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Abstract. For the purpose of exploring and modelling the relationships between a dataset and
several datasets, multiblock Partial Least Squares is a widely-used regression technique. It is de-
signed as an extension of PLS which aims at linking two datasets. In the same vein, we propose
an extension of Redundancy Analysis to the multiblock setting. We show that PLS and multiblock
Redundancy Analysis aim at maximizing the same criterion but the constraints are different. From
the solutions of both these approaches, it turns out that they are the two end points of a continuum
approach that we propose to investigate.
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1. Introduction

This paper deals with the description and the prediction of multiblock data organized in
(K + 1) blocks consisting of K explanatory blocks (X1, . . . , XK) and a Y dataset to
be explained. The first issue is to describe the multiblock tables and sum up the relation-
ships between the variables and between the datasets. For this purpose, we seek overall
variables (latent variables) which highlight the relationships between the various datasets.
The second issue is to predict Y from the K tables (X1, . . . , XK), determine which Xk

blocks are best related to the Y variables and within these blocks which variables have
an impact on Y .
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Multiblock Partial Least Squares (Wold, 1984) is a regression technique that is widely
used in the field of chemometrics, sensometrics and process monitoring for the purpose of
exploring and modelling the relationships between several datasets to be predicted from
several other datasets. Thus, not only a multiblock approach makes it possible to com-
bine several sources of information, but it also highlights the importance of each block
in the prediction of the response variables. In the case where only one block of variables
is explained by several blocks of explanatory variables, (Westerhuis et al., 1998; Qin
et al., 2001; Vivien, 2002) show that the solution obtained from the iterative algorithm of
multiblock PLS (mbPLS ) is equivalent to the solution obtained from a PLS regression
of Y and X , where X is the merged dataset, namely X = [X1|, . . . , |XK ]. Redundancy
Analysis, RA (Rao, 1964; Van Den Wollenberg, 1977), is yet another popular method
for linking two datasets. In a previous paper, we compared the merits of RA and PLS
regression (Bougeard et al., 2008). We propose to extend Redundancy Analysis to the
multiblock setting and compare this approach to mbPLS . Redundancy Analysis, also
called Principal Component Analysis with respect to Instrumental Variables, was intro-
duced by Rao (1964) and further investigated by Van der Wollenberg (1997) and Sabatier
(1984) among others. These authors gave several formulations of RA which clearly show
how this method of analysis can be seen as a regression of Y upon linear combinations of
the variables (x1, . . . , xP ) or as a principal component analysis of the Y variables where
components are constrained to be linear combinations of (x1, . . . , xP ). Similarly to PLS
regression, the components thus obtained may be used for an exploratory purpose to in-
vestigate the relationships between (x1, . . . , xP ) and Y or to set up prediction models.
This latter approach is called reduced-rank regression (Muller, 1981; Davies and Tso,
1982). For the purpose of exploring and modelling the relationships between a dataset
Y and several datasets (X1, . . . , XK), we propose, in a first stage, a new method called
multiblock Redundancy Analysis (mbRA), based on the same maximization criterion
as mbPLS with different constraints on the components to be determined. In a second
stage, we highlight the connection between multiblock Redundancy Analysis and multi-
block PLS . It turns out that mbPLS and mbRA are the two end points of a continuum
approach that we propose to investigate. As this continuum approach establishes a bridge
between mbPLS and mbRA, we shall refer to it as “multiblock Continuum Redundancy
PLS regression" (mbCR). We discuss how the proposed methods are related to other
statistical techniques. Finally, the interest of the multiblock methods and the properties
of the continuum are illustrated on the basis of a simulation study and on a real dataset in
the field of veterinary epidemiology.

2. Methods

2.1. Notations

Consider the multiblock setting where we have (K + 1) datasets: a dataset Y to be pre-
dicted from K datasets Xk (k = 1, . . . , K). The Y table contains Q variables and each
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table Xk contains pk variables. The merged dataset X is defined as [X1|, . . . , |XK ] and
contains P =

∑
k pk explanatory variables. All these quantitative variables are measured

on the same N individuals and supposed to be column centred.

