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Abstract. The instrumental variable (IV) method is one of the most renowned methods for param-
eter estimation. Its bigger advantage is that it is applicable for open-loop as well as for closed-loop
systems. The main difficulty in closed-loop identification is due to the correlation between the dis-
turbances and the control signal induced by the loop. In order to overcome this problem, additional
excitation signal is introduced. Non-recursive modifications of the instrumental variable method
for closed-loop system identification on the base of a generalized IV method have been developed
(Atanasov and Ichtev, 2009; Gilson and Van den Hof, 2001; Gilson and Van den Hof, 2003). In this
paper, recursive algorithms for theses modifications are proposed and investigated. A simulation is
carried out in order to illustrate the obtained results.
Keywords: closed-loop system identification, prediction error, instrumental variable method,
recursive parameter estimation, observations.

1. Introduction

For closed-loop identification, the basic instrumental variable (IV) estimator was first
suggested, assuming knowledge of the controller. Further on, it was discussed in details
(Vuchkov, 1996; Forsell and Ljung, 1999; Soderstrom et al., 1987). Numbers of non-
recursive computational procedures are also investigated in Atanasov and Ichtev (2009),
Gilson and Van den Hof (2001, 2003), Wada et al. (2001).

They are based on modifications of the generalized IV method for closed-loop system
identification.

The goal of this paper is to propose recursive modifications to couple of those modi-
fications. The main advantage of the proposed recursive algorithms is their applicability
for on-line applications (Pupeikis, 2010; Voros, 2010).

The paper is organized as follows. In the next section the problem statement is pre-
sented. In Section 3, the basic and generalized closed-loop IV methods are given. In
Section 4, two new recursive algorithms for approximate realizations of the optimal IV
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Fig. 1. A closed-loop system to be observed.

estimator are shown. Section 5 presents an example and parameter estimation results.
Finally, the conclusions are given in Section 6.

2. Problem Statement

Consider a causal, linear, and time-invariant, discrete-time system with output signal
{y(k)} and plant input signal {u(k)}, shown in Fig. 1 and expressed by the equations
(Atanasov and Ichtev, 2009; Forsell and Ljung, 1999; Gilson and Van den Hof, 2003)∣∣∣∣ y(k) = G0(q)u(k) + H0(q)e0(k),

u(k) = r(k) − C(q)y(k).
(1)

The plant, controller and noise filter are denoted by G0(q), C(q) and H0(q) respec-
tively. Here k is the current number of observations of respective signals, q is time-shift
operator such that q−iu(k) = u(k − i) and {e0(k)} is white noise with variance σ2

0 .
The generalized input signal is introduced as

r(k) = r1(k) + C(q)r2(k), (2)

where the external signals {r2(k)} and {r1(k)} may be regarded as a set point signal and
an external excitation signal, which is assumed to be uncorrelated with the noise {e0(k)}
(Forsell and Ljung, 1999).

It is assumed that the controller is known and is described in the form

C(q) =
S(q−1)
P (q−1)

=
s0 + s1q

−1 + · · · + smq−m

1 + p1q−1 + · · · + pmq−m
, (3)

and that the numerator and denominator polynomials of the real plant transfer function

G0(q) =
B0(q−1)
A0(q−1)

(4)

have degree n0.
From expressions (1), (3) and (4) equations presented the noise-free and noise parts

of the plant output and input signals are obtained:

y(k) =
G0(q)

1 + C(q)G0(q)
r(k) +

H0(q)
1 + C(q)G0(q)

e0(k), (5)
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u(k) =
1

1 + C(q)G0(q)
r(k) − C(q)H0(q)

1 + C(q)G0(q)
e0(k). (6)

Equation (5) can be written in the form

y(k) =
Bcl

0

Acl
0

r(k) +
1

Acl
0

ξ(k), (7)

where ξ(k) = A0PH0e0(k) is colour noise generated by {e0(k)} and polynomials Bcl
0

and Acl
0 are from order (n0 + m).

