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Abstract. Clinical investigators, health professionals and managers are often interested in devel-
oping criteria for clustering patients into clinically meaningful groups according to their expected
length of stay. In this paper, we propose two novel types of survival trees; phase-type survival trees
and mixed distribution survival trees, which extend previous work on exponential survival trees.
The trees are used to cluster the patients with respect to length of stay where partitioning is based
on covariates such as gender, age at the time of admission and primary diagnosis code. Likelihood
ratio tests are used to determine optimal partitions. The approach is illustrated using nationwide
data available from the English Hospital Episode Statistics (HES) database on stroke-related pa-
tients, aged 65 years and over, who were discharged from English hospitals over a 1-year period.
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1. Introduction

Decision trees in survival analysis are popularly known as survival trees and are a type
of classification and regression tree (Breiman et al., 1984; Davis and Anderson, 1989;
Šutienė et al., 2010; Žilinskas and Žilinskas, 2010). Survival trees are special types of
mixture distributions where the dataset is partitioned into subgroups based on the values
of covariates and each subgroup is approximated by different set of components. Sur-
vival tree based analysis is a powerful non-parametric method of clustering survival data
for prognostication, i.e., to determine importance and effect of various covariates (such
as patients’ characteristics) and their interrelation with patients’ survival, treatment out-
come, disease risk, disease progress or hospital length of stay (Davis and Anderson, 1989;
Gao et al., 2004). Zhang and Singer (1999) provide a review of the literature of survival
trees and their applications. More recently Clarke and West (2007) used Bayesian Weibull
survival tree models for analysis of clinico-genomic data and Fan et al. (2009) used multi-
variate exponential survival tree based analysis for tooth prognosis. However most of the
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survival tree based models suffer from a limited ability to realistically model the process
dynamics of a care system and are not exactly understood by medical practitioners.

The novel contribution of this paper is to propose two new techniques based on sur-
vival trees for clustering patients into clinically meaningful patient groups with respect to
their hospital length of stay, where partitioning is based on covariates such as gender, age
at the time of admission and disease diagnosed. The first technique is based on phase-
type survival trees where each node is modelled by a Coxian phase type distribution. The
proposed phase type survival trees can effectively be used for clustering survival data into
groups of patients following homogeneous patient pathways. They provide understanding
of heterogeneity of patient pathways stratified by covariates representing patient charac-
teristics such as age, gender and diagnosis. The second technique is based on mixture
distribution survival trees where different nodes in the tree can be modelled by distinct
types of mixture distributions. The mixture distribution survival tree provides better im-
provement in the likelihood function and in the within node homogeneity. We have used
splitting criteria based on improvement of log-likelihood functions. Phase type distribu-
tions (PHDs) and Gaussian mixture distributions (GMDs) are among popular choices for
modelling hospital length of stay (Fackrell, 2009; Marshall, 2007; El-darzi et al., 2009;
Abbi et al., 2008). One key advantage of these new types of survival trees is their ability
to accurately model patient pathways followed by different groups of patients as finite
state continuous time Markov chain facilitating easy analysis of models and better ex-
plainability to healthcare professionals than other survival tree models.

In this paper, first we illustrate how phase type survival trees and Gaussian mixture
survival trees can be constructed and used for clustering length of stay data. Then we
extend this approach by introducing more flexibility in the tree construction where differ-
ent nodes in the tree can be approximated by distinct types of mixture distributions. This
way, more improvement in the likelihood function can be achieved, which results in the
improved within node homogeneity.

The next section provides the background on phase type distributions and Gaussian
mixture distribution. The following section illustrates how phase type survival trees and
Gaussian mixture survival trees can be constructed. Running examples of phase type sur-
vival trees and Gaussian mixture survival trees are illustrated using nationwide data avail-
able from the English Hospital Episode Statistics (HES) database on stroke-related pa-
tients, aged 65 years and over, who were discharged from English hospitals over a 1-year
period. The paper then describes how we can construct and use a mixed distribution sur-
vival tree for clustering length of stay data and the method is illustrated using the same
HES database as a running example.

