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1Vilnius University, Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania

2Vilnius Pedagogical University
Student ↪u 39, LT-08106 Vilnius, Lithuania

e-mail: olga.kurasova@mii.vu.lt, alma.molyte@gmail.com

Received: October 2009; accepted: October 2010

Abstract. In this paper, the quality of quantization and visualization of vectors, obtained by vec-
tor quantization methods (self-organizing map and neural gas), is investigated. A multidimensional
scaling is used for visualization of multidimensional vectors. The quality of quantization is mea-
sured by a quantization error. Two numerical measures for proximity preservation (Konig’s topol-
ogy preservation measure and Spearman’s correlation coefficient) are applied to estimate the quality
of visualization. Results of visualization (mapping images) are also presented.
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1. Introduction

A data analysis is one of the important factors for discovering new knowledge on the ob-
jects analysed. The term “object” can cover various things: people, equipment, produce of
manufacturing, etc. Statistical analysis methods (classification, regression, cluster analy-
sis, time series, etc.) are applied for a data analysis for a long time. Recently the other
methods of data mining becomes the focus of attention of data analyzers (Fayyad et al.,
1996; Dunham, 2003; Cios et al., 2007).

The following definitions of data mining and knowledge discovery in databases
(KDD) are coined in Fayyad et al. (1996): KDD is the nontrivial process of identify-
ing valid, novel, potentially useful, and ultimately understandable patterns in data; data
mining is a step in the KDD process that consists of applying data analysis and discovery
algorithms that, under acceptable computational efficiency limitations, produce a partic-
ular enumeration of patterns (or models) over the data”.

Statisticians and researchers in computer science often use different terms to describe
the same objects, facts, and other things. Actually, both statistical analysis and data min-
ing methods deal with the same or similar problems. A part of the problems are solved by
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the statistical methods successfully enough, however it is necessary to take into account
particularity of data mining to solve some problems properly.

Data mining utilizes statistical methods, but there are more heuristics in data mining
methods than in statistical ones that are defined more strictly mathematically. For this
reason, when the new methods of data analysis are developed, it is useful to join the
good properties of approaches of both groups. Combination of statistical analysis and
data mining methods allows us to avoid the drawbacks the methods applied individually.

Often the object analysed can be described by some features. Denote features, char-
acterized any set of objects, by x1, x2, . . . , xn. A combination of values of all fea-
tures characterizes a particular object Xi = (xi1, xi2, . . . , xin) from the whole set
X = {X1, X2, . . . , Xm}, where n is the number of features and m is the number of
objects analysed. As the number n of the features often is more than two, we deal with
multidimensional data. If the values of features are numerical ones, X1, X2, . . . , Xm

are the n-dimensional vectors, and xi1, xi2, . . . , xin are the components of vector
Xi, i = 1, . . . , m. Often the vectors X1, X2, . . . , Xm are interpreted as points in the
n-dimensional space Rn, where n defines the dimensionality of the space. In fact, we
have a matrix of numerical data X = {X1, X2, . . . , Xm} = {xij , i = 1, . . . , m,

j = 1, . . . , n}. The rows of this matrix are vectors Xi = (xi1, xi2, . . . , xin),
i = 1, . . . , m, here xij is jth component of ith vector.

The data matrix X can be analysed by various data mining methods. This paper deals
with two groups of methods: vector quantization and visualization. Here we investigate
the quality of quantization and visualization of vectors obtained by quantization methods.
Vector quantization is useful for reducing of an amount of the data. Visualization aims at
integrating the human in the data analysis process, applying human perceptual abilities
to the analysis of large data sets available in today’s computer systems. Visualization
methods used here are based in reducing dimensionality of multidimensional data. When
combining vector quantization and visualization it is possible to get more knowledge than
the methods used individually.

The rest of paper is organized as follows. In Section 2, a vector quantization is de-
scribed and two methods (self-organizing map and neural gas) for vector quantization are
introduced. The aim of visualization of multidimensional data is presented, and multidi-
mensional scaling as one of visualization methods is described in more detail in Section 3.
In Section 4, we introduce combinations of the neural gas and self-organizing map with
a multidimensional scaling. Some results of experimental investigations and comparisons
are presented in Section 5. Section 6 concludes the paper.