The plant model can be parameterized as

G(q, θ) =
B(q−1, θ)
A(q−1, θ)

=
b1q

−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
, (8)

with the parameter vector

θ = [a1, . . . , an, b1, . . . , bn]T ∈ R2n. (9)

Open-loop fyu(k) and closed-loop fyr(k) regressors are defined as

fyu(k) =
[

− y(k − 1), . . . , −y(k − n), u(k − 1), . . . , u(k − n)
]T

, (10)

fyr(k) =
[

− y(k − 1), . . . , −y(k − n − m), r(k − 1), . . . , r(k − l)
]T

, (11)

where l is a parameter, chosen by the user.
The following notations are introduced

fr(k) =
[
r(k − 1), . . . , r(k − l)

]T
, (12)

f̄yu(k) = P (q−1)fyu(k), (13)

ȳ(k) = P (q−1)y(k). (14)

The identification is based on data set

ZN =
{
r(1), . . . , r(N), u(1), . . . , u(N), y(1), . . . , y(N)

}
, (15)

which consist of measurements of the generalized input signal {r(k)}, plant input signal
{u(k)} and system output {y(k)} for k = 1, 2, . . . , N (Atanasov and Pupeikis, 2009).

According to indirect approach for closed-loop system identification the closed-loop
system (7) is identified and then the elements of vector (9) are determined (Forsell and
Ljung, 1999; Pupeikis, 2000). It is possible because the controller C(q) is known.

It could be emphasized that, before the closed-loop indirect parametric identification
the respective identifiability conditions should be satisfied according to Atanasov and
Ichtev (2009), Vuchkov (1996), Isermann (1984).
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The relation between plant parameters θ and closed-loop parameters θcl is determined
by the following equation

θcl = Mθ + μ, (16)

where the full-column rank matrix M ∈ R(n+m+l)×2n and the vector μ ∈ Rn+m+l

consist of the coefficients of the controller (Atanasov and Ichtev, 2009; Gilson and Van
den Hof, 2001).

The least-squares (LS) estimates θ̂cl
LS are obtained by the formula (Atanasov and

Ichtev, 2009; Atanasov and Pupeikis, 2009; Daniusis and Vaitkus, 2008)

θ̂cl
LS =

[
N∑

k=1

fyr(k)fT
yr(k)

]−1 N∑
k=1

fyr(k)yT (k). (17)

The parameter vector θ̂cl
LS can be estimated by recursive LS method from the form

θ̂cl
LS(k) = θ̂cl

LS(k − 1) +
X(k − 1)fyr(k)

1 + fT
yr(k)X(k − 1)fyr(k)

×
[
y(k) − fT

yr(k)θ̂cl
LS(k − 1)

]
, (18)

X(k) = X(k − 1) −
X(k − 1)fyr(k)fT

yr(k)X(k − 1)
1 + fT

yr(k)X(k − 1)fyr(k)
, (19)

with the observation vector fyr(k) and some initial values of the vector θ̂cl
LS(0) and co-

variance matrix X(0). Here

θ̂cl
LS(k) =

[
âcl
1 , . . . , âcl

n+m, b̂cl
1 , . . . , b̂cl

l

]T ∈ Rn+m+l (20)

is the current estimate of the vector θcl = [a1, . . . , an+m, b1, . . . , bl]T ∈ Rn+m+l. Since
the noise {ξ(k)} is colour the LS estimates θ̂cl

LS are inconsistent and biased. This draw-
back is not present in the IV method and thus this is one applicable solution.