2.2. Multiblock PLS Regression

Wold introduced multiblock Partial Least Squares as an alternative procedure based on
the Non-linear Iterative PArtial Least Squares (NIPALS) algorithm (Wold, 1984; Struc
and Pavesic, 2009). This algorithm was further investigated by Wangen and Kowalski
(1988). The initial method aims at linking several tables Xk (k = 1, . . . , K) to one (or
more) data table(s) Y . Westerhuis et al. (1998), Qin et al. (2001), Vivien (2002) showed
that the solution obtained from the iterative algorithm of mbPLS is equivalent to the
solution obtained from a PLS regression of Y and X where X is the merged dataset.
More precisely, Vivien (2002) proved that mbPLS seeks, in a first step, a component
t(1) = Xw(1) which is highly related to a component u(1) = Y v(1) and which sums
up partial components t

(1)
k respectively associated with the blocks Xk. More formally,

mbPLS consists in maximizing criterion (1):

cov2
(
u(1), t(1)

)
with t(1) =

K∑
k=1

a
(1)
k t

(1)
k , u(1) = Y v(1), t

(1)
k = Xkw

(1)
k ,

K∑
k=1

a
(1)2

k = 1, ‖w
(1)
k ‖ = ‖v(1)‖ = 1.

(1)

The optimal vector of loadings w(1) is given by the eigenvector of the matrix (X ′Y Y ′X)
associated with the largest eigenvalue λ

(1)
mbPLS (Westerhuis et al., 1998). The vector v(1)

is given by the eigenvector of MmbPLS = (Y ′XX ′Y ) associated with the same eigen-
value. Thereafter the partial vectors of loadings w

(1)
k are given by w

(1)
k = w

(1)∗
k /‖w

(1)∗
k ‖

where w
(1)∗
k are the block sub-vectors of w(1), namely w(1) = [w(1)∗

1 |, . . . , |w(1)∗
K ]′

(Qin et al., 2001). It is clear that a
(1)
k = ‖w

(1)∗
k ‖ which indeed fulfills the constraint∑

k a
(1)2

k = 1.
Thereafter, the same analysis is performed by replacing (X1, . . . , XK) by their resid-

ual in the orthogonal projection onto the subspace spanned by the first global component
t(1) (Westerhuis and Smilde, 2001). This process is reiterated in order to determine sub-
sequent components. It is worth noting that Wangen and Kowalski (1988) use a block
score deflation, i.e., deflation of each block Xk with respect to its associated partial com-
ponent tk. This leads to a slightly different mbPLS strategy of analysis.

2.3. Proposition of a Multiblock Redundancy Analysis

For the purpose of exploring and modelling the relationships between two data tables
X = (x1, . . . , xP ) and Y , it has been shown that Redundancy Analysis and PLS re-
gression are based on the same criterion to maximize, namely cov2(t, u) with t = Xw
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and u = Y v, associated with different norm constraints imposed on the components to
be determined (Burnham et al., 1996; Bougeard et al., 2008). More precisely, PLS re-
gression imposes the constraints ‖w‖ = ‖v‖ = 1 whereas Redundancy Analysis imposes
the constraints ‖t‖ = ‖v‖ = 1. In the same vein as mbPLS , we propose an extension of
Redundancy Analysis to the multiblock setting. This leads us to consider the following
maximization problem (2).

cov2(u(1), t(1)) with t(1) =
K∑

k=1

a
(1)
k t

(1)
k , u(1) = Y v(1), t

(1)
k = Xkw

(1)
k ,

K∑
k=1

a
(1)2

k = 1, ‖t
(1)
k ‖ = ‖v(1)‖ = 1.

(2)

As previously, the method derives a global component t(1) = Xw(1) oriented towards the
explanation of Y , that sums up partial components t

(1)
k for k = (1, . . . , K) respectively

associated with the blocks Xk. In the case where there is only one block of explanatory
variables (K = 1), it is clear that multiblock Redundancy Analysis (mbRA) amounts to
RA.