2. Vector Quantization

Vector quantization (VQ) is a classical signal-approximation method that usually forms
a quantized approximation to the distribution of the input data vectors Xl ∈ Rn,
l = 1, . . . , m, using a finite number of so-called codebook (or reference) vectors
Mi ∈ Rn, i = 1, . . . , N . Once the codebook is chosen, the approximation of Xl means
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finding the codebook vector Mi closest to Xl, usually in the Euclidean metric (Kohonen,
2001).

The objective of vector quantization for a given data set X is to discover the opti-
mal codebook, containing a predetermined number N of codebook vectors Mi ∈ Rn,

i = 1, . . . , N , which guarantee minimization of the chosen distortion metric (usually
Euclidean distance) for all vectors from the data set X . Each codebook vector has an as-
sociated integer index used for referencing (Cios et al., 2007). In other words, the aim of
quantization methods is to change the values of codebook vectors so that they represent
the properties of the analysed vectors Xl, l = 1, . . . , m.

Vector quantization is used for data compression, missing data correction, classifi-
cation, etc. It can be used for data clustering, too. In that case, the codebook vectors are
representatives of clusters. Some methods for vector quantization are based on neural net-
works: self-organizing map (SOM), learning vector quantization (LVQ; Kohonen, 2001),
neural gas (NG; Martinetz, 1991). Here the neurons correspond to the codebook vectors.
The methods can be used instead of other well-known clustering methods as k-means
(Šutienė et al., 2010).

2.1. Self-Organizing Map and Neural Gas

The self-organizing map (SOM) is a class of neural networks that are trained in an un-
supervised manner using a competitive learning (Kohonen, 2001). It is a well-known
method for a vector quantization. Moreover, the SOM is used for mapping a high-
dimensional space onto a low-dimensional one. The neural gas is a biologically inspired
adaptive algorithm, proposed in Martinetz (1991). It sorts the input signals according to
how far away they are. The algorithm was named “neural gas” because of the dynamics
of the vectors during the adaptation process which distribute themselves like a gas within
the data space.

An array of vectors (codebook) M is created in both the neural gas (NG) and the self-
organizing map (SOM) methods. The codebook vectors are often called neurons. Array
M is one-dimensional in the neural gas M = {M1, M2, . . . , MN }, where Mi ∈ Rn,

i = 1, . . . , N , N is the number of codebook vectors. There are two types of SOM topol-
ogy: hexagonal and rectangular. The rectangular SOM is a two-dimensional array (grid)
of neurons M = {Mij , i = 1, . . . , rows, j = 1, . . . , cols}, where Mij ∈ Rn, rows is
the number of rows, cols is the number of columns, and the total number of neurons is
N = rows × cols (Fig. 1).

The general scheme of the training algorithms is as follows. At first, the initial values
are selected: the number N of codebook vectors; the initial values of codebook vectors;
the number of training epochs ê (each input vector is passed to the network ê times, then
the number of training steps tmax = ê × m).

In the neural gas method, the Euclidean distances between the input vector Xl and
each codebook vector Mi = (mi1, mi2, . . . , min), i = 1, . . . , N , are calculated. The
distances ‖M1 − Xl‖, . . . , ‖MN − Xl‖ are sorted in an ascending order. A neuron
set W1, W2, . . . , WN is obtained, where Wk ∈ {M1, M2, . . . , MN }, k = 1, . . . , N :
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Fig. 1. Rectangular SOM structure.

‖W1 − Xl‖ �, . . . , � ‖WN − Xl‖. The neuron W1 is called a winner. The neu-
ron Wk, k = 1, . . . , N , is adapted according to the learning rule: Wk(t + 1) =
Wk(t) + E(t)hλ(Xl − Wk(t)), where t is the order number of iterations, E(t) =
Eg(Ef/Eg)(t/tmax), hλ = e−(k−1)/λ(t), λ(t) = λg(λf/λg)(t/tmax). The values of the
parameters λg, λf , Eg, Ef are selected before learning.

In the SOM method, the Euclidean distances from the input vector Xl to each code-
book vector Mij = (m1

ij , m
2
ij , . . . , m

n
ij), i = 1, . . . , rows , j = 1, . . . , cols , are calcu-

lated, too. The vector M̂c with the minimal Euclidean distance to Xl is designated as a
winner, where c = arg mini,j { ‖Xl − Mij ‖}. The neuron (vector) Mij is adapted accord-
ing to the learning rule: Mij(t+1) = Mij(t)+hc

ij(t)(Xl − Mij(t)), where t is the order
number of iterations, hc

ij is the so-called neighbourhood function, hc
ij(t) → 0, as t → ∞.

