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Abstract. This paper offers an analysis of HIV/AIDS dynamics, defined by CD4 levels and Viral
load, carried out from a macroscopic point of view by means of a general stochastic model. The
model focuses on the patient’s age as a relevant factor to forecast the transitions among the dif-
ferent levels of seriousness of the disease and simultaneously on the chronological time. The third
model considers the two previous features simultaneously. In this way it is possible to quantify the
medical scientific progresses due to the advances in the treatment of the HIV. The analyses have
been performed through non-homogeneous semi-Markov processes. These models have been im-
plemented by using real data provided by ISS (Istituto Superiore di Sanità, Rome, Italy). They refer
to 2159 subjects enrolled in Italian public structures from September 1983 to January 2006. The
relevant results include also the survival analysis of the infected patients. The computed conditional
probabilities show the different responses of the subjects depending on their ages and the elapsing
of time.
Keywords: non-homogeneous semi-Markov processes, survival analysis, age dependent model,
chronological time dependent model, HIV/AIDS.

1. Introduction

In this paper three non homogeneous semi-Markov (NHSM) models are proposed as
a useful tool for predicting, from a macroscopic point of view, the evolution of the Human
Immunodeficiency Virus (HIV) infection.

CD4+ and viremia characterize simultaneously the states of the model. In fact the
marker of HIV infection is the progressive depletion of a class of lymphocytes named
CD4+ whose decline leads to opportunistic infections and unusual tumours. Moreover
the presence of plasma viremia is strictly correlated with the possibility to the worsening
of the disease.

The NHSM models with respect to standard epidemiologic data analyses, have huge
advantages. They include: (a) the randomness both in the different states of the infection
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and in the time spent in each state; (b) the evolution of the infection taking into account
also the different ages of the patients; (c) the improvements of disease through inter-
related states; (d) few and weak hypotheses; (e) the conclusions are based on a list of all
computed probabilities descending directly from observed data through nonparametric
models.

Among recent papers using semi-Markov models in biomedicine see Davidov and Ze-
len (2000); Foucher et al. (2005); Mathieu et al. (2007). Apart from Foucher et al. (2005)
and Mathieu et al. (2007), in all the papers quoted the model solvability is connected to
the possibility that a patient might move through the states following the same direction.
Interestingly, our data set shows that there are no negligible probabilities of recovering
from the disease, and so the uni-directionality hypothesis for the state transitions has
been removed, as in Di Biase et al. (2007). In the quoted article, the dynamic evolution of
the infection has been analysed in a homogeneous framework using only immunological
markers. Among the fundamental statistical references see Andersen et al. (1993); Gill
(1980); Ouhbi and Limnios (1999); Limnios and Ouhbi (2005) and Dabrowska and Ho
(2006).

In the opinion of doctors, HIV fully satisfies the few, weak working hypotheses
needed.

2. HIV Evolution Scheme

Follow-up took 23 years. The retrospective study concerned a cohort of K = 2159 HIV-
positive enrolled in the Italian public structures from September 1983 to January 2006.
The database has been provided by ISS (Istituto Superiore di Sanità). The study has been
made by means of 37 041 checkups.

In order to predict the HIV evolution, we took the following immunological states
related to CD4+ counts and to viral load, as in Foucher et al. (2005) and Mathieu et al.
(2007), plus an absorbing state (the death of the patient):

state I (VL � 400 cp/ml AND CD4 > 200 × 106 cells/L);
state II (VL � 400 cp/ml AND CD4 � 200 × 106 cells/L);
state III (VL > 400 cp/ml AND CD4 > 200 × 106 cells/L);
state IV (VL > 400 cp/ml AND CD4 � 200 × 106 cells/L);
state D (absorbing state: death of the patient).

Notice that state I represents the best state for a HIV-positive patient whereas state
IV is the worst. No exact order relation between states II and III is established by Centre
Disease Control guidelines.

We make the assumption, therefore, that the HIV/AIDS infection moves between five
different grades of seriousness. All that led to the following set of states:

E = {I, II, III, IV, D}.

In Fig. 1 the graph model is pictured. It shows all the immunological states a HIV
infected patient can go into. All the states apart from than D are inter-related, and also
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Fig. 1. Immunological/viral model stages an infected patient can go into.

improvements are considered. It is also possible that an examination will show that the
patient’s state has not changed.

