and exit.
3. Divide z into « sub-instances (1, ..., Z,) containing é signatures each.
4. Run DCV (x4, é), .., DCV o (x4, %)

3. Lee et al.’s Batch Identification and Stanek’s Improvement

Lee et al. (2006) proposed two efficient methods DBy, and DBI , of identifying bad
signatures in the batch verifier of the RSA signature scheme. Later, Stanek (2006) showed
that their methods were flawed and suggested a possible improvement without giving
its analysis. In this section, we briefly overview Lee et al.’s method and the Stanek’s
improved version.

The methods DBIy,sic and DBI ,, assume a generic test (GT; Bellare, 1998) to check
validity of a batch instance (s1,m1), .. ., (8¢, m¢). The authors claimed that their method
could not only detect the existence of bad signatures but also identify the positions of bad
signatures in a batch instance. The algorithms are described as follows:

Algorithm DBIpagic(z, t)

Given a batch instance z = ((s1,m1), ..., (st,m4)),
1. If GT(x, t) is “true” then return “true”.

2. M szl mi; M* «— Hle mé.

3. S « Hz:l 853 S* — Hle st.

4. Find k € {1,...,t} such that ($5)F = 50°

192 K. Kim et al.

5. If k does not exist then return “false”.
6. If GT(x\ (s, mk), t — 1) is “true” then return k.
7. Return “false”.

In Lee et al. (2006), it was claimed that DBy, returns “true” when all signatures are
valid, the position of bad signature when there is only one bad signature, and “false”,
when there are two or more bad signatures, respectively.

Algorithm DBI ,(x,t)

Given a batch instance z = ((s1,m1), ..., (st, m4)),
1. If t = 1 then

(i) If GT(x,t) is “true” then return “true”.

(i1) Else return 1.
2. If t = 2 then

(i) If GT(x,t) is “true” then return “true”.
(i) Else find k € {1, 2} such that

((sm)e)’“ _ (s183)°

mims mim3

— If k = 1return 1.
— If £ = 2 return 2.
— Else return 1,2.
If GT(x, t) is “true” then return “true”.
M [Tioy mi; M* — T mi.
S e szl si 9% — H§:1 ;-
Find k € {1,...,t} such that (57)F = 7).
If k exists then
—If GT(z\(sk, mk),t — 1) is “true” then return k.
8. Divide z into « batch instances (z1, . .., x,) containing (approximately) é signa-
tures each.
9. Return DBl (x1, £)U--- U DBI o (4,).
The algorithm DBI, uses DBIy,,sic as a subroutine and its correctness and complex-
1ty.

NN kw

4. Analysis of Lee et al.’s Scheme and Stanek’s Improvement

As mentioned previously, Lee et al. claimed that their algorithms can detect the existence
of bad signatures and, in addition, identify the the position of the bad signatures in a
batch instance. But, Stanek pointed out a weakness of the methods and suggested an
improvement. In this section, we point out another problem of Lee et al.’s methods, and
then show that Stanek’s improvement also suffers from an attack.

A Method of Finding Bad Signatures 193

4.1. On the Usage of Small Exponent Test for GT

It was claimed that GT in the above algorithms could be initiated as small exponent test
or random subset test described in Lee er al. (2006) and that the presented tests were
suggested by Bellare et al. In fact, these are different from the tests of Bellare et al.
(1998) and, in particular, the Lee et al.’s small exponent test is not batch verifier for RSA
signature scheme.

Algorithm (Lee et al.’s small exponent test)
On input (s1,m1),. .., (s¢,m) and a security parameter ¢,
1. Pick hy,. .., hs € {0,1}* at random.
2. Compute m = [['_, m! and s = [/_, s
3. If m = s° (mod N) then return “true”; else return “false”.

Given a valid batch instance (s1,m1),...,(s¢,me), we let 1 = —s1, § = s;
(i =2,...,t). Then (31, m1),..., (5, m:) passes their small exponent test with proba-
bility 1/2. That is, the test is not a batch verifier. In addition, DBI , could not return any
bad signature(s) even though there are invalid signatures. Therefore we conclude that GT
must not be initiated as their small exponent test.

4.2. Stanek’s Improvement and an Essential Problem

The algorithm DBy, and Stanek’s improvement find the bad signature using Theo-
rem 1 in Lee et al. (2006). And the underlying idea of Theorem 1 in Lee et al. (2006) is
the following.