For generality, notation Mi is used instead of Mij below. Pseudo-codes of the training
algorithms are presented in Figs. 2–3.

Then the networks are trained, the quantization error EQE is calculated by the for-
mula:

EQE =
1
m

m∑
l=1

∥∥Xl − M̂
∥∥, (1)

where M̂ is a winner for the vector Xl, M̂ = W1 in the neural gas method.

3. Visualization of Multidimensional Data

A large class of methods has been developed for multidimensional data visualization
(Chen et al., 2008; Dzemyda et al., 2007). The visual presentation of the data allows us
to see the data structure, clusters, outliers, and other properties of multidimensional data.
The direct data visualization is a graphical presentation of the data set providing a quality
understanding of the information contents in a natural and direct way. In the direct vi-
sualization methods (such as scatterplot matrices, parallel coordinates, Andrew’s curves,
Chernoff faces, stars, dimensional stacking, etc.), each feature of a multidimensional ob-
ject is presented in a visual form (Hoffman and Grinstein, 2002). After the comprehensive
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function NG_training (X, M, tmax, N, λg, λf , Eg, Ef )
// input: X – data set, M – initial codebook, tmax – the number of training steps,
// N – the number of neurons, λg, λf , Eg, Ef – parameters (constants)
// output: W – codebook
BEGIN
FOR t = 0 TO tmax
FOR l = 1 TO m // the input vector Xl is passed to the neural network
FOR i = 1 TO N

‖Mi − Xl ‖ :=

√∑n

p=1
(mip − xlp)2 // Euclidean distances are calculated

END
{W1, W2, . . . , WN } := SORT_ASCENDING(‖M1 − Xl ‖, . . . , ‖MN − Xl ‖)

// here Wk ∈ {M1, M2, . . . , MN }, k = 1, . . . , N ,
// and ‖W1 − Xl ‖ �, . . . , � ‖WN − Xl ‖

E(t) := Eg(Ef /Eg)(t/tmax), λ(t) := λg(λf /λg)(t/tmax)

FOR k = 1 TO N

hλ := e−(k−1)/λ(t),
Wk(t + 1) := Wk(t) + E(t)hλ(Xl − Wk(t)) // NG learning rule

END
END // the end of passing of the input vectors

END // the end of training
RETURN W
END

Fig. 2. Pseudo-code of the NG training algorithm.

function SOM_training (X, M, ê, rows, cols)
// input: X – data set, M – initial codebook, ê – the number of training epochs,
// rows, cols – the number of rows and columns
// output: M – codebook
BEGIN
FOR t = 1 TO ê
FOR l = 1 TO m // the input vector Xl is passed to the neural network
FOR i = 1 TO rows
FOR j = 1 TO cols

‖Mij − Xl ‖ :=

√∑n

p=1
(mp

ij
− xlp)2 // Euclidean distances are calculated

END
END
c := arg mini,j { ‖Xl − Mij ‖ } // M̂c – neuron-winner of vector Xl

FOR i = 1 TO rows
FOR j = 1 TO cols

Mij(t + 1) := Mij(t) + hc
ij(t)(Xl − Mij(t))// SOM learning rule

END
END

END // the end of passing of the input vectors
END // the end of training
RETURN M
END

Fig. 3. Pseudo-code of the SOM training algorithm.

analysis of these methods has been made, a conclusion is drawn: using these methods, it
is complicated to comprehend the data structure, it is almost impossible, when large data
sets or data of large dimensionality are analysed.

The results of visualization of the well known iris data taken from Asuncion and
Newman (2007) by some direct visualization methods are presented in Fig. 4. Iris data set
consists of 150 items: by 50 from each of three species of iris flowers (Setosa, Versicolor
and Virginica). Four features of each flower were measured: x1 is sepal length, x2 is
sepal width, x3 is petal length, x4 is sepal width. Four dimensional (n = 4) vectors
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Fig. 4. Visualization of iris data by (a) Andrew’s curves, (b) Chernoff faces (only five items of each iris species
are presented), (c) stars, (d) parallel coordinates.