Replacing the global component t(1) by its expression as a linear combination of
the partial components t

(1)
k , we are led to maximizing the criterion cov2(u(1), t(1)) =

[
∑

k a
(1)
k cov(u(1), t

(1)
k )]2 under the constraints stated above. The optimal solutions are

given by:

a
(1)
k =

cov(u(1), t
(1)
k )√∑K

l=1 cov2(u(1), t
(1)
l )

.

Therefore the criterion to be maximized amounts to
∑K

k=1 cov2(u(1), t
(1)
k ). The maxi-

mization problem becomes (3):

K∑
k=1

cov2
(
u(1), t

(1)
k

)
with t

(1)
k = Xkw

(1)
k ,

u(1) = Y v(1), ‖t
(1)
k ‖ = ‖v(1)‖ = 1. (3)

The criterion (3) highlights the optimal link between datasets Y and (X1, . . . , XK). It
follows:

K∑
k=1

cov2
(
u(1), t

(1)
k

)
=

∑
k

[
w

(1)′

k X ′
ku(1)

]2 =
∑

k

[
b
(1)′

k (X ′
kXk)−1/2X ′

ku(1)
]2

, (4)

where b
(1)
k is defined as b

(1)
k = (X ′

kXk)1/2w
(1)
k . In the previous equations, we have

dropped the term 1/N from the expression of the covariance, for simplicity sake. The
constraint ‖t

(1)
k ‖ = 1 can be expressed as ‖b

(1)
k ‖ = 1. The maximization of the criterion
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(4) leads to b
(1)
k = (X ′

kXk)−1/2X ′
ku(1)/‖(X ′

kXk)−1/2X ′
ku(1)‖. Including this expres-

sion in criterion (4) and replacing u(1) by Y v(1), we are led to:

K∑
k=1

cov2
(
u(1), t

(1)
k

)
=

∑
k

v(1)′
Y ′Xk

(
X ′

kXk

)−1
X ′

kY v(1). (5)

It directly follows that the solution is given by v(1) the normalized eigenvector of the
matrix MmbRA =

∑
k Y ′Xk(X ′

kXk)−1X ′
kY associated with the largest eigenvalue

λ
(1)
mbRA. The partial components (t(1)1 , . . . , t

(1)
K ) are therefore given by t

(1)
k = Xkw

(1)
k =

Xk(X ′
kXk)−1/2b

(1)
k = PXk

u(1)/‖PXk
u(1)‖, where PXk

= Xk(X ′
kXk)−1X ′

k is the
projector onto the subspace spanned by the Xk variables. The partial components
(t(1)1 , . . . , t

(1)
K ) are given by the projection of u(1) on each subspace respectively

spanned by X1, . . . and XK . The coefficients a
(1)
k can also be given by a

(1)
k =

cov(u(1), t
(1)
k )/

√∑
l cov2(u(1), t

(1)
l ) = ‖PXk

u(1)‖/
√∑

l ‖PXl
u(1)‖2. These coeffi-

cients reflect the link between the Y and the Xk datasets for k = (1, . . . , K). This implies

that the global component t(1) =
∑

k a
(1)
k t

(1)
k =

∑
k PXk

u(1)/
√∑

l ‖PXl
u(1)‖2.

We recall that the optimal solution of the maximization of the criterion (2) is based
on the eigenvector of the matrix MmbRA =

∑
k Y ′Xk(X ′

kXk)−1X ′
kY . Because pro-

jectors are symmetric and idempotent (P 2
Xk

= PXk
), it follows that MmbRA =∑

k(PXk
Y )′(PXk

Y ). From this standpoint, mbRA appears as a principal component
analysis of the table obtained by the vertical concatenation of the projection of Y onto
each subspace spanned by the Xk blocks. Moreover, criterion (5) can also be written as:

(5) = v(1)′
Y ′

K∑
k=1

PXk
Y v(1) = u(1)′ ∑

k

PXk
u(1) =

∑
k

var
(
PXk

u(1)
)
. (6)

It follows that mbRA consists in maximizing the sum of the variance of the projections
of u(1) = Y v(1) onto the subspace spanned by the Xk variables.