3. Basic and Generalized Closed-Loop IV Methods

The basic closed-loop IV method utilizes 2n time-shifted values of the reference signal
as instruments. Thus, the estimates are calculated according to the relation (Soderstrom
et al., 1987)

θ̂IV =

[
N∑

k=1

z(k)fT
yu(k)

]−1 N∑
k=1

z(k)yT (k), (21)

where z(k) = fr(k) and l = 2n.
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The parameter vector θ can be estimated by recursive IV method from the form

θ̂IV(k) = θ̂IV(k − 1) +
E(k − 1)z(k)

1 + fT
yu(k)E(k − 1)z(k)

×
[
y(k) − fT

yu(k)θ̂IV(k − 1)
]
, (22)

E(k) = E(k − 1) −
E(k − 1)z(k)fT

yu(k)E(k − 1)
1 + fT

yu(k)E(k − 1)z(k)
, (23)

with the vector of observations fyu(k) and some initial values of the vector θ̂IV(0) and
covariance matrix E(0). Here

θ̂IV(k) =
[
â1, . . . , ân, b̂1, . . . , b̂n

]T ∈ R2n (24)

is the current estimate of the vector θ = [a1, . . . , an, b1, . . . , bn]T ∈ R2n.
The quality of the IV estimates is increased by the generalized closed-loop IV method.

The obtained estimates are generalization of the basic IV ones. This is achieved by
filtering input-output data and by gaining advantage from the augmented instruments
z(k) ∈ Rnz , where nz � 2n. In this case the estimates are obtained by the formula

θ̂G
IV(N) = arg min︸︷︷︸

θ

∥∥∥∥
[

1
N

N∑
k=1

z(k)L
(
q−1

)
fT

yu(k)]θ

−
[

1
N

N∑
k=1

z(k)L
(
q−1

)
y(k)

]∥∥∥∥2

Q

, (25)

where L(q−1) is a stable filter and ‖x‖2
Q is a quadratic form xT Qx with a positive

definite weighting matrix Q (Gilson and Van den Hof, 2003).
The estimated accuracy is characterized by the variances and covariances of the es-

timates, which are provided from the covariance matrix. The covariance matrix is de-
pendant on the choice of the instruments z(k) from dimension nz , weighting matrix Q

and stable filter L(q−1). Then the optimal covariance matrix P opt
IV is obtained for the

closed-loop identification (Atanasov and Ichtev, 2009; Gilson and Van den Hof, 2003) if

z(k) =
1
σ2

0

{[
A0

(
q−1

)
H0

(
q−1

)]−1
f̃T
yu(k)

}T
, (26)

nz = 2n, (27)

Q = I, (28)

L
(
q−1) =

[
A0

(
q−1

)
H0

(
q−1

)]−1
. (29)

Here f̃T
yu(k) denotes the noise-free part of fyu(k). The optimal accuracy cannot be

achieved in practice. This is evident from the last equation (29), from where it can be
concluded that the optimal IV estimator is only feasible if the true plant and noise models
are exactly known.
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4. Recursive Algorithms for Approximate Realizations of the Optimal
Closed-Loop IV Estimator

In order to create an approximate realization of the optimal closed-loop IV estimator there
are two main requirements. In first place, for the determination of the filter L(q−1) and
the instruments z(k) it is important the choice of the noise model. The other requirement
is regarding the choice of the initial plant model. The second condition is important for
the computation of the noise-free part of the regressor fyu(k).

4.1. Recursive Algorithm for Extension to the IV4 Method

An approximation of the optimal closed-loop IV method can be obtained, by extending
IV4 method for open-loop identification (Gilson and Van den Hof, 2003). Utilization
of instruments that are uncorrelated with the noise part of the plant input signal, but
correlated with the noise-free part is the keystone principle.