X1, X2, . . . , X150 are formed, where Xi = (xi1, xi2, xi3, xi4), i = 1, . . . , 150. It is
known that one class (Setosa) is linearly separable from the other two classes; the classes
(Virginica and Versicolor) are not linearly separable from each other.

Another group of visualization methods is based on reduction of the dimensionality
of data. There exist a lot of methods that can be used for reducing the dimensionality,
and, particularly, for visualizing the n-dimensional vectors: principal component analysis
(PCA; Jolliffe, 2002), multidimensional scaling (MDS; Borg and Groenen, 2005), locally
linear embedding (LLE; Roweis and Soul, 2000), etc. The target of these methods is
to represent the input data in a lower-dimensional space so that certain properties of
the data set were preserved as faithfully as possible. If we have n-dimensional data set
X1, X2, . . . , Xm, where Xi = (xi1, xi2, . . . , xin), i = 1, . . . , m, we desire to get d-
dimensional data set Y1, Y2, . . . , Ym, where Yi = (yi1, yi2, . . . , yid), i = 1, . . . , m and
d < n. These methods can be used to visualize the data set, if a sufficiently small output
dimensionality (d = 2 or d = 3) is chosen. In such cases, two or three dimensional
vectors may be presented in a scatter plot. The result of visualization of the iris data set
by the two principal components is presented in Fig. 5.

If some linear dependences between the features x1, x2, . . . , xn exist, then the number
of dimensions of data is decreased with small errors by the principal component analy-
sis. However, in the general case, there exist some nonlinear dependences and the PCA
cannot estimate them and this fact is a disadvantage of the method. The results of visu-
alization, obtained by the PCA, depend on so-called outliers, because these points in the
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Fig. 5. Visualization of iris data by the principal component analysis.

n-dimensional space are distant from the other points, and this fact make a large influence
to covariation matrix, as well as the principal components and the quality of mapping.

In this paper, one of the most popular methods of visualization, multidimensional
scaling (Borg and Groenen, 2005) is used to visualize the codebook vectors obtained by
a self-organizing map and neural gas. It is purposeful to visualize the codebook vectors
obtained after a quantization in order to get more knowledge from the data set analysed.
The multidimensional scaling is also superior to the principal component analysis in point
of visualization, because not always two (or three) components are principal ones. It is
taken into account all components of the visualized vectors (coordinates of points) in the
multidimensional scaling. On the other hand, the principle component analysis is a linear
method and the multidimensional scaling is a nonlinear one.

3.1. Multidimensional Scaling

Multidimensional scaling (MDS) refers to a group of the methods that are widely used for
a dimensionality reduction and visualization of multidimensional data (Borg and Groe-
nen, 2005). The starting point of the MDS is a matrix consisting of pairwise proximities
(similarity or dissimilarity) of the data. In general, the proximities need not be distances
in the mathematically strict sense.

The goal of multidimensional scaling (MDS) is to find lower-dimensional data Yi,

i = 1, . . . , m, such that the distances between the data in the lower-dimensional space
were be as close to the original proximities as possible (Borg and Groenen, 2005). The
objective function (stress) to be minimized can be written as

EMDS =
∑
i<j

wij

(
δ(Xi, Xj) − d(Yi, Yj)

)2
, (2)
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where δ(Xi, Xj) is the values of proximity between the n-dimensional data Xi and
Xj , d(Yi, Yj) is the distance (usually of the Euclidean metric) between the two-
dimensional data Yi and Yj , d(Yi, Yj) = ‖Yi − Yj ‖; wij is the weight. If the proximity is
the Euclidean distance, then δ(Xi, Xj) = d(Xi, Xj). If the neurons-winners obtained by
the neural gas or the self-organizing map are mapped by MDS, Xi and Xj are changed
to Mi and Mj in (2).