As a summing up, the various components in mbRA can be determined as follows:

1. Compute PXk
= Xk(X ′

kXk)−1X ′
k and MmbRA =

∑
k(PXk

Y )′(PXk
Y ).

2. Compute v(1), the normalized eigenvector of MmbRA associated with the largest
eigenvalue and set u(1) = Y v(1).

3. Set t
(1)
k = PXk

u(1)/‖PXk
u(1)‖.

4. Set t(1) =
∑

k PXk
u(1)/

√∑
k ‖PXl

u(1)‖2.

In order to obtain second order solutions, i.e., a global component t(2) and partial compo-
nents (t(2)1 , . . . , t

(2)
K ) and u(2), we propose to follow the same strategy as mbPLS . This

consists in deflating the (X1, . . . , XK) datasets by projection onto t(1) and considering
the residuals. Subsequent components can be found by reiterating this process.
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2.4. Continuum Between Multiblock PLS and Multiblock Redundancy Analysis

It turns out that mbRA and mbPLS regression are respectively based on the eigenstruc-
ture of matrices MmbRA =

∑
k Y ′Xk(X ′

kXk)−1X ′
kY and MmbPLS = Y ′XX ′Y =∑

k Y ′X ′
kXkY . Thus, it appears that mbPLS corresponds to a shrinkage of matrices

(X ′
kXk)−1 towards the identity matrices Ipk

for k = (1, . . . , K). From this standpoint,
we can adopt a gradual shrinkage of the matrices (X ′

kXk)−1 towards Ipk
by considering

a convex combination of these matrices (Saudargiene, 1999). More precisely for a scalar
γ comprised between 0 and 1, the various components of the continuum approach can be
determined as follows:

1. Compute PXk,γ = X ′
k[(1 − γ)(X ′

kXk) + γIpk
]−1Xk and

Mγ =
∑

k(PXk,γY )′(PXk,γY ).
2. Compute v

(1)
γ the normalized eigenvector of Mγ associated with the largest eigen-

value λ
(1)
γ and set u

(1)
γ = Y v

(1)
γ .

3. Set w
(1)
k,γ = [(1 − γ)(X ′

kXk)+γIpk
]−1X ′

ku
(1)
γ /‖Xk[(1 − γ)(X ′

kXk)+γIpk
]−1/2 ·

X ′
ku

(1)
γ ‖ and then the partial components t

(1)
k,γ = Xkw

(1)
k,γ .

4. Set the coefficients a
(1)
k,γ = cov(u(1)

γ , t
(1)
k,γ)/

√∑
l cov2(u(1)

γ , t
(1)
l,γ ) and then set the

global component t
(1)
γ =

∑
k a

(1)
k,γt

(1)
k,γ or set directly

t
(1)
γ =

∑
k PXk,γu

(1)
γ /

√∑
k ‖PXl,γu

(1)
γ ‖2.

It is clear that the case (γ = 0) corresponds to mbRA applied to the datasets
(Y, X1, . . . , XK) whereas the case (γ = 1) corresponds to mbPLS . We shall refer to
this strategy of analysis as multiblock Continuum Redundancy PLS regression (mbCR).
As previously, subsequent components can be obtained by a stagewise procedure by de-
flating the Xk datasets with respect to the global components obtained in earlier stages.

The introduction of parameter γ is intended to prevent the instability of the prediction
models in case of multicolinearity among the variables in Xk. Indeed, the sensitivity
to multicolinearity can be reflected by the condition index (Belsley et al., 1980). The
condition index ηk of matrix (X ′

kXk) is the ratio of its largest eigenvalue λ
(1)
k to its

smallest eigenvalue λ
(pk)
k of matrix (X ′

kXk). A large value of ηk flags the presence of
multicolinearity among Xk which is likely to lead to an unstable model. The condition
index of each matrix [(1 − γ)X ′

kXk + γIpk
] is given by:

ηk,γ =
[(1 − γ)λ(1)

k + γ]

[(1 − γ)λ(pk)
k + γ]

for k = (1, . . . , K).