2. Background

Gaussian mixture distributions (GMD) and phase type distributions (PHDs) are among
the popular choices for approximating patients’ hospital length of stay and for determin-
ing clinically meaningful patient groups from a given dataset of patients’ length of stay.
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PHDs’ components (or clusters) follow generalized Erlang type distributions while Gaus-
sian mixture distributions assume that their components are multivariate normal (Gaus-
sian) distributed. PHDs are a popular choice for modelling Markov stochastic process in a
wide range of application areas (Fackrell, 2009; Marshall, 2007). GMDs are well known
and have been successfully used in many applications (Banfield and Raftery, 1983; Fra-
ley and Raftery, 2003). PHDs are an extension of the exponential distributions and exhibit
many of their favourable properties such as PHDs have memoryless property, i.e., they
are defined only on the nonnegative real numbers (Fackrell, 2009). PHDs can realisti-
cally model the process of a patient’s journey through different stages of care as a finite
state continuous time Markov chain (Fackrell, 2009). While PHDs provide an intuitive
description of the patient pathways followed, the GMD is generally better understood by
medical practitioners and therefore may be more acceptable. Coxian phase type distri-
butions (C-PHDs) are a special type of PHDs, in which a process starts only in the first
transient state and process is eventually absorbed into the absorbing state after sequential
transitions through a number of transient states. C-PHDs provide a simple interpretation
of fit for the length of stay, and data, require estimating a lot less parameters among all
PHDs and also have many other advantages over other types of PHDs (Fackrell, 2009;
Marshall and Zenga, 2009). PHDs can also be used to approximate any nonnegative dis-
tribution arbitrarily closely (Asmussen, 2003; Fackrell, 2009; Faddy, 1994). Vasilakis and
Marshall (2005) fitted the C-PHD to the patients’ length of stay data from HES database.

2.1. Coxian Phase Type Distributions

Phase type distributions (PHDs) are among popular choices to fit spell length of stay data
(Fackrell, 2009). A special type of PHDs are Coxian phase type distributions (C-PHDs)
in which a process can start only in the first transient state and only sequential transitions
are possible among transient states; transition from any state to the absorbing state is also
possible. Fackrell (2009) compares five subclasses of phase type distributions and based
on log-likelihoods he identified that the general phase type distributions provide the best
fit followed by the Coxian phase type distributions (C-PHDs). However, general phase
type distributions are over-parameterized and parameter estimation is difficult (Fackrell,
2009; Marshall and McClean, 2004). On the other hand, Coxian phase type distributions
do not present such problems and also provide a simple interpretation of fit for the length
of stay data (Fackrell, 2009). We model patient flow in the care system as an n state
Markov process (Fig. 1) with Coxian phase type distributions (Cox, 1955; Marshall and
McClean, 2004; McClean et al., 2007). A patient can be admitted to the care system
only in the first state (state 1). Sequential transitions are possible from any state k (where
k = 1, 2, . . . , n) to the next state k+1 with a transition rate λk. Also transition is possible
from any state k to the absorbing state n+1 with a transition rate μk. The absorbing state
represents the event discharge or death of the patient. The time spent in the hospital before
discharge or death has the probability density function:

f(t) = p
(
exp{Qt}

)
q, (1)
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Fig. 1. Stroke care system modelled as an n state Markov process with Coxian phase type distribution.

where the row vector p, the initial state probability distribution is defined as:

p = ( 1 0 0 . . . 0 0 ); (2)

the transition matrix Q is defined as

Q =

⎛
⎜⎜⎜⎜⎜⎝

−(λ1 + μ1) λ1 0 . . . 0 0
0 −(λ2 + μ2) λ2 . . . 0 0
...