There exists a multitude of variants of MDS with different weights wij and opti-
misation algorithms: simple gradient descent method, conjugate gradient, quasi-Newton
method, simulated annealing, combination of genetic algorithm, quasi-Newton’s descent
algorithm (Mathar and Žilinskas, 1993), two level minimization (Žilinskas and Žilinskas,
2007). Dimensionality of embedding space in multidimensional scaling is investigated in
Žilinskas (2008), a relative MDS is researched in Bernatavičienė et al. (2007), etc. In this
paper, we use the SMACOF (Scaling by MAjorization of a Complicated Function) algo-
rithm for the stress function EMDS (2) minimization, wij = 1, ∀i, j. It is one of the best
optimization algorithms for this type of the minimization problem. This method is simple
and powerful, because it guarantees a monotone convergence of the stress function (Borg
and Groenen, 2005). This algorithm of MDS for finding of two-dimensional vectors can
be summarized as follows:

1. Set the initial values of two dimensional vector Y , set t = 0.
2. Compute the value of the stress function EMDS(Y (t)); the two-dimensional vectors

Y are set in t = 0.
3. Increase the iteration counter t by one.
4. Compute the Guttman transform Y (t) by (3).
5. Compute EMDS(Y (t)) by (2).
6. If EMDS(Y (t − 1)) − EMDS(Y (t)) < ε or t is equal to maximum number of

iterations, then stop (ε is a small positive constant), else go to Step 3.

Formula (3) is called the Guttman transform:

Y (t + 1) = m−1B(Y (t))Y (t), (3)

where B(Y (t)) has the elements

bij =

{
− d(Xi,Xj)

d(Yi,Yj)
, for i �= j and d(Yi, Yj) �= 0

0, for i �= j and d(Yi, Yj) = 0
, bii = −

m∑
j=1, j �=i

bij .

3.2. Quantitative Criteria of Visualization

When vectors are visualized, it is necessary to estimate the visualization quality. As one
is desired to preserve proximity (for example, distance, topology, neighbourhood rela-
tionships, etc.) by the visualization methods, based on a dimensionality reduction, some
numerical measures are used to estimate the preservation of the proximity. The prob-
lem of this estimation requires intensive researches (Bernatavičienė et al., 2006; Estévez
et al., 2005; Goodhill and Sejnowski, 1996; Karbauskaitė and Dzemyda, 2009).
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In this paper, we use two measures. First one is introduced by Konig (2000), applied in
Estévez (2005), Karbauskaitė and Dzemyda (2009). Let us name it Konig’s measure. The
measure is a topology preservation measure. The second measure used is Spearman’s rho.
It is a statistical test for correlation between two rank-ordered scales. It yields a statement
of the degree of interdependence of the scores of the two scales. Spearman’s rho is used
for estimation preservation of the inter-point distances when passing from n-dimensional
space to d-dimensional space (Karbauskaitė et al., 2007; Kurasova and Molytė, 2009b).

Konig’s topology preserving measure is based on the assessment of rank order in
n-dimensional and d-dimensional spaces. This measure has two control parameters –
numbers of the nearest neighbours: μ and ν (μ < ν). The neighbourhood is estimated by
the Euclidean distances here.

Let us denote by:

– Xij , j = 1, . . . , μ, μ is the nearest neighbours of the n-dimensional vector
Xi, where the distances Xi and its neighbours satisfy the following inequality
‖Xi − Xij1 ‖ < ‖Xi − Xij2 ‖ with j1 < j2;

– Yij , j = 1, . . . , ν, ν is the nearest neighbours of the d-dimensional vector Yi;
– rX(i, j) a rank of the jth neighbour Xij of the vector Xi, where the rank means

the order number of Xij in the data set analysed;
– rY (i, j) a rank of the jth neighbour Yij of the vector Yi, corresponding to Xi,

where the rank means the order number of Yij in the data set analysed.

Konig’s measure for the ith vector and the jth neighbour is calculated by (4):

Eij
KM =

⎧⎪⎪⎨
⎪⎪⎩

3, if rX(i, j) = rY (i, j),
2, if rX(i, j) = rY (i, l), l ∈ (1, . . . , μ), i �= l,

1, if rX(i, j) = rY (i, t), t ∈ (μ + 1, . . . , ν), μ < ν,

0, else.

(4)

The general Konig’s measure EKM is calculated as follows:

EKM =
1

3μ × m

μ∑
i=1

m∑
j=1

Eij
KM. (5)

The range of EKM is between 0 and 1, where 0 indicates a poor neighbourhood preser-
vation, and 1 indicates a perfect one.