It is easy to prove, by considering its derivative with respect to γ, that each ηk,γ de-
creases when γ increases. Within mbCR, mbPLS corresponds to the smallest values
of ηk,γ whereas mbRA corresponds to the largest ones. Thus, parameter γ stands as a
regularization parameter as it improves the conditioning of each matrix (X ′

kXk).
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2.5. Prediction of Y from (X1, . . . , XK)

For all the methods previously described, e.g., mbPLS , mbRA and mbCR, the predic-
tion of the Y variables can be obtained by regressing the Y variables onto the global
components (t(1), . . . , t(h)). These components being orthogonal by construction, the Y

table is split up into: Y = t(1)c(1)′
+ · · · + t(h)c(h)′

+ Y (h), Y (h) being the matrix of
residuals. Moreover, the global components can be expressed as linear combinations of
X: t(1) = Xw∗(1), . . . , t(h) = Xw∗(h). The vectors of loadings w∗ and c are defined as
in PLS regression. This leads to the model (7):

Y = X
[
w∗(1)c(1)′

+ · · · + w∗(h)c(h)′ ]
+ Y (h). (7)

From a practical point of view, the final model may be obtained by selecting the optimal
number h of components to be introduced in the model and the γ parameter, by a valida-
tion technique such as cross-validation (Stone, 1974). This consists in splitting the whole
dataset into two sets, namely a calibration set and a validation set. The calibration set is
used to select the parameters of the model and the root mean square error of calibration
(RMSEC) which reflects the fitting ability of the model. The validation set is used to
compute the root mean square error of validation (RMSEV ) which reflects the prediction
ability of the model under consideration.

RMSE (h) = ‖Y − Ŷ (h)‖/
√

Q, (8)

where Ŷ (h) is the matrix of predicted values from a model with h components. There-
after, this procedure is repeated several times. For each number h of components to be
introduced in the model, the optimal value of γ is determined by minimizing RMSEV .
Among all these models corresponding to the various values of h, a compromised model
with a correct fitting ability and a good prediction ability is retained.

2.6. Alternative Methods

It is worth mentioning that several methods are proposed in the literature in order to in-
vestigate the relationships among datasets. Among these methods, we can distinguish
strategies of analysis which fit into the framework of generalized canonical analysis
(Horst, 1961; Carroll, 1968). We refer to Kissita (2003) for a review of such methods.
Another family of methods pertains to PLS regression and its extensions. We refer to
Vivien (2002) for a detailed discussion of these methods. PLS path modelling, PLS–PM
(Wold, 1982; Markauskaite, 2001) and more generally structural equation modelling are
also worth mentioning in this context. The Generalized Structured Component Analysis,
GSCA (Hwang and Takane, 2004), as an alternative method to PLS–PM may also be
mentioned. However, this method pertaining to the field of structural equation modelling
follows a specific pattern of analysis based on conceptual models which should be set up
by the user beforehand. Among all these techniques of analysis, we single out those meth-
ods which are based on the same maximization criterion as mbPLS and mbRA. Gener-
alized canonical analysis with a reference table, GCART (Kissita, 2003) fits within the
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framework of generalized canonical analysis, whereas generalized concordance analysis,
CONCORg (Lafosse and Ten Berge, 2006) and Orthogonal Multiple Co-Inertia Analy-
sis, OMCIA (Vivien et al., 2005) fit within the framework of PLS regression. A main
difference of these methods with mbPLS on the one hand and mbRA on the other hand,
lies in the fact that these methods focus on the partial components rather than the global
components. This is in particular reflected by the adopted deflation procedure which con-
sists in deflating with respect to the vectors of loadings within each dataset (CONCORg)
or the partial components (OMCIA and ACGTR). Therefore, within each dataset, the
vector of loadings or the partial components are orthogonal, but not the global compo-
nents. We believe that the global components give more insight into the problem under
study and give valuable tools both for the prediction and the investigation of the relation-
ships among datasets as will be illustrated in the next section (Westerhuis and Smilde,
2001) .