Given an RSA modulus N and g € Z%, ¢* = ¢/ (mod N) implies k = j. (1)

Now we shall show that the statement (1) is not true. In practice, the condition g* =
¢’ (mod N) is equivalent to that the order of g is a divisor of j — k. Especially, when
g = —1,we have g* = ¢/ (mod N) if and only if j and k have the same parity. Therefore,
if we use only odd exponents as Stanek suggested to repair the problem of DBIysic,
Theorem 1 is of no use.

Moreover, if one has a set of pairs of valid signature and message, then it is possible
to generate a set of pairs of signature and message with one bad signature where the
DBIy,sic and the Stanek’s improvement outputs “false”.

For instance, we consider the Stanek’s improvement. Stanek’s improvement is al-
most the same as the Lee ef al.’s method except it uses M* «— Hﬁzl m?i_l, S* —

[I_, %" and (5)21= (“Ag/[—)e That is, it uses the following equation

((HL >> (Y

H::l m; HE:l m?i71

Given a batch instance (s1,m1), ..., (st, m) where all signatures are valid, we let
s;=s;fori=1,...,t—1and §; = —s;. Clearly, the set of pairs (51,m1), ..., (S5, M)

ey

194 K. Kim et al.

has one bad signature (§;, m;). But for all k(1 < k < ¢),

t e\ 2kt) 2k—1
(sr) =8

—1 (mod N),

(L=) (=)™ Y)°
Ht’ } m2i—1 = my2k—1
1= 1

= —1 (mod N).

Since (8¢, ;) is invalid, GT(z\ (5, mx)) outputs “false” for all k (k # ¢). If the
first tested value k is less than ¢ then the improved method by Stanek will return “false”
meaning the input instance contains two or more bad signatures. That is, it outputs “false”
even when there is only one bad signature in the instance of ¢ pairs of signature and
message. Hence the output “false” of Stanek’s method as well as DBI},sic does not
imply the existence of two or more invalid signatures for the given instance.

Since improved DBI, uses improved DBIy,sic as subroutine and the subroutine
DBlyasic doesn’t correctly identify the bad signature when there is only one bad sig-
nature, the resultant complexity of the improved DBI, is not better than Divide and
Conquer Verifier method (Pastuszak et al., 2000).

Remark 1. In order to correct Theorem 1, one needs a condition for the above statement
(1) ‘g € Z%,, g* = ¢7 implies k = j’ to be true.

5. Finding Invalid Signatures in Boyd ef al.’s Batch Verifier

As we have shown, Lee et al.’s method of identifying bad signatures is not correct in their
context. Though, since the underlying idea is useful, we adopt their idea for an efficient
identifying method of bad signatures in a batch verification designed for Gennaro et al.’s
modified RSA signature scheme after correcting the theorem in our case.

5.1. Gennaro et al.’s Signature Scheme and Boyd et al.’s Batch Verifier

Gennaro et al. (1997) introduced a modified RSA signature scheme that defined as fol-
lows:

(i) Assume that we have a hash function h() and an RSA modulus N = pq with safe
primes p and ¢ (that is, p, ¢, (p — 1)/2, and (¢ — 1)/2 are odd primes).
(ii) A signature of a message m is ¢ = ah(m)? (mod N) for some o with ord(a) < 2,
where ord(«) denote the multiplicative order of & modulo N.
(iii) (o, h(m)) is a valid signature if %

R (m) is an element in Z%, of order < 2, i.e,,
o%¢ = h(m)? (mod N).

A Method of Finding Bad Signatures 195

For the notational simplicity, we shall write the input message for the signature as m
instead of h(m).

Boyd and Pavlovski (2000) proposed a batch verifier of Gennaro et al.’s modified
RSA signature scheme. We describe the batch verification proposed by Boyd et al.

Assume p and q are safe primes withp — 1 = 2p/, ¢ — 1 = 2¢’ and let N = pq
and e, d be parameters of a signer. Suppose ¢ is the security parameter and assume that
2¢ < min(p’, ¢'). For given x of ¢ pairs of signature and message the algorithm of batch
verification is denoted by BP(x,t) or simply BP.