Spearman’s rho is calculated by the formula:

ρSp = 1 − 6
(m′)3 − m′

m′∑
k=1

(
r′
X(k) − r′

Y (k)
)2

, (6)

where r′
X and r′

Y are the ranks (order numbers) of pairwise distances calculated for
the n-dimensional and d-dimensional data, respectively; m′ = m(m − 1)/2. As usual,
−1 � ρSp � 1. The best value of Spearman’s rho is equal to one.
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4. Combining Neural Gas and Self-Organizing Map with Multidimensional
Scaling

After a large number of training steps, the neural gas network and the self-organizing map
(SOM) have been organized and n-dimensional input vectors X1, X2, . . . , Xm have been
mapped – each input vector is related to the nearest neuron. Some neurons may remain
unrelated with any vector of the set X = {X1, . . . , Xm}, but there may occur neurons
related with some input vectors. The neurons related with the input vectors are called
neurons-winners. A number of neurons-winners r is usually less than that of all neurons
N (r � N).

In the case of the rectangular topology of the SOM, we can draw a table (grid) with
cells corresponding to the neurons (Table 1). It can be considered as the location of n-
dimensional points on the plane. The cells of the table (the order number of rows and
columns) correspond to the location of the points on the plane. In Table 1, the numbers
indicate the species (classes) of iris data. However, the table does not answer the question,
how much the vectors of the neighbouring cells are close in the n-dimensional space.
A natural idea arises to apply the distance-preserving method to an additional mapping
of the neurons-winners in the SOM. MDS-type methods may be used for this purpose.

In the papers Bernatavičienė et al. (2006), Dzemyda and Kurasova (2006), some
combinations of the SOM and MDS-type method are proposed and discussed. Neurons-
winners obtained by the neural gas method may be visualized by MDS-type methods,
too (Kurasova and Molytė, 2009a). Cross-entropy approach for a visualisation of the
neurons-winners obtained by the neural gas is proposed in Estévez et al. (2005). There
the method is compared with some other combinations. We have proposed a combination
of the neural gas and self-organizing map with the multidimensional scaling on based
SMACOF minimization. A scheme of a mapping (visualization) of the neurons-winners
by the MDS is presented in Fig. 6.

Table 1

SOM table of iris data

3 3 3 2 1 1

3 2 1 1

3 3 2 2 1 1

3 3 3 2 1

3 3 2 1

3 2 2 2 2

3 3 3 2

2,3 3 2 2 2

2 2 2 2 2

3 2 2 3 2 2 2 2 2
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Fig. 6. Scheme of a visualization of the neurons-winners.

5. Experimental Results and Comparisons

5.1. Data for Analysis

Some data sets are used in the experimental investigations. Each data set has some spe-
cific characteristics. Short descriptions of the data sets are presented in Table 2. The
chainlink, hepta, and target data sets are taken from “Fundamental Clustering Problems
Suite (FCPS)” (http://www.uni-marburg.de/fb12/datenbionik/data/), the auto MPG and
iris data sets are taken from Asuncion and Newman (2007), and the last ones are gener-
ated by us.

5.2. Numbers of Neurons-Winners

The numbers of the neural gas (NG) and the self-organizing maps (SOM) are investigated.
It is of interest to investigate whether more neurons become winners by the NG or by the
SOM. The ratios between the number of neurons-winners and all the neurons of the NG
and SOM are presented in Fig. 7. It is shown that the ratios of NG are larger than that of
the SOM: about 80% of the NG neurons become winners. If the numbers of neurons are
large, only about 50% of the SOM neurons become winners. This investigation shows
that the SOM is more efficient than the NG for solving clustering problems.

Table 2

Data sets

No. Name m n Number Description

of classes

1 chainlink 1000 3 2 Two interlocking 3-dimensional rings, linear not sep-
arable

2 hepta 212 3 7 7 well separated clusters

3 target 770 2 6 Outliers

4 auto MPG 392 7 4 Linear not separable

5 iris 150 4 3 One class and a group of two other classes are linear
separable, these two classes are not linear separable

6 rand_clust10 100 10 5 Random clusters

7 rand_clust5 100 5 5 Random clusters
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Fig. 7. The ratios between the number of neurons-winners and all the neurons of NG and SOM.