3. Applications

For the purpose of comparing the performances of the methods, we apply multiblock
PLS regression, multiblock Redundancy Analysis and the continuum approach to a sim-
ulation study and to a real dataset pertaining to the field of veterinary epidemiology.

3.1. Simulation Study

A simulation study is conducted in order to investigate the performance of the three meth-
ods under study, e.g., mbPLS , mbRA and mbCR. A simplified model is specified which
involves three datasets X1, X2 and Y with two variables per dataset. The conditions con-
sidered in this simulation study are the size of multicolinearity among the variables in
Xk and the sample size. The multicolinearity within X1 and X2 is set to be identical
and varied at three levels (low, Cor = 0.1; medium, Cor = 0.5; high, Cor = 0.9).
The average correlation between variables in Xk and Y is set to 0.3. Furthermore, five
different sample size are considered (N = 15, 25, 50, 100, 200). At each level of the
experimental conditions, i.e., the three levels of multicolinearity times the five levels of
the sample sizes, one hundred samples are randomly generated. The methods mbPLS ,
mbRA and mbCR are applied to each sample. The performance of these three methods
is evaluated on the basis of a cross-validation procedure, described in Section 2.5, re-
peated one hundred times. Fitting ability (RMSEC) and prediction ability (RMSEV ) are
computed using respectively the calibration set and the validation set. As these measures
express a lack of fit, the smaller they are, the better the method of analysis is. Moreover,
for mbCR, the optimal value of the tuning parameter γ is automatically selected in each
sample in accordance with the procedure described in Section 2.5. The average value of
γ is given for each level of the experimental conditions. Results for all methods under
the different conditions, for a model based on the first global component, are given in
Table 1.
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Table 1

Fitting ability (Rc = RMSEC ) and prediction ability (Rv = RMSEV ) obtained from multiblock PLS (mbPLS ), multiblock Re-
dundancy Analysis (mbRA) and multiblock Continuum Redundancy PLS regression (mbCR) under different simulation conditions.
For mbCR, the average optimal tuning parameter (γopt) is also given

mbRA (γ = 0) mbPLS (γ = 1) Continuum mbCR (γopt)

Cor = 0.1 Cor = 0.5 Cor = 0.9 Cor = 0.1 Cor = 0.5 Cor = 0.9 Cor = 0.1 Cor = 0.5 Cor = 0.9

N = 15 Rc = 0.66 Rc = 0.72 Rc = 0.73 Rc = 0.67 Rc = 0.71 Rc = 0.75 Rc = 0.67 Rc = 0.71 Rc = 0.74

Rv = 0.79 Rv = 0.84 Rv = 0.88 Rv = 0.77 Rv = 0.81 Rv = 0.83 Rv = 0.75 Rv = 0.79 Rv = 0.81

γopt = 0.65 γopt = 0.71 γopt = 0.61

N = 25 Rc = 0.71 Rc = 0.76 Rc = 0.78 Rc = 0.71 Rc = 0.76 Rc = 0.79 Rc = 0.71 Rc = 0.76 Rc = 0.79

Rv = 0.80 Rv = 0.86 Rv = 0.88 Rv = 0.79 Rv = 0.83 Rv = 0.85 Rv = 0.78 Rv = 0.83 Rv = 0.84

γopt = 0.65 γopt = 0.74 γopt = 0.64

N = 50 Rc = 0.75 Rc = 0.81 Rc = 0.83 Rc = 0.76 Rc = 0.81 Rc = 0.83 Rc = 0.75 Rc = 0.81 Rc = 0.83

Rv = 0.81 Rv = 0.87 Rv = 0.89 Rv = 0.81 Rv = 0.86 Rv = 0.88 Rv = 0.80 Rv = 0.85 Rv = 0.87

γopt = 0.67 γopt = 0.75 γopt = 0.70

N = 100 Rc = 0.77 Rc = 0.83 Rc = 0.86 Rc = 0.78 Rc = 0.83 Rc = 0.86 Rc = 0.78 Rc = 0.83 Rc = 0.86