...
... . . . 0 0

0 0 0 −(λn−1 + μn−1) λn−1

0 0 0 . . . 0 −μn

⎞
⎟⎟⎟⎟⎟⎠ , (3)

and the column vector q represents absorption probabilities and is defined as

q = ( μ1 μ2 . . . μn−2 μn )T. (4)

The likelihood function is defined as follows (Marshall and McClean, 2004):

l =
N∏

i=1

(
p exp{Qti}q

)
, (5)

where N is the total number of patients in the care system and ti is the spell length of
stay of a patient i (i = 1, 2, 3, . . . , N). It is more convenient to work with log likelihood
function which can be defined as:

L =
N∑

i=1

(
log

(
p exp{Qti}q

))
. (6)

This can also be written as:

L =
N∑

i=1

(
log(f(ti)

))
. (7)
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where

f(ti) = p
(
exp{Qti}

)
q. (8)

This order n Coxian phase type fit of spell length of stay data has df = 2n − 1 free
parameters (degrees of freedom) to be estimated. We used a freely available download-
able package EMpht (Asmussen et al., 1996) developed by Asmussen et al. (1996) and
Olsson (1996), which implements maximum likelihood parameter estimation using the
expectation-maximization (EM) algorithm. It is a very efficient tool for parameter es-
timation for phase type distribution when fitted to data (Fackrell, 2009). However, the
problem with the tool is that it requires us to specify the number of iterations in advance,
which is very difficult to estimate and risking over-fitting. We modified the tool to over-
come these limitations. We implemented a stopping criteria based on the improvement in
log-likelihood for the fit.

2.2. Gaussian Mixture Distributions

Gaussian mixture distributions comprise of a number of normally distributed compo-
nents. Each component has 3 parameters: the mixing proportion, mean and variance. The
probability distribution function for Gaussian mixture distribution with n components is
therefore:

f(t) =
n∑

k=1

αk

(
1√

2πσ2
k

exp
(

− (t − μk)2

2σ2
k

))
, (9)

and log-likelihood function is:

L =
N∑

i=1

(
log

(
n∑

k=1

αk

(
1√

2πσ2
k

exp
(

− (ti − μk)2

2σ2
k

))))
. (10)

This can also be written as:

L =
N∑

i=1

(
log

(
f(ti)

))
, (11)

where

f(ti) =
n∑

k=1

αk

(
1√

2πσ2
k

exp
(

− (ti − μk)2

2σ2
k

))
. (12)

The degrees of freedom (df ) of the distribution with n components are:

df = 3n − 1. (13)
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This model was fitted to the patients’ length of stay data from the HES database using
the statistical toolbar of MATLAB software which implements maximum likelihood pa-
rameter estimation using the expectation-maximization (EM) algorithm (McLachlan and
Peel, 2000).

3. Tree Construction

In this section, we will describe the criteria used for phase type survival tree construction.

3.1. The Splitting Criteria

Tree construction can be achieved by recursively partitioning into sub groups by one of
the covariates based on some splitting criteria maximizing either within node homogene-
ity or between node separation (Gao et al., 2004). We used splitting criteria to maximize
within node homogeneity based on improvement of log-likelihood functions (David and
Anderson, 1989). A covariate a can have any of the l values such that

N = Na1 + Na2 + · · · + Nal =
l∑

i=1

Nai. (14)

Therefore (7) (or (11)) can also be written as follows:

L =
l∑

j=1

Naj∑
i=1

(
log

(
f(tiaj)

))
=

Na1∑
i=1

(
log

(
f(tia1)

))

+
Na2∑
i=1

(
log

(
f(tia2)

))
+ · · · +

Nal∑
i=1

(
log

(
f(tial)

))
(15)

or

L = La1 + La2 + · · · + Lal =
l∑

i=1

Lai. (16)

Covariate a splits the dataset into l subgroups and each subgroup is separately fitted to
the distribution where the total log-likelihood

L =
l∑

j=1

Naj∑
i=1

(
log

(
f (aj)(tiaj)

))
=

Na1∑
i=1

(
log

(
f (a1)(tia1)

))

+
Na2∑
i=1

(
log

(
f (a2)(tia2)

))
+ · · · +

Nal∑
i=1

(
log

(
f (al)(tial)

))
. (17)
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If each subgroup is separately fitted to the Coxian phase type distribution then the likeli-
hood of each fit is

f (aj)(tiaj)PHD = p(aj)
(
exp{Q(aj)tiaj }

)
q(aj). (18)

If each subgroup is separately fitted to the Gaussian mixture distribution then the likeli-
hood of each fit is

f (aj)(tiaj)GMM =
naj∑
k=1

α
(aj)
k

(
1√

2π(σ(aj)
k )2

exp
(

− (tiaj − μ
(aj)
k )2

2(σ(aj)
k )2

))
. (19)

In other words the total log-likelihood is the sum of individual log-likelihoods of each
sub-group partitioned by covariate a.