Algorithm BP(z,t)

Given an instance (s1,m1), ..., (st,m¢),

1. Check that ged(s;, N) = 1foralli =1,...,¢.

2. Pick hy, ..., hs € {0,1}* at random.

3. Compute s = ([]'_, s/)° (mod N) and m = [[_, m}" (mod N).
4. If 2 = m? (mod N) then accept, else reject.

5.2. The Proposed Method DBI,, of Identifying Bad Signature in BP

In this section, we construct an efficient identification method in the modified RSA sig-
nature scheme suggested by Gennaro et al. and, then, show the correctness of our method
by modifying the theorem we have shown in the above section.

We shall describe our proposed batch identification method and call our method as
DBIyy(z,t) or simply DBI .

Algorithm DBI,(x,t)

Given a batch instance z = ((s1,m1), ..., (st, my)),
1. If BP(x,t) is “accept” then return “true”.

2. M [l my M* [l mi.

3. 5« H’;:l si; S* H§=1 st.

4. Find k € {1,...,t} such that ($3)2F = (852,
5. If k does not exist then return “false”.

6. If BP(x\(sg, mk),t — 1) is “true” then return k.

7. Return “false”.

DBIy, returns “true” if all signatures are valid, the position of bad signature if there is
only one bad signature, and “false” if there are two or more bad signatures. Note that for
the RSA-type signature scheme, the batch verifier BP can be done only for the signatures
with the same signer. So it is reasonable to assume that the number ¢ of the signatures in
the batch instance is less than p and gq.

Before showing the correctness of our method, let us consider the case when a batch
instance (s1,m1), ..., (S, m¢) has exactly one bad signature (s, my). In this case, since

196 K. Kim et al.

s¢ = m; for all j # k, we obtain the following equation:

J
eN 2k aey 2
HE:l mg HE:l m;
Theorem 1. Suppose that p = 3 (mod4) and ¢ = 3 (mod4), for example p and q
are safe primes, t be an integer less than the smallest odd prime factor of ¢(N), and

ged(p(N),e) = 1. If (s1,m1), ..., (8¢, m¢) has only one bad signature and if k is a
positive integer satisfying (2) then (s, my) is the bad signature.

Proof. Let (s;,m;) be the bad signature and k be the smallest positive integer satisfy-
ing (2). Then s?e #* m?, and so we have two nonidentity quantities:

and

By the assumption on k, the two equations are equal. Letting o; = ;—7 # 1, we have
J

a?(j_k) =1 (mod N).

Suppose that j—k > 0. Then the order of «; must be a divisor of ged(¢(N), 2(j—k)).
Note that j — k is less than the smallest odd prime factor of ¢(N) and ¢(N) = 4a for
some odd number a. So, the order of «; must be 1,2 or 4. Since p, ¢ = 3 (mod 4), Zj
has no element of order 4 and thus the order of « is 1 or 2. This contradicts to the fact

(sj, m;) is bad signature. Thus we conclude j —k =0 and j = k. O

In order to identify multiple bad signatures in batch instances, one can generalize the
DBIy, by employing the divide and conquer approach as Lee et al. (2006) did. However,
the straightforward generalization is not as efficient as the Pastuszak et al.’s DCV when an
instance contains multiple bad signatures, because such a generalization deals with entire
signatures without considering efficiency. Hence, instead of using direct generalization,
we use the basic idea of the divide and conquer in a slightly different approach. Note
that in practical situations and literatures, a set of signatures to be batched contains very
small number of invalid signatures. For given an instance, we first randomly shuffle the
signatures, and then splits the instance into several blocks depending on the number of
input signatures before calling batch verifier. That is, we take the size of each block such
that the probability that each block contains two or more bad signatures is negligible
and the efficiency is assured over well known methods assuming each block has at most
one bad signature. To claim this method is sufficiently efficient, it is enough to find the

A Method of Finding Bad Signatures 197

suitable size of blocks to run DB, in the presence only one bad signature. We will
investigate the efficiency issues in the next section.

We now show the proposed method is a batch identifier for the RSA-type signature
scheme with respect to the batch verifier.

Theorem 2. The proposed method is a secure batch identifier relative to the batch veri-
fier BP. That is, given an instance x, if x contains invalid signatures then DBI ,, finds
the invalid ones.