5.3. Quality of Quantization

At first, the input vectors X1, X2, . . . , Xm are quantized by the neural gas and the
self-organizing map. Quantization error EQE (1) is calculated to estimate the quality
of quantization. Quantization error shows the difference between the analysed vectors
X1, X2, . . . , Xm and quantised vectors (neurons-winners) M̂1, M̂2, . . . , M̂r, where r is
the number of neurons-winners.

The dependence of the quantization error on the number of neurons-winners is pre-
sented in Fig. 8. The quantization error decreases then the number of neurons-winners
is increasing. As we see in Fig. 8, the quantization errors of the NG are smaller signifi-
cantly than that of the SOM then the number of neurons-winners is approximately equal.
It means that the neural gas is more suitable for a vector quantization.

5.4. Quality of Visualization

After the quantization of the input vectors X1, X2, . . . , Xm by the neural gas and the
self-organizing map, neurons-winners M̂1, M̂2, . . . , M̂r are visualised by the multidi-
mensional scaling, and two-dimensional vectors Y1, Y2, . . . , Yr are obtained. Konig’s
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Fig. 8. The dependence of the quantization error (QE) on the number of neurons-winners of NG (left) and SOM
(right).

topology preservation measure EKM (5) and Spearman’s rho ρSp (6) are calculated to
estimate the visualization quality. The number N of codebook vectors is selected so that
the number of neurons-winners were equal to 100, 200, and 300 for the chainlink and
auto MPG data sets, and to 50, 80, and 100 for the rand_clust10 data set.

Since the results of SOM and NG depend on the initial values of codebook vectors,
40 experiments have been carried out for each input vector set with different initial val-
ues of codebook vectors. The values of the measures are calculated and averaged. The
confidence intervals of the averages are also calculated (a probability is equal to 0.95).

When calculating Konig’s topology preserving measure EKM, it is necessary to se-
lect values of two parameters μ and ν. The parameter μ indicates a narrow round of
neighbours, and the parameter ν indicates a wide round. In the experiments, μ = 4,
and ν is changed from 6 to 50. The averaged values of EKM and the confidence inter-
vals (CI) of the averages are presented in Fig. 9. We see that EKM is larger, when the
neurons-winners obtained by SOM are mapped, in all cases, except the chainlink data
set, where the number of neurons-winners is equal to 100. We conclude that the topology
is preserved precisely when the vectors-winners, obtained by SOM, are mapped by MDS.
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Fig. 9. The dependence of the averaged values of Konig’s measure on parameter ν.

In an exceptional case, the confidence intervals are wide, they are overlapping, and there-
fore the results obtained are unreliable. When the number of neurons-winners is increas-
ing, the confidence intervals are narrowing for all datasets. Naturally, for small values of
the parameter ν, the values of EKM are lower than that for higher ν, however starting a
certain value of ν, the values of EKM do not change at all or change but slightly.

The averaged values of Spearman’s rho ρSp and the confidence intervals (CI) of the
averages are presented in Fig. 10. The values of Spearman’s rho are higher, if the neurons-
winners are obtained by NG for the chainlink data set, and by SOM for the auto MPG
data set. The values of Spearman’s rho are large enough (ρSp > 0.9), which means that
the mapping results are good in the sense of distance preserving, when passing from the
n-dimensional space to a two-dimensional one. It is difficult to draw a conclusion on
the mapping quality of the rand_clust dataset, because the values of Spearman’s rho are
varying, and the confidence intervals are wide and overlapping (see Fig. 10, right).

5.5. Mapping Images

When the neurons-winners that are n-dimensional vectors M̂1, M̂2, . . . , M̂r are mapped
by multidimensional scaling, two-dimensional vectors Y1, Y2, . . . , Yr are obtained. Here
r is the number of neurons-winners. Two-dimensional vectors may be presented in a
scatter plot. The mapping images of three artificial data sets (chainlink, target and hepta)
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Fig. 10. The dependence of the averaged values of Spearman’s of the number of neurons-winners.

are presented in Figs. 11–13. Numbers near points indicate order numbers of classes to
which the points belong. Figures 11–13 show how the mapping images change when
the number of neurons-winners is growing. The data structure is visible even when the
number r of neurons-winners obtained by the NG is small enough. If the number r of
neurons-winners obtained by the SOM is larger, the data structure is visible, as well.