3. Age-Time Dependence Stochastic Model

This model uses three sequences of random variables, see Janssen and Manca (1997) and,
more recently, D’Amico et al. (2010):

Jn: Ω → E, Tn: Ω → N, An: Ω → N; n ∈ N.

The meaning of the variables is the following:
Jn represents the state at the nth transition and expresses the possible stages in which

the infection may show its level of seriousness;
Tn represents the chronological time in which the nth transition occurred;
An represents the age of the patient when she/he had the nth transition.
The process (Jn, Tn)is assumed to be a discrete time non-homogeneous Markov Re-

newal Process. The age process An is defined by the following relation:

An+1 = An + Tn+1 − Tn, (1)

where A0 is known.
The main assumption is to consider the triple (Jn, Tn, An) as a multidimensional

non-homogeneous Markov Renewal Process with kernel

Qa
ij(s, t) = P

[
Jn+1 = j, Tn+1 � t|Jn = i, Tn = s, An = a + s

]
, (2)

representing the probability that a patient is in state j of the disease at the (n + 1)th tran-
sition within chronological time t, given that at the nth transition she/he entered state i at
time s being aged a + s. In such a way the model is able to consider transition probabil-
ities taking into account both the patient’s age and the medical scientific progress due to
the chronological time effect. The medical scientific progress are due to the creation of
diagnostic medicine systems, see for example Maciulis et al. (2009).

The dependence of the transition rates on the age of the patient is considered using a
semi-Markov model with age index.

The following extensions are straightforward:

apij(s) = lim
t→∞

aQij(s, t); i, j ∈ E, s, t ∈ N, s � t, a ∈ N. (3)
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The matrix aP(s) = [apij(s)] is the transition matrix of the embedded non-
homogeneous Markov chain for all starting age a.

The probability of making next transition before time t being in state i at time s with
age a + s is given by:

aHi(s, t) = P
[
Tn+1 � t|Jn = i, Tn = s, An = a + s

]
=

∑
j∈E

aQij(s, t). (4)

The conditional waiting time distribution in state i given next state will be j is

aGij(s, t) = P
[
Tn+1 � t|Jn = i, Jn+1 = j, Tn = s, An = a + s

]
=

{
aQij(s, t)/apij(s), if apij(s) �= 0,

1, if apij(s) = 0.
(5)

Now let aN(t) = sup{n ∈ N: Tn � t|T0 = 0, A0 = a} be the number of transition
up to time t, then the NHSMP aZ(t) = JaN(t), t ∈ N can be defined. Its transition
probabilities are defined in the following way:

aφij(s, t) = P
[
aZ(t) = j|aZ(s) = i, TN(s) = s, AN(s) = a + s

]
. (6)

They are obtained by solving the following evolution equations:

aφij(s, t) = δij

(
1 − aHi(s, t)

)
+

m∑
β=1

t∑
ϑ=s+1

abiβ(s, ϑ) · a+ϑ−sφβj(ϑ, t), (7)

where

abij(s, t) = P
[
Jn+1 = j, Tn+1 = t|Jn = i, Tn = s, An = a + s

]
=

{
aQij(s, t) − aQij(s, t − 1), if t > s,

0, if t = s.

The first term δij(1 − aHi(s, t))represents the probability of staying in state i from time
s up to time t given the entrance in state i at time s with age a + s. This probability
contributes to aφij(s, t) only if i = j.

The second term
∑m

β=1

∑t
ϑ=s+1

abiβ(s, ϑ) · a+ϑ−sφβj(ϑ, t) represents the probabil-
ity of entering in any state β at any time ϑ with next transition given the entrance with last
transition in state i at time s with age a + s. Then all possible trajectories bringing from
state β at time ϑ with age a+ϑ − s to state j at time t are considered by a+ϑ−sφβj(ϑ, t).

Algorithms to solve equation (7) are described in Janssen and Manca (1998).
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The effects of non-homogeneity and that of the patient age can be translated to the
survival function and related metrics. Barbu et al. (2004) presented a homogeneous dis-
crete time semi-Markov model for reliability and survival analysis. Blasi et al. (2004)
studied the non-homogeneous case.