3.2. The Selection Criteria

Cross-validation, bootstrap re-sampling and other popular pruning techniques are ex-
tremely expensive for large datasets (Gao et al., 2004). Therefore, we have used a simpler
approach to determining if a node is a terminal node. If it is not then we select the best
possible partition by exploring all possible splits. A terminal node is the node at which
within node homogeneity cannot significantly be improved by any possible split. At each
node we will apply one covariate at a time and record the total log-likelihood for partition-
ing by that covariate. Then we will repeat this with other covariates. The covariate which
maximizes the total log-likelihood of sub-groups is determined and Lmax is calculated as
follows.

Lmax = max(La, Lb, . . . , Ll). (20)

Now we compare this log-likelihood with the log-likelihood of the node before partition
and calculate the value of the chi-square statistic χ2

(df ):

χ2
(df ) = −2(Lmax − LP ), (21)

where LP is the log-likelihood of the node before partition (i.e., the parent node) and
degrees of freedom

df = df max − df P , (22)

where df max is the sum of the degrees of freedom of each of the subgroups partitioned by
the log-likelihood maximizing covariate and df P is the degree of freedom of the node be-
fore partition (i.e., the parent node). Here, the null hypothesis is that the node is a terminal
node (i.e., no split provides significant improvement in the likelihood ratio function). We
used significance level 0.05, i.e., (χ2

(df ) (p < 0.05)) to determine if the node is a terminal
node. The choice of this significant level is strictly arbitrary and other values (such as 0.1,
0.025, 0.01 or 0.001) can also be used.
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4. Running Examples

To illustrate the phase type survival tree and Gaussian distribution survival tree methods
for clustering patients according to their hospital length of stay, we used the dataset avail-
able from the English Hospital Episode Statistics (HES) database representing the first
episode of care of 105,765 patients with a stroke related code anywhere in their diagnosis
chain and discharged between April 1st 1994 and March 31st 1995 from all English hos-
pitals (Vasilakis and Marshall, 2005). All patients were aged 65 or over. No information
that identified individual patients was supplied. The range of LOS is 0 days to 4906 days,
average LOS is 14.2915 days and standard deviation is 52.04 days (Abbi et al., 2008;
Vasilakis and Marshall, 2005).

For this application we identified one continuous covariate, i.e., patients’ age at the
time of admission to hospital and two categorical covariates, i.e., patient gender and
type of stroke diagnosed. For the continuous covariate we used cut-points that divide
patients into three almost equal subgroups. For the categorical covariate patient gender,
HES dataset has four different values 1 for male, 2 for female, 3 and 4 for other or un-
specified. Values 3 and 4 do not have prognostic significance. Therefore, we discarded
daughter nodes created by patient gender covariates having value 3 or 4. The value of the
covariate type of stroke diagnosed is determined by the presence of a particular ICD-9
code (World Health Organisation, 1977) anywhere in the diagnostic chain. It can have
any of the 4 values. Hemorrhagic Stroke (ICD-430-ICD-432), Ischemic Stroke (ICD-
433, ICD-434, ICD-436, ICD-437), Transient Ischemic Attack (TIA; ICD-435) and other
strokes (ICD-438).

4.1. Phase Type Survival Tree

Figure 2 is the schematic diagram of the Phase type survival tree we constructed. Table 1
lists the nodes and the possible splits of the tree we constructed. Bold faced covariates
represent the splits selected for creating daughter nodes. Node 9, 10, 11 and 12 are nodes
created through splitting node 8 by diagnosis covariate.