For the model structure presented as an linear regression model

ŷ(k, θ) = fT
yu(k)θ, (30)

the estimation is based on the following recursive algorithm:

1. The parameter vector θ is estimated by recursive LS method from the form

θ̂1
LS(k) = θ̂1

LS(k − 1) +
Γ(k − 1)fyu(k)

1 + fT
yu(k)Γ(k − 1)fyu(k)

×
[
y(k) − fT

yu(k)θ̂1
LS(k − 1)

]
, (31)

Γ(k) = Γ(k − 1) −
Γ(k − 1)fyu(k)fT

yu(k)Γ(k − 1)
1 + fT

yu(k)Γ(k − 1)fyu(k)
, (32)

with the vector of observations fyu(k) and some initial values of the vector θ̂1
LS(0) and

covariance matrix Γ(0). Here

θ̂1
LS(k) =

[
â1
1, . . . , â

1
n, b̂1

1, . . . , b̂
1
n

]T ∈ R2n (33)

is the current estimate of the vector θ = [a1, . . . , an, b1, . . . , bn]T ∈ R2n. The corre-
sponding transfer function Ĝ1k(q) is formed by the elements of this estimate.

2. Generate current instruments z1(k) as estimates of the noise free part of the open-
loop regressor fyu(k) by relations

ỹ1(k) =
Ĝ1k(q)

1 + C(q)Ĝ1k(q)
r(k), (34)

ũ1(k) =
1

1 + C(q)Ĝ1k(q)
r(k), (35)

z1(k) =
[

− ỹ1(k − 1), . . . , −ỹ1(k − n)ũ1(k − 1), . . . , ũ1(k − n)
]T

. (36)
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3. The parameter vector θ is estimated by recursive IV method from the form

θ̂2
IV(k) = θ̂2

IV(k − 1) +
Λ(k − 1)z1(k)

1 + fT
yu(k)Λ(k − 1)z1(k)

×
[
y(k) − fT

yu(k)θ̂2
IV(k − 1)

]
, (37)

Λ(k) = Λ(k − 1) −
Λ(k − 1)z1(k)fT

yu(k)Λ(k − 1)
1 + fT

yu(k)Λ(k − 1)z1(k)
, (38)

with the vector of observations fyu(k) and some initial values of the vector θ̂2
IV(0)

and covariance matrix Λ(0). The corresponding estimated n-order transfer function is

Ĝ2k(q) = B̂2k(q−1)

Â2k(q−1)
.

4. Calculate the prediction error of the k-th iteration

ρ̂(k) = Â2k

(
q−1

)
y(k) − B̂2k

(
q−1

)
u(k), (39)

and generate 2n-order prediction error vector ŵ as

ŵ(k) =
[
ρ̂(k − 1), ρ̂(k − 2), . . . , ρ̂(k − 2n)

]T
. (40)

5. By recursive LS method, with some initial values of the vector l̂(0) and covariance
matrix Ψ(0), calculate the current elements of the filter with equation L(q−1) = 1 +
l1q

−1 + l2q
−2 + · · · + l2nq−2n, that convert {ρ̂(k)} into white noise {e(k)}

l̂(k) = l̂(k − 1) +
Ψ(k − 1)ŵ(k)

1 + ŵT (k)Ψ(k − 1)ŵ(k)

×
[
e(k) − ŵ(k)l̂(k − 1)

]
, (41)

Ψ(k) = Ψ(k − 1) − Ψ(k − 1)ŵ(k)ŵT (k)Ψ(k − 1)
1 + ŵT (k)Ψ(k − 1)ŵ(k)

. (42)

6. Form the current filter

L̂k

(
q−1

)
= 1 + l̂1(k)q−1 + l̂2(k)q−2 + · · · + l̂2n(k)q−2n (43)

by the estimate l̂(k) = [l̂1(k), l̂2(k), . . . , l̂2n(k)]T .