Here, we define reliability indicators with age dependence in the non-homogeneous
case.

Let us consider the hitting time of state D given the entrance in state i at time s with
age a + s:

aTi,D(s) = inf
{
t ∈ N, t > s: Z(t) = D

}
. (8)

Then, the non-homogeneous reliability (or survival) function with age can be defined
as follows:

aSi(s, t) = P
(
aTi,D(s) > t

)
= P

[
aZ(u) ∈ U : ∀u ∈ (s, t] ∩ N

∣∣aZ(s)= i, TN(s) =s, AN(s) = s + a
]
.

(9)

It represents the probability that the patient will survive up to time t given the entrance
into degree of illness i at time s with an age of a + s.

This probability is given by

aSi(s, t) =
∑
j∈U

aφij(s, t).

It should be noted that some common indicators in reliability theory such as the avail-
ability and maintainability are useless in our model. In fact, since the only bad state is
an absorbing one (dead of the patient), this implies that the availability and the reliability
functions correspond. Moreover, the maintainability function doesn’t make sense.

We can define the non-homogeneous age indexed failure rate:

aλi(s, t) = P
(
aTi,D(s) = t|aTi,D(s) � t

)
, (10)

and, adapting the analysis of Barbu et al. (2004) at our general framework, it is possible
to prove that

aλi(s, t) =

{
1 −

aSi(s,t)
aSi(s,t−1) , if aSi(s, t − 1) �= 0,

0, otherwise.
(11)
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The knowledge of the reliability function gives us also the possibility to compute the
conditional expected time of death:

aEDi(s) = E
[
aTi,D(s)

]
=

∑
n�s

n · P
(
aTi,D(s) = n

)
=

∑
n�s

P
(
aTi,D(s) > n

)
=

∑
n�s

aSi(s, n) =
∑
n�s

∑
j∈E

aφij(s, n). (12)

4. The Model Implementation

The proposed model is very general and provides diversified and abounding information.
To get these advantages it is necessary to pay for them and the money is the availability of
an huge database (for example from sub-Saharan Africa, Asia-Pacific region or European
database). Unfortunately our database is national. For this reason, in order to achieve
statistical significance of the results, we considered the two fundamental aspects of the
age and medical scientific progresses separately. To this end two particular cases of the
general model are implemented.

In order to consider the effects due to patient’s age we consider only two sequences
of random variables:

Jn: Ω → E, An: Ω → N; n ∈ N.

As in the general model, Jn represents the state at the nth transition, that is the pos-
sible stage in which the infection may show its level of seriousness and An represents
the age of the patient when she/he had the nth transition. It is supposed that the process
(Jn, An) is a non homogeneous Markovian renewal process with kernel Q = [Qij(s, t)]
defined in the following way:

Qij(s, t) = P
[
Jn+1 = j, An+1 � t|Jn = i, An = s

]
. (13)

It represents the probability that a patient is in state j at the (n+1)th transition within
the tth year of its life, given that she/he entered state i of the disease at age s at the nth
transition.

In order to consider the effects due to medical scientific progress we consider the
following sequences of random variables:

Jn: Ω → E, Tn: Ω → N; n ∈ N.

Jn has the same meaning as before and Tn represents the chronological time in which
the nth transition occurred. It is supposed that the process (Jn, Tn) is a non homogeneous
Markovian renewal process with kernel Q = [Qij(s, t)] defined as follows:

Qij(s, t) = P
[
Jn+1 = j, Tn+1 � t|Jn = i, Tn = s

]
. (14)
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It represents the probability that a patient is in state j of the disease at the (n + 1)th
transition within the chronological time t, given that she/he entered state i at time s with
the nth transition.

In order to get the claimed results, we need to estimate the semi-Markov kernel
Q = [Qij(s, t)] from our data set. Firstly, we introduce the following symbols:

K is the number of independent trajectories in our data set;
Jr

n is the state at nth transition of the rth patient;
T r

n is the time in which the rth subject makes the nth transition;
Ar

n is the age at nth transition of the rth patient;
Nr = Nr(T ) = sup{n ∈ N : T r

n � T } is the total number of transitions held by the
rth subject;

Nr
i = Nr

i (T ) =
∑Nr

k=1 1{Jr
k−1=i} is the number of visits of the rth subject to state i;

Ni = Ni(T ) =
∑K

r=1 Nr
i is the total number of visits of all subjects to state i.