The total gain in the homogeneity by clustering into leaf nodes in terms of log-
likelihood is the difference between root node log-likelihood before clustering and the
total log-likelihood of the leaf nodes:

GTotal = −
(
Lroot − (L4 + L5 + L6 + L7 + L9 + L10 + L11 + L12)

− Ldiscard

)
, (23)

where Ldiscard is the log-likelihood of the sub-groups which were discarded (with co-
variate patient’s gender value ‘3’ or ‘4’). The total log-likelihood of leaf nodes of the tree
is −368408.967 with the total gain in log-likelihood is 3793.631635 with 35 extra free
parameters (p = 1).
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Table 1

Phase type survival tree construction for HES database on stroke-related patients

Node Covariate Covariate Number Loglikelihood Number Value of Additional Chi-square

value of of Chi square degree of probability (p)

patients phases statistic freedom of selected

χ2
(df ) (df ) split

All Complete dataset 105765 −372202.5986 14

1 Gender Male 47136 −159483.7033 7 942.438984 20 < 0.000001

(Root node) Female 58109 −210420.5992 9

Unspecified 520 −1827.076608 9

Age Age <= 73 34995 −108847.6535 7 7297.3144 24 < 0.000001

73 < Age < 82 35393 −124625.1882 11

Age >= 82 35377 −135081.0997 9

Diagnosis Hemorrhagic 5593 −19510.25135 9 202.79572 39 < 0.000001

Ischemic 67190 −236434.3777 8

TIA 11196 −39030.51958 9

Other 21786 −77126.05211 9

2 Gender Male 11720 −43505.86672 4 120.255304 4 < 0.000001

(Age >= 82) Female 23485 −90841.97838 4

Unspecified 172 −673.126948 4

Diagnosis Hemorrhagic 1860 −7111.186087 4 −79.630374 11 −
Ischemic 22605 −86486.26874 4

TIA 3777 −14364.33872 4

Other 7135 −27159.12134 4

3 Gender Male 16419 −56342.3129 4 136.968716 0 < 0.000001

(73 < Age < Female 18808 −67631.89135 4

82) Unspecified 166 −582.499592 4

Diagnosis Hemorrhagic 1871 −6611.551198 4 −69.826996 9 −
Ischemic 22351 −78619.50522 4

TIA 3697 −12928.67402 5

Other 7474 −26500.37126 4

4 Gender Male 18997 −58518.12493 4 −365.790274 8 −
(Age <= 73) Female 15816 −49962.72347 4

Unspecified 182 −549.700237 4

Diagnosis Hemorrhagic 1862 −5634.446937 5 −292.196714 21 −
Ischemic 22234 −69026.23065 5

TIA 3722 −11338.31477 4

Other 7177 −22994.7595 5

5 Diagnosis Hemorrhagic 593 −2180.100904 4 −33.38052 19 −
(Age >= 82) Ischemic 7387 −27518.89464 4

Male TIA 1246 −4636.007606 4

Other 2494 −9187.55383 3

6 Diagnosis Hemorrhagic 1259 −4888.606315 4 −118.438468 21 −
(Age >=82 ) Ischemic 15100 −58543.49525 4

Female TIA 2511 −9641.868259 4

Other 4615 −17827.22779 4

7 Diagnosis Hemorrhagic 860 −2933.985556 4 7.774826 21 0.996027

(73 < Age < Ischemic 10191 −34900.37992 4

82 Male) TIA 1740 −5945.469171 4

Other 3628 −12558.59084 4

8 Diagnosis Hemorrhagic 998 −3622.623753 4 32.72485 21 0.049369

(73 < Age < Ischemic 12061 −43332.41141 4

82 Female) TIA 1934 −6883.738102 4

Other 3815 −13776.75566 4
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Fig. 2. Phase-type survival tree for HES database on stroke-related patients.