Proof. As we have shown in the above, it is enough to show the method correctly find
the invalid signature in the presence of single one. We assume that an instance x =
((s1,m1),...,(st,my)) contains one bad signature, say (s, my). Since BP is a secure
batch verifier (Boyd and Pavlovski, 2000), B P(x) returns “reject” except with negligible
probability. Now, by applying Theorem 1 into Steps 2—4 in DBI,, we have the invalid
signature (s, my). This completes the proof. O

6. Efficiency Analysis

In this section, we estimate the computational cost of DBIy, in terms of the required
number of modular multiplications, and compare DBI, with Pastuszak et al.’s divide
and conquer verifier method.

6.1. Complexity of DBIy,

In Boyd (2000), it was proved that the cost of the batch verifier BP(x, t) is approximately
L(t+2)+ %|e| + t — 1 modular multiplications. It was noted that the algorithm is faster
than individual verification when e is large enough and satisfies |e| > 32@((;:“12)) + % So
BP(z,t) is useful if the exponent e is chosen to be |e| > 2/ for reasonable size ¢, and we
assume so.

DBIy, requires the same number of modular multiplications as in DBI}agc. The
difference occurred is from the cost of underlying batch verifier and 2 modular squares
additionally needed in DBIy,. According to Lee (2006), DBI,sic takes one modular
exponentiation plus 2¢ + %\/f modular multiplications (excluding the cost of the batch
verifier). And thus DBI;, requires to perform BP(x,t), BP(z\(sk, ms)),t — 1), and
2t + 2v/t + 3/2|e| + 2 modular multiplications. We let V; be the number of modular
multiplications of BP(x,t) and F be 2t+ 3/t + 3 |e[+2. Then V; = £(t+2)+3 |e|+t—1
and the computational cost of DBIy, is as follows:

3 9
Vit Fi+ Vg = (212+4)t+§\/£+5|e|+3e—1.
6.2. DCV ,, and Efficient Choices of o in DCV

Pastuszak et al. proposed a method so called divide and conquer verifier DC'V, (or
DCV ,(z,t)) to identify bad signatures in a batch instance in Pastuszak et al. (2000).

198 K. Kim et al.

The computational cost of DC'V ,, was evaluated in terms of the number of GT call and
estimated for the number of signatures in batch instances. It was also noted that 2 and 4
are optimal o when there is single bad signature. In practice, their choice of v may not be
optimal by considering the computational cost of underlying verifiers. Most known batch
verifiers have linear complexity with respect to the number of signatures (Camenish et al.,
2007; Naccache et al., 1994; Pastuszak et al., 2000) and we assume a batch verifier takes
computational cost V; = at 4 b for some constant a, b, where ¢ is the number of input
signatures. When there is one bad signature in a batch instance, DC'V , takes the cost:

a®—1

t—1

~ (at+b) + ——
(at +)+§(a—1)
a

o
= A——+ B—
(at +b) + a—1+ ha' 3)

at + barlog, t

where A = a(t — 1), B =blnt, and 6 = [log, t].

Let ¢;(xz) = A% + Bp= and oy be the ceiling of the value = at which ¢;(x)
is minimum. Then DCYV ,, is almost optimal method among the divide and conquer
verifiers DC'V .

For instance, we investigate the optimal choice of awin DC'V', and compare our choice
of o with the Pastuszak et al.’s optimal divide and conquer method (o = 2,4) in the
Boyd et al.’s batch verifier BP(z,t). We assume that the exponent e is large so that
le] = 2¢ in our selection of efficient choice of . Then V; = (£ 4 1)t + 5¢ — 1 and
F, = 2t + 2/t + 30+ 2. Thus the DB, is done in (2¢ +4)¢ + 3/ + 12¢ — 1 modular
multiplication. And the cost of DCV ,, can be computed by the above equation (3) with
a = ¢+ 1and b = 5¢ — 1. The security parameter ¢ of the batch verifier was set to
60 in Pastuszak et al. (2000), but we choose ¢ to be 30 which is enough for practical
requirement meaning the error probability will be 273°. All the results are shown in
Tables 1 and 2.

From the results, we can observe that DC'V ,, shows better performance than DC'V 'y
and DCV 4 in the case when the underlying batch verifier is BP(x,t). In fact, DCV ,,
is more efficient than DCV, for a(#), and the same results can be made for large
number of signatures.