We consider the following empirical kernel estimator, on the analogy of that defined
by Limnios and Oubhi (2005) in the homogeneous case:

∧
Qij(s, t, K) =

1
Ni

K∑
r=1

Nr∑
l=1

1{Jr
l−1=i,Jr

l
=j,Ar

l−1=s,Ar
l
�t}, (15)

in order to estimate the kernel (13) of the age dependence model and

∧
Qij(s, t, K) =

1
Ni

K∑
r=1

Nr∑
l=1

1{Jr
l−1=i,Jr

l
=j,T r

l−1=s,T r
l

�t}, (16)

in order to estimate the kernel (14) of the chronological time dependence model.
When the kernel (15) is used we discretized the time in years and the analysis is

performed using the patient age as the time scale.
When the kernel (16) is used the analysis is performed using the chronological time

as the time scale.

5. Results

As is well known from the Markov renewal process it is possible to define the semi-
Markov process denoting the state occupied by Jn for each waiting time. The evolution
of the semi-Markov process is fully determined by the kernel (2), (13) or (14) depending
on the implemented model.

5.1. Patient’s Age Dependence Results

After the kernel has been estimated from dataset using estimator (15) it is possible to solve
the corresponding evolution equation and compute several indicators useful to forecast
the disease evolution.
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Fig. 2. Transition probabilities from age 26 to age 27.

Fig. 3. Transition probabilities from age 26 to age 31.

For lack of space it is no possible to show all results. In Figs. 2 and 3 there are some of
the transitions probabilities. In particular the pictures show the conditional probabilities
to get, respectively, state j at ages 27 and 31 if the patient entered state i at age 26.

Figures 4 and 5 show the conditional probabilities to get, respectively, state j at ages
45 and 49 if the patient entered state i at age 44.

Figures 6 and 7 show some of the survival functions. In particular in Fig. 6 there are
the probabilities to survive up to ages 26, 27, 28, 29 and 30 given that the patient entered
state i being aged 25, whereas in Fig. 7 there are the probabilities to survive up to ages
45, 46, 47, 48 and 49 given that the patient entered state i being aged 44.

Finally in Figs. 8 and 9 some of the failure rates are shown.
From Figs. 2, 3, 4 and 5 it is possible to verify the validity of the non homogeneity

hypothesis. Indeed the transition probabilities are different when the age changes. For
example for a patient 26 old it is likelier to make a transition in states II or III starting
from III or IV with respect to a 44 years old patient. This effect remains when longer time
horizon are considered.
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Fig. 4. Transition probabilities from age 44 to age 45.

Fig. 5. Transition probabilities from age 44 to age 49.

Fig. 6. Survival functions from age 25 to age 30.
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Fig. 7. Survival functions from age 44 to age 49.

Fig. 8. Failure rates from ages 24 to age 29.

As expected, from survival function examination in Figs. 6 and 7, the state I results
the best and state IV the worst. Not many differences appear between states II and III for
each age.

Figures 8 and 9 reveal that young patients (s = 24) have low death probabilities dur-
ing the earlier disease years but after 4–5 years these probabilities increase significantly.
On the other hand the older patients (s = 44) have high death probabilities during the
earlier disease years but after the risk decrease.

5.2. Chronological Time Dependence Results

In this model the kernel has to be estimated by (16). The bars shown in Figs. 10 and 11
represent the probabilities to get, respectively, state j at chronological times 1992 and
1996 if the patient entered state i in 1991.
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Fig. 9. Failure rates from ages 44 to age 48.

Fig. 10. Transition probabilities from 1991 to 1992.

Fig. 11. Transition probabilities from 1991 to 1996.
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Figures 12 and 13 show the probabilities to get, respectively, state j at times 2001 and
2005 if the patient entered state i in 2000.

Figures 14 and 15 show some of the survival functions. In particular in Fig. 14 there
are the probabilities to survive up to 1992, 1993, 1994, 1995 and 1996 given that the
patient entered state i in 1991. In Fig. 15 there are the probabilities to survive up to 2001,
2002, 2003, 2004 and 2005 given that the patient entered state i in 2000.