Table 2

Gaussian mixture survival tree construction for HES database on stroke-related patients

Node Covariate Covariate Number Log- Number Value of Additional Chi-square

value of likelihood of Chi square degree of probability (p)

patients likelihood phases statistic freedom of selected

χ2
(df ) (df ) split

All l 105765 −368687.3 7 − − −

1 Gender Male 47136 −162739.6 6 −18932.654 28 −
(Root node) Female 58109 −213549.5 6

Unspecified 520 −1864.527 5

Age Age <= 73 34995 −120869.3 3 −30824.8 25 −
73 < Age < 82 35393 −126709 6

Age >= 82 35377 −136521.4 7

Diagnosis Hemorrhagic 5593 −17863.81 5 −19780.18 36 −
Ischemic 67190 −242176.9 5

TIA 11196 −40059.46 4

Other 21786 −78477.22 6

4.2. Gaussian Mixture Survival Tree

Similar to the phase type survival tree we can construct a Gaussian distribution survival
tree for the HES dataset. However, while constructing the tree, no covariate improved the
within node homogeneity at the root node.

5. Mixture Distribution Survival Trees

We can achieve more improvement in the likelihood function by introducing more flex-
ibility in the tree construction where different nodes in the tree can be approximated by
distinct types of mixture distributions. This results in the improved within node homo-



Phase-Type Survival Trees and Mixed Distribution Survival Trees 67

Fig. 3. Mixed distribution survival tree for the HES database.

geneity. The tree is constructed by recursively partitioning the dataset into subgroups
using one of the covariates. Each subgroup is separately fitted to both C-PHD and GMD.
We use the same splitting and selection criteria as discussed in Section 3. The distri-
bution fitting with maximum log-likelihood is selected for that subgroup. A split which
maximizes node homogeneity by providing maximum positive improvement in the total
log-likelihood (i.e., the sum of individual log-likelihoods of each subgroup split by the
covariate) is selected to grow the tree. If at a node, there is no split providing improvement
in the log-likelihood, the node is designated as a terminal node.

Figure 3 is the schematic representation of the final mixed distribution survival tree
for the length of stay data from the HES database. A node with ‘Ph’ is modelled by PHD
while a node with ‘G’ is modelled by GMD, i.e., root node (1), node 9, node 10 and node
11 are modelled by GMDs and node 2, node 3, node 4, node 5, node 6, node 7, node 8
and node 12 are modelled by PHDs. Table 5 presents the tree construction process listing
nodes of the tree and possible splits of these nodes. Bold faced covariates were selected
for splitting the parent node. At each node, the distribution having log-likelihoods written
in italic is selected.

The total gain (GTotal) in the homogeneity by clustering into leaf nodes in terms
of log-likelihood can be calculated using equation 23. The log-likelihood of the root
node (modelled by GMD) is −372202.6. There is significant improvement in the log-
likelihood after clustering with mixture distribution survival tree and the total log-
likelihood of leaf nodes is −367119.8101 which is improved by 1289.1569 in comparison
with phase type survival tree. The total gain in the within node homogeneity by clustering
into leaf nodes using in mixture distribution survival tree is 1567.488535. However, if the
root node were approximated by phase type distribution, then the total gain in the within
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Table 3

Mixed distribution survival tree construction for the LoS data from HES database

Parent Covariate Covariate PHD GMD Distri- Value of Additional Chi-square
nodes value loglikelihood Number loglikelihood Number bution Chi square degree probability

of of statistic of freedom (p) of
phases phases selected χ2

(df ) (df ) selected

split

All All − −372202.6 14 −368687.3 7 GMD − − −

1 Sex Male −159483.7 7 −162739.6 6 PHD −6088.15 27 −
(Root Female −210420.6 9 −213549.5 6 PHD

node) Unspecified −1827.0766 9 −1864.527 5 PHD

Age Age <= 73 −108847.65 7 −120869.3 3 PHD 266.72 31 < 0.000001

73 < Age < 82 −124625.19 11 −126709 6 PHD

Age >= 82 −135081.1 9 −136521.4 7 PHD

Diagnosis hemorrhagic −19510.251 9 −17863.81 5 PHD −6827.81 46 −
ischemic −236434.38 8 −242176.9 5 PHD