Table 1

Optimal choice of « for each ¢ signatures

t 32 64 128 256 512 1024 2048 4096

a 6 4 6 7 8 11 13 18
#mult 4086 6525 11,539 20446 37,701 71,702 138,195 269,593

A Method of Finding Bad Signatures 199

Table 2

Number of multiplication for « = 2,4

t 32 64 128 256 512 1024 2048 4096

a=2 4553 7827 14,077 26,279 50,385 98,299 19,3829 384,591
=4 4231 6525 11,771 21,009 40,143 77,157 151,843 299,961

Table 3
The number of multiplications in DC'V o, and DBI}_ .
t 64 128 256 512 1024 2048 4096

DCVq, 6525 11,539 20,446 37,701 71,702 138,195 269,593

DBI}

basic

4467 8568 16,767 33,161 65943 131,499 262,599

6.2.1. Comparison of DBI, with DCV , in the Presence of One Bad Signature
Finally, we compare our method DBI, with DC'V, when an input instance contains
one bad signature out of ¢ signatures and BP is used as underlying batch verifier. DBI y,,
requires V; + F; + V;_1 multiplications. On the other hand, DC'V , takes V; + oV, /o +
-+ + aV, 45 multiplications where § = [log,, t].

We estimated the number of multiplications of DB, and optimal divide and conquer
verifiers. The results are shown in Table 3. In the table, ¢ is the number of signatures to
be verified, and DC'V,, is the optimal choice of « in divide and conquer verifier taken
by the method with the underlying batch verifier BP(x,t) that was computed in the
previous section. The results are evaluated for the number of signatures < 10000. Since
most known RSA-type batch verifiers as well as Pastuszak’s BP are for single signer, it
is reasonable to assume that ¢ is less than or equal to 10 thousands practically.

As we note in Table 3, we can observe that DB, reduces the number of modu-
lar multiplications by 2971, 5759, and 6994 compared with the optimal DC'V ,, when
t = 128, 1024, and 4096, respectively. In fact, DBI, takes less modular multiplication
than DCV ,, for all ¢ < 10000, and so our method DBI}, is reduces the computational
cost compared with the divide and conquer verifier DC'V, for any « in the case when
there is one bad signature in the instance. As mentioned previously, by shuffling and
partitioning, we may assume that each partitioned block contains at most one invalid sig-
nature. Therefore, we can conclude that our method is better than the well known divide
and conquer verifier in the Gennaro et al.’s signature scheme.

7. Conclusion
In this paper, we have pointed out a flaw (different from the Stanek’s attack) on the Lee

et al.’s batch identification method and described an attack on the Stanek’s improved
method. From the analysis, their methods could not find out bad signatures even if batch

200 K. Kim et al.

instances contain invalid signatures. Furthermore, we have proposed a batch identification
method to identify the bad signatures in Gennaro ef al.’s signature scheme. Our method
might be thought of as a modification of Lee et.’s scheme so as to apply Gennaro et al.’s
signature scheme. The proposed method is more efficient than the divide and conquer
verifier for the signature scheme.

Acknowledgements. The authors would like to thank anonymous reviewers for their
valuable comments.

References

Bellare, M., Garay, J., Rabin, T. (1998). Fast batch verification for modular exponentiation and digital signa-
tures. In: Eurocrypt’98, Lecture Notes in Computer Science, Vol. 1403. Springer, Berlin, pp. 236-250.

Boyd, C., Pavlovski, C. (2000). Attacking and repairing batch verification schemes. In: Asiacrypt’00, Lecture
Notes in Computer Science, Vol. 1976. Springer, Berlin, pp. 58-71.

Camenisch, J., Hohenberger, S., Pedersen, M. (2007). Batch verification of short signatures. Eurocrypt’07,
Lecture Notes in Computer Science, Vol. 4515. Springer, Berlin, pp. 246-263.

Ferrara, A., Green, M., Hohenberger, S., Pedersen, M. (2009). On the practicality of short signature batch
verification. CT-RSA (to appear). http://eprint.arcr.org/2008/015.

Fiat, A. (1989). Batch RSA. In: Crypto’89, Lecture Notes in Computer Science, Vol. 435. Springer, Berlin,
pp- 175-185.

Gennaro, R., Krawczyk, H., Rabin, T. (1997). RSA-based undeniable signatures. In: Crypto’97, Lecture Notes
in Computer Science, Vol. 1294. Springer, Berlin, pp. 132-149.