7. Generate current instruments z2(k) as

ỹ2(k) =
Ĝ2(q)

1 + C(q)Ĝ2(q)
r(k), (44)

ũ2(k) =
1

1 + C(q)Ĝ2(q)
r(k), (45)

z2(k) =
[

− ỹ2(k − 1), . . . , −ỹ2(k − n), ũ2(k − 1), . . . , ũ2(k − n)
]T

. (46)



172 N. Atanasov, A. Ichtev

8. Filter the input-output data

fyuF (k) = L̂k

(
q−1

)
fyu(k), yF (k) = L̂k

(
q−1

)
y(k). (47)

9. Recursive determine the IV4 estimates as

θ̂IV4(k) = θ̂IV4(k − 1) +
Σ(k − 1)z1(k)

1 + fT
yuF (k)Σ(k − 1)z1(k)

×
[
yF (k) − fT

yuF (k)θ̂IV4(k − 1)
]
, (48)

Σ(k) = Σ(k − 1) −
Σ(k − 1)z2(k)fT

yuF (k)Σ(k − 1)
1 + fT

yuF (k)Σ(k − 1)z2(k)
, (49)

with the vector of observations fyuF (k) and some initial values of the vector θ̂IV4(0) and
covariance matrix Σ(0).

4.2. Recursive Algorithm for Closed-Loop Quasi-Optimal IV Method

One way to initialize the estimation procedure is by estimation of the noise and plants
models with high-order LS estimator (n1 > n). The biased estimates obtained by this
approach are only in the first step of the algorithm and does not lead to a bias in the final
model (Gilson and Van den Hof, 2003).

The estimation is based on the following recursive algorithm:

1. Present the ARX model structure as a linear regression model by (30) and estimate
θ by a high-order recursive LS estimator (31) and (32) with the vector of observation

fhyu(k) =
[

− y(k − 1), . . . , −y(k − n), . . . , −y(k − n1), u(k − 1), . . . ,

u(k − n), . . . , u(k − n1)
]T

. (50)

Obtain a current estimate θ̂1
LS(k) along with the plant and noise models

Ĝ1(q) =
B̂1(q−1)
Â1(q−1)

; Ĥ1(q) =
1

Â1(q−1)
. (51)

2. In this case the filter is given by

L̂
(
q−1

)
=

[
Â1(q−1)Ĥ1(q−1)

]−1 = 1. (52)

3. Compute the current noise-free part f̃yu(k) of the open-loop regressors

f̃yu(k) =
[

− ỹ1(k − 1), . . . , −ỹ1(k − n), ũ1(k − 1), . . . , ũ1(k − n)
]T

, (53)

with ỹ1(k) and ũ1(k), computed according to (34) and (35).
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4. Generate the current instruments as

z(k) =
{[

A1(q−1)H1(q−1)
]−1

f̃T
yu(k)

}T ≡ f̃yu(k). (54)

5. Determine the quasi-optimal recursive IV estimates of θ as

θ̂OPT
IV (k) = θ̂OPT

IV (k − 1) +
Ω(k − 1)z(k)

1 + fT
yu(k)Ω(k − 1)z(k)

×
[
y(k) − fT

yu(k)θ̂OPT
IV (k − 1)

]
, (55)

Ω(k) = Ω(k − 1) −
Ω(k − 1)z(k)fT

yu(k)Ω(k − 1)
1 + fT

yu(k)Ω(k − 1)z(k)
, (56)

with the vector of observations fyu(k) and some initial values of the vector θ̂OPT
IV (0) and

covariance matrix Ω(0).

5. Example

Consider a close-loop system, described in the form of (2), (5) and (6) with

G0(q) =
0.75q−1

1 − 0.385q−1
, (57)

C(q) =
0.1387q−1 + 0.0889q−2

1 − 1.036q−1 + 0.2636q−2
, (58)

H0(q) =
1 + 0.05q−1 + 0.8q−2

1 − 1.036q−1 + 0.2636q−2
. (59)

The input – {r(k)} and the noise – {e0(k)} are random signals with normal distri-
bution. The standard deviation of the generalized input signal {r(k)} is one. The de-
sired noise to signal ratio is obtained by variation of the standard deviation of the noise
{e0(k)}.