TIA −39030.52 9 −40059.46 4 PHD

Other −77126.052 9 −78477.22 6 PHD

2 Sex Male −43505.867 4 −43985.64 8 PHD 120.2561 4 < 0.000001

(Age Female −90841.978 4 −91726.43 7 PHD

>= 82) unspecified −673.12695 4 −680.2635 4 PHD

Diagnosis hemorrhagic −7111.1861 4 −7200.211 6 PHD −79.6302 11 −
ischemic −86486.269 4 −87407.6 7 PHD

TIA −14364.339 4 −14497.73 7 PHD

Other −27159.121 4 −27403.26 8 PHD

3 Sex Male −56342.313 4 −57451.84 6 PHD 136.9728 0 < 0.000001

(73 < Female −67631.891 4 −69098.01 5 PHD

Age unspecified −582.49959 4 −587.5177 5 PHD

< 82) Diagnosis hemorrhagic −6611.5512 4 −6694.673 6 PHD −69.8224 9 −
ischemic −78619.505 4 −80453.24 5 PHD

TIA −12928.674 5 −13604.29 4 PHD

Other −26500.371 4 −26902.44 6 PHD

4 Sex Male −58518.125 4 −64672.55 3 PHD −365.796 8 −
(Age Female −49962.723 4 −55547.53 3 PHD

<= 73) unspecified −549.70024 4 −598.0513 3 PHD

Diagnosis hemorrhagic −5634.4469 5 −6403.329 3 PHD −292.206 21 −
ischemic −69026.231 5 −76699.52 3 PHD

TIA −11338.315 4 −12587.48 3 PHD

Other −22994.76 5 −24155.37 4 PHD

5 Diagnosis hemorrhagic −2180.1009 4 −2211.344 6 PHD −33.3806 19 −
(Age ischemic −27518.895 4 −27781.94 7 PHD

>= 82 TIA −4636.0076 4 −4684.628 6 PHD

Male) Other −9187.5538 3 −9263.08 6 PHD

6 Diagnosis hemorrhagic −4888.6063 4 −4921.049 7 PHD −118.439 21 −
(Age ischemic −58543.495 4 −59058.94 7 PHD

>= 82 TIA −9641.8683 4 −9711.659 7 PHD

Female) Other −17827.228 4 −17991.41 6 PHD

7 Diagnosis hemorrhagic −2933.9856 4 −2961.871 7 PHD 7.7744 21 0.996029

(73 <Age ischemic −34900.38 4 −35563.87 5 PHD

< 82 TIA −5945.4692 4 −6098.857 5 PHD

Male) Other −12558.591 4 −12792.26 7 PHD

8 Diagnosis hemorrhagic −3622.6238 4 −3588.648 8 GMD 2611.038 73 < 0.000001

(73 <Age ischemic −43332.411 4 −42399.08 8 GMD

< 82 TIA −6883.7381 4 −6561.888 6 GMD

Female) Other −13776.756 4 −13956.05 6 PHD
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node homogeneity by clustering into leaf nodes using in mixture distribution survival tree
would have been 5082.788535.

6. Discussion

This paper has presented two novel types of survival trees, phase type survival tree, and
mixture distribution survival tree, which can effectively be used for prognostication of
survival data and for clustering survival data into groups of patients following homoge-
neous patient pathways. (A patient pathway can be defined as a sequence of partially
observable states followed by a patient before absorption, i.e., before discharge or death).
These are effective tools for determining the relationship between input covariates and
outcome measures and their interrelations. They provide understanding of heterogeneity
of patient pathways stratified by covariates representing patient characteristics such as
age, gender and diagnosis. We can also use these models to estimate the length of stay
of a patient based on his/her characteristics available at the time of admission. These sur-
vival tree based models together with the model proposed by Garg et al. (2010) can be
used for better estimations of resource requirements and cost of care as it considers the
effects of individual cluster of patients, their interactions in the whole care unit and thus
the effect of demographic changes in the patient population (Garg, 2009).