In Fig. 14, the neurons-winners of the iris data set, obtained by the NG and the SOM,
are visualized by the MDS. The points, corresponding to the items of the first species (Se-
tosa), are marked by filled rhombi, the points, corresponding to the second species (Ver-
sicolor), are marked by filled squares and the points, corresponding to the third species
(Virginica), are marked by filled circles. The points, corresponding to the neurons, that
are the winners for both the second and the third species, are marked boxed circles. The
quantization error of the SOM is much larger (EQE = 0.3222) than that of the NG
(EQE = 0.0379). It means that the neurons-winners (quantized vectors) do not approx-
imate the data analysed by the SOM precisely enough. We see that the points, obtained
by the SOM, are clustered very much, but the points, obtained by the NG, are dispersed.
The data structure is revealed better by the NG.

6. Conclusions

In this paper, two vector quantization methods (neural gas and self-organizing map) are
used for reducing the number of the dataset items. The neurons-winners obtained are
visualised (mapped) by multidimensional scaling. The number of neuron-winners, quan-
tization and visualization qualities, and preservation of a data structure in the mapping
image are investigated. Two criteria (Konig’s topology preservation measure and Spear-
man’s rho) are used to estimate the visualization quality. The dependence of the Konig’s
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Fig. 11. Mapping images of chainlink data obtained by NG (left) and SOM (right).

measure on the parameter, which indicates a wide round of neighbours, has been inves-
tigated. The dependence of Spearman’s rho on the number of neurons-winners has also
been researched.

The experiments show that:

• The ratios between the number of neurons-winners and all the neurons of the neural
gas (NG) are larger than that of the self-organizing map (SOM): about 80% of the
NG neurons become winners. When the numbers of neurons are large, only about
50% of the SOM neurons become winners. It means that the SOM is more efficient
then the NG for clustering.

• The quantization error decreases when the number of neurons is growing. The
quantization errors of the NG are smaller than that of the SOM when the number
of neurons-winners is approximately equal. It means that the neural gas is more
suitable for vector quantization.
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Fig. 12. Mapping images of target data obtained by NG (left) and SOM (right).
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Fig. 13. Mapping images of hepta data obtained by NG (left) and SOM (right).

Fig. 14. Mapping images of iris data obtained by NG (left) (EQE = 0.0379) and SOM (right)
(EQE = 0.3222).



Quality of Quantization and Visualization of Vectors Obtained by NG and SOM 133

• The topology is preserved more precisely in the sense of a Konig’s measure, if the
vectors-winners obtained by SOM are mapped by MDS. It means that the SOM
preserves neighbourhood better.

• When the visualization quality is estimated by Spearman’s rho, better results are
obtained by NG for the chainlink dataset, and by SOM for the auto MPG dataset.

• The data structure is visible in the mapping image even when the number of
neurons-winners of the NG is small enough. If the number of neurons-winners
of the SOM is larger, the data structure is visible, as well.
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Vektori ↪u, gaut ↪u neuronini ↪u duj ↪u ir saviorganizuojanči ↪u žemėlapi ↪u
metodais, vizualizavimo ir kvantavimo kokybės tyrimas
Olga KURASOVA, Alma MOLYTĖ

Šiame straipsnyje nagrinėjama vektori ↪u kvantavimo, taikant saviorganizuojančius žemėlapius
ir neuronini ↪u duj ↪u metod ↪a, kokybė, o taip pat vektori ↪u, gaut ↪u šiais kvantavimo metodais, vizualiza-
vimo kokybė. Vektoriams vizualizuoti taikomas daugiamači ↪u skali ↪u metodas. Kvantavimo kokybė
yra vertinama pagal kvantavimo paklaid ↪a. Vizualizavimo kokybei ↪ivertinti naudojami du panašum ↪u
išsaugojimo matai (Konigo topologijos išsaugojimo matas ir Spirmano koreliacijos koeficien-
tas). Straipsnyje pateikiami keli ↪u žinom ↪u struktūr ↪u duomen ↪u aibi ↪u vizualizavimo rezultatai, kai
pradžioje vektoriai yra kvantuojami, o paskui vizualizuojami tik kvantuoti vektoriai. Straipsnyje
atlikta dviej ↪u kvantavimo metod ↪u lyginamoji analizė ir padarytos išvados apie j ↪u jungim ↪a su dau-
giamatėmis skalėmis.