The relative mean-squared error Qθ with respect to the true parameters is used as
an accuracy criterion. The plant parameters are recursively estimated on the basis of the
data set (15). Simulations have been performed for three different noise to signal ratios –
rel1 = 1%, rel2 = 5% and rel3 = 10%.

Two estimators are investigated – recursive extended IV4 and recursive quasi-optimal
IV methods. For comparison purposes, the recursive optimal IV estimator is used. This
benchmark is obtained according to (25), (26)–(29) and the true plant and noise filter
parameters from (57) and (59).

The true plant parameters are a1 = −0.385 and b1 = 0.75. The values of the param-
eter estimates after 1000 iterations and the values of the relative mean-squared errors Qθ

(on the last iteration) with respect to the true parameters are presented in Table 1.
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Table 1

Parameter estimation results

rel1 = 1% rel2 = 5% rel3 = 10%

θ̂Bencmark
IV −0.3853 0.7508 −0.3839 0.7559 −0.3827 0.7567

Qθ 0.0010 0.0071 0.0084

θ̂IV4 −0.3791 0.7533 −0.3760 0.7668 −0.4146 0.7183

Qθ 0.0080 0.0226 0.0514

θ̂OPT
IV −0.3845 0.7499 −0.3862 0.7478 −0.4256 0.7258

Qθ 0.0006 0.0030 0.0561

Fig. 2a. Estimations for rel1 = 1% Fig. 2b. Estimations for rel2 = 1%.

Fig. 3a. Estimations for rel1 = 5% Fig. 3b. Estimations for rel2 = 5%.

The parameter estimation results are illustrated in Figs. 2, 3 and 4. The benchmark
estimates are marked by dashdot line, the extended IV4 – by solid line, and the quasi-
optimal IV – by dotted line.
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Fig. 4a. Estimations for rel3 = 10% Fig. 4b. Estimations for rel3 = 10%.

6. Conclusion

In this paper two new recursive IV estimators are proposed. They approximate the optimal
closed-loop IV estimator that is used as benchmark.

An experiment is carried out. It can be noticed that after substantial initial oscilla-
tions, up to the 50th iteration (not shown on the figures), the estimates, obtained from the
recursive estimators, converge towards their true values. From Table 1, Fig. 2, 3 and 4
it can also be seen that with respect to the convergence, the best estimator is the recur-
sive standard optimal IV estimator (dashdot line). Unfortunately, this benchmark cannot
be implemented in practise. The second best is the recursive quasi-optimal IV estimator
(dotted line), which algorithm incorporates intermediate high order LS estimates. More-
over, in the case of small noise to signal ratio it can provide more accurate estimates. The
initial LS estimates and approximate determination of the noise free part of the open-
loop repressors have negative impact on the convergence and accuracy of the extended
IV4 and quasi-optimal IV estimators, especially in the case of high noise to signal ratio.

For future investigation the authors are planning to develop robust recursive versions
of the investigated algorithms in order to perform identification in real time in the pres-
ence of outliers in observations.
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Gr ↪ižtamojo ryšio sistemos identifikavimas, taikant instrumentini ↪u
kintam ↪uj ↪u metodo rekurentines modifikacijas

Nasko ATANASOV, Alexandar ICHTEV

Šiame straipsnyje pateikiama keletas apibendrinto instrumentini ↪u kintam ↪uj ↪u (IK) metodo
rekurentini ↪u modifikacij ↪u gr↪ižtamojo ryšio sistemos identifikavimui. Pasiūlyti du nauji rekuren-
tiniai algoritmai, tam tikra prasme aproksimuojantys optimalaus IK metodo ↪iverči ↪u realizacijas.
Pagrindinis gaut ↪u rekurentini ↪u išraišk ↪u privalumas tas, kad jos esti nesudėtingos bei patogios rea-
lizuoti praktiškai. Pateiktas gr↪ižtamojo ryšio sistemos pavyzdys ir gauti modeliavimo kompiuteriu
rezultatai.