The results in the above section demonstrate that using mixed distribution survival
trees we can have more homogeneous clusters and improvement in the total gain (GTotal )
in the homogeneity. We used log likelihood ratio based slitting criteria for node split and
selection. We can also use other splitting criteria such as Akaike Information Criterion
(AIC; Akaike, 1974) or Bayesian Information Criterion (BIC; Schwartz, 1978).

Mixed distribution survival trees can also be constructed using other distributions
such as General phase type, Weibull, Gamma, Beta, Bernoulli, binomial, multinomial,
Laplacian, exponential, Wishart, Dirichlet, Rayleigh, Pareto distributions etc (Nielsen
and Garcia, 2009). However, in this paper we used only Coxian PHDs and GMDs as they
represent most of the distributions from the class of exponential distributions. Exponential
and hyper exponential distributions are types of phase type distributions (Fackrell, 2009).
For shape parameter value = 1, both Gamma distributions and Weibull distributions with
location parameter value = 0, reduces to the exponential distributions (Martinez and
Martinez, 2007). Also PHDs can be used to approximate any nonnegative distribution
arbitrarily closely (Asmussen, 2003; Fackrell, 2009).

Theoretically length of stay can be defined as a continuous variable while in practice
it is recorded as a discrete number (integer or with a fixed number of decimal places).
However, for a large sample population with few ties, hospital length of stay can still
be modelled as a continuous time random variable. In the healthcare literature, many
researchers have modelled hospital length of stay as a continuous random variable (Abbi
et al., 2008; El-darzi et al., 2009; Fackrell et al., 2009; Marshall et al., 2007; Marshall
and McClean, 2004; Marshall and Zenga, 2009; McClean et al., 2007; Riihimäki et al.,
2010).
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7. Conclusion

In this paper we illustrate how phase type survival trees and mixture distribution survival
tree can be used to cluster, identify and quantify the significance and effects of various
covariates (patient characteristics such as age, gender, disease etc.) and their interaction
in prediction of patient’s length of stay in hospital. We have used splitting criteria based
on improvement of log-likelihood functions. The mixture distribution survival tree pro-
vides better improvement in the likelihood function and in the within node homogeneity.
As future work we will determine the effect of using other splitting criteria to develop
more efficient clustering. Also for continuous covariates we will develop an automated
algorithm which can be used to decide optimum cut points. Presently we are working on
using our survival tree based models together with the model proposed by Garg et al.
(2010) for better estimation of resource requirements and cost of care.
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Fazinio tipo ir skirstini ↪u mišini ↪u išgyvenamumo medžiai pacient ↪u
ligoninėse praleist ↪u dien ↪u skaičiui klasteriuoti

Lalit GARG, Sally McCLEAN, Brian MEENAN, Peter MILLARD

Klinik ↪u tyrėjai, sveikatos profesionalai ir vadybininkai dažnai ieško kriterij ↪u pacientams su-
grupuoti ↪i kliniškai reikšmingas grupes, siekiant ↪ivertinti tikėtin ↪a ligoninėje praleidžiam ↪u dien ↪u
skaiči ↪u. Šiame straipsnyje yra pasiūlyti du išgyvenamumo medži ↪u tipai, būtent, fazinio tipo iš-
gyvenamumo medžiai ir skirstini ↪u mišini ↪u išgyvenamumo medžiai, išplėtojant ankstesniuosius
darbus, skirtus eksponentiniams išgyvenamumo merdžiams. Medžiai pritaikomi pacientams su-
klasteriuoti pagal praleist ↪u logoninėje dien ↪u skaiči ↪u, atsižvelgiant ↪i amži ↪u, lyt↪i ir pirminės diag-
nozės kod ↪a, pasinaudojant tikėtinumo santykiu optimaliam sugrupavimui nustatyti. Metodui ilius-
truoti yra pasinaudojama duomenimis iš Anglijos ligonini ↪u epizod ↪u statistikos (HES) duomen ↪u
bazės apie pacientus su augli ↪u susirgim ↪u diagnoze, vyresnius negu 65 ir išrašytus iš Anglijos ligo-
nini ↪u per vienerius metus.