Gennaro, R., Krawczyk, H., Rabin, T. (2000). RSA-based undeniable signatures. Journal of Cryptology, 13(4),
397-416.

Hwang, M.-S., Lee, C.-C., Tang, Y.-L. (2001). Two simple batch verifying multiple digital signatures. In:
Proceedings of Information and Communications Security, Lecture Notes in Computer Science, Vol. 2229.
Springer, Berlin, pp. 233-237.

Law, L., Matt, B. (2007). Finding invalid signatures in pairing-based bathes. In: Cryptography and Coding
2007, Lecture Notes in Computer Science, Vol. 4887. Springer, Berlin, pp. 34-53.

Lee, S., Cho, S., Choi, J., Cho, Y. (2006). Efficient identification of bad signatures in RSA-type batch signature.
In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-
A(1). pp. 74-80.

Liu, J., Huang, S. (2010). Identity-based threshold proxy signature from bilinear pairings. Informatica, 21(1),
41-56.

Naccache, M’Raihi, Vaudenay, Raphaeli (1994). Can DSA be improved? Complexity trade-offs with the digital
signature standard. In: Eurocrypt’94, Lecture Notes in Computer Science, Vol. 0950. pp. 77-85.

Pastuszak, J., Michalek, D., Pieprzyk, J., Seberry, J. (2004). Identification of bad signatures in batches. In: PKC
2000, Lecture Notes in Computer Science, Vol. 1751. Springer, Berlin, pp.28—45.

Stanek, M. (2008). Attacking LCCC batch verification of RSA signatures. International Journal of Network
Security, 6(3), 255-257.

Sun, X., Li, J., Yin, H., Chen, G. (2010). Delegatability of an identity based strong designated verifier signature
scheme. Informatica, 21(1), 117-122.

A Method of Finding Bad Signatures 201

K. Kim received the BS degree in mathematics from Konyang University, and the MS
and the PhD degrees in mathematics from Inha University, Korea. He was a postdoc-
toral researcher at Graduate School of Information Technology and Telecommunications
in Inha University. He is currently an instructor of Department of Mathematics in Inha
University. His current research interests include algebraic/algorithmic number theory,
elliptic curves, and privacy enhanced signatures.

L. Yie received the BS and MS degrees in mathematics from the Seoul National Uni-
versity, Seoul, Korea, and the PhD degree in mathematics from the Purdue University.
He is currently a professor of Department of Mathematics in Inha University. His main
research interests include Galois theory and digital signatures.

S. Lim received her BS degree in mathematics from the Dongguk University, Korea,
in 1985. In 1987, she received her MS degree in mathematics from the Seoul National
University, Korea. In 1995, she received her PhD degree in mathematics from Purdue
University, USA. She is a research professor of Department of Mathematics in Ewha
Womans University, Korea. Her current research interests include cryptography, fast com-
puter arithmetic, computer algorithms, mathematics.

H. Park received his BS in mathematics from Chonnam National University, Kwangju,
Korea in 1999, his MS in mathematics from Seoul National Unversity, Seoul, Korea,
in 2001, and his PhD in interdisciplinary program of information security from Chonnam
National University, Kwangju, Korea in 2006. He is working on cryptography team of
KISA (Korea Information Security Agency).

Blogu parasu suradimo metodas RSA tipo paketinio tikrinimo
sistemoje

Kitae KIM, Ikkwon YIE, Seongan LIM, Haeryong PARK

Paketiné kriptografija skirstoma i paketin¢ identifikacija ir paketing verifikacija. Paketiné veri-
fikacija nustato ar parasy aibéje yra negaliojanciy paraSu, o paketiné identifikacija suranda blogus
parasus, jei parasy aibéje yra negaliojanciy paraSy. Neseniai $i uzdavini sprendé Lee ef al., Fer-
rara et al. ir Law et al. Siame straipsnyje parodyti tam tikri Lee ef al. darbo trikumai ir pasiiilytas
RSA tipo paraso identifikavimo metodas. Pasiiilytasis metodas yra efektyvesnis negu gerai Zino-
mas paraso schemos iSskaidymo metodas. Pasitilytas optimaliy i§skaidymo verifikatoriy parinkimo
algoritmas.