Finally in Figs. 16 and 17 some of the failure rates are shown.
From Figs. 10, 11, 12 and 13 it is possible to verify that to get HIV-infection in 1991

is worse than in 2000. Indeed the probabilities to make transitions into state D are greater
in 1991 than in 2000. Moreover for each starting state in 2000 there is a great probability
to recover state I. This effect is considerably weaker in 1991.

As expected, from survival function examination in Figs. 14 and 15, the state I results
the best and state IV the worst. Now the medical progress effect reveals that state II is
preferable to state III.

Fig. 12. Transition probabilities from 2000 to 2001.

Fig. 13. Transition probabilities from 2000 to 2005.
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Fig. 14. Survival functions from time 1991 to time 1996.

Fig. 15. Survival functions from time 2000 to time 2005.

Figures 16 and 17 reveal that as time goes on the death rates increase when a patient
become infected in 1991. On the other hand an infection held in 2000 will show higher
death rates during the earlier disease years but after the risk decrease due to the medical
treatment.

Due to lack of space, we do not show all the results which are available upon request.

6. Concluding Remarks

In this paper, a non homogeneous semi-Markov processes approach to the dynamic evolu-
tion of the Human Immunodeficiency Virus Infection, as defined by CD4+ levels and viral
load, has been presented. Among the large number of results obtainable by our model,
there are also the probabilities of an infected patient’s survival taking into account the pa-
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Fig. 16. Failure rate from 1991 to 1996.

Fig. 17. Failure rate from 2000 to 2005.

tient’s age and the survival functions taking into account the chronological time. Indeed,
by means of the non-homogeneous model it is possible to study the dynamic evolution
of the infection differentiated according to the patient’s age and the scientific medical
progresses due to the elapsing of time. In this way the model could be useful in order
to manage the flows of patients towards hospital; in this regards it could be interesting
the applications of methods proposed by Echague and Cholvi, 2010. As the results show,
enormous advances in the treatment of HIV positive patients, have been obtained. More-
over also the age of the infected patients significantly diversifies the disease evolution.

In order to reach this goals the model has been implemented considering two different
temporal scales.

We would like to underline that this paper does not show all the possibilities of the
semi-Markov approach. In fact, by means of the backward recurrence time process it is
possible to assess different transition probabilities as a function of the duration inside the
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states. Moreover, by attaching a reward structure to the process, it is possible to carry out
a cost analysis considering, for example, the cost of anti-retroviral treatment and/or other
social costs related to the dynamic evolution of the HIV infection. This will be the object
of future research.
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ŽIV evoliucija: efekto dėl amžiaus ir medicinos progreso tyrimas

Guglielmo D’AMICO, Giuseppe DI BIASE, Jacques JANSSEN, Raimondo MANCA

Šis straipsnis tiria ŽIV/AIDS dynamik ↪a, apibrėžt ↪a CD4 lygiais ir virusine apkrova, modeliuo-
jama makroskopiniu požiūriu stochastiniais procesais. Modelis atsižvelgia ↪i paciento amži ↪u kaip ↪i
tinkam ↪a veiksn↪i nuspėti realiu laiku perėjimams tarp skirtingo sunkumo susirgimo lygi ↪u. Kitame
modelyje nagrinėjami abu minėti veiksniai kartu. Tokiu būdu tampa ↪imanoma ↪ivertinti medicinos
mokslo progres ↪a atsižvelgiant ↪i pokyčius gydant ŽIV. Analizei taikomi nehomogeniniai Markovo
procesai. Šie modeliai ↪idiegti pasinaudojus realiais ISS (Istituto Superiore di Sanitá, Roma, Itali-
ja) duomenimis. Juose nagrinėjami 2159 atvejai, užregistruoti Italijos viešosiose struktūrose nuo
1983 m. rugsėjo iki 2006 m. sausio. Atitinkami rezultatai atsižvelgia ↪i užkrėst ↪u pacient ↪u išgyvena-
mumo analiz ↪e. Apskaičiuotos s ↪alyginės tikimybės parodo skirting ↪a subjekt ↪u atsak ↪a priklausomai
nuo amžiaus ir praėjus↪i nuo užkrėtimo laik ↪a.