Rv = 0.81 Rv = 0.86 Rv = 0.90 Rv = 0.81 Rv = 0.86 Rv = 0.89 Rv = 0.81 Rv = 0.86 Rv = 0.89

γopt = 0.69 γopt = 0.80 γopt = 0.71

N = 200 Rc = 0.79 Rc = 0.84 Rc = 0.87 Rc = 0.79 Rc = 0.84 Rc = 0.87 Rc = 0.79 Rc = 0.84 Rc = 0.87

Rv = 0.81 Rv = 0.87 Rv = 0.90 Rv = 0.81 Rv = 0.86 Rv = 0.89 Rv = 0.81 Rv = 0.86 Rv = 0.89

γopt = 0.69 γopt = 0.76 γopt = 0.75
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Table 2

Comparison of methods with respect to their fitting and prediction ability under different simulation condi-
tions: proportion of times that the methods, i.e., multiblock Redundancy Analysis (mbRA), multiblock PLS

(mbPLS ) or multiblock Continuum Redundancy PLS regression (mbCR), outperform each other

Compared N Cor = 0.1 Cor = 0.5 Cor = 0.9

methods Fitting ab. Prediction ab. Fitting ab. Prediction ab. Fitting ab. Prediction ab.

mbRA > mbPLS 15 83% 29% 81% 8% 90% 11%

25 78% 27% 75% 4% 91% 13%

50 84% 34% 71% 5% 84% 11%

100 83% 31% 75% 15% 89% 3%

200 73% 42% 73% 24% 87% 7%

mbCR > mbPLS 15 80% 100% 67% 100% 84% 100%

25 77% 100% 66% 100% 84% 100%

50 79% 100% 54% 100% 73% 100%

100 68% 100% 70% 100% 76% 100%

200 60% 100% 63% 100% 75% 100%

mbCR > mbRA 15 22% 100% 20% 100% 9% 100%

25 27% 100% 20% 100% 8% 100%

50 20% 100% 29% 100% 15% 100%

100 16% 100% 27% 100% 9% 100%

200 34% 100% 26% 100% 13% 100%

When the level of multicolinearity increases, regardless of the sample size and the
method, RMSEC and RMSEV become also larger. In presence of high multicolinearity
within the Xk datasets, the performance of mbRA, mbPLS and mbCR decreases. For
mbCR, the average γ value is higher for a medium level of multicolinearity within Xk

(Cor = 0.5) than for a high or a low level (Cor = 0.1 or Cor = 0.9). As expected,
on the one hand, multiblock Redundancy Analysis has a better fitting ability than multi-
block PLS especially when the level of multicolinearity is low. On the other hand, multi-
block PLS has a better prediction ability for medium and high level of multicolinearity.
The multiblock Continuum Redundancy PLS regression has a good and comparable fit-
ting ability to mbRA. Moreover, whatever the size of the sample size and the level of
multicolinearity, mbCR has a better fitting ability than mbPLS and mbRA. Results can
also be viewed from a more general perspective by computing the number of times that
the methods outperform each other (Table 2). It can be seen that, overall, mbRA has a
better fitting ability than mbPLS and mbCR and, contrariwise, it is less effective insofar
as the prediction is concerned. mbCR outperforms the other two methods in terms of
prediction ability.

3.2. Case Study

The dataset consists in the measurements of several variables on 404 chicken flocks
that were studied during rearing, transport and at slaughterhouse (Lupo et al., 2008).
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The Y table to be explained contains two quantitative variables which reflect the official
reasons for condemnation at slaughterhouse, i.e., rate of infectious (INFECT ) or trau-
matic (TRAUMA) origin. The explanatory table is organized in three blocks. Table X1

contains 26 variables pertaining to the rearing features. Table X2 contains 11 variables
which refer to the transport conditions between farm and slaughterhouse. Table X3 con-
tains 4 variables pertaining to the slaughtering conditions. The condition index computed
for each explanatory table flags the presence of multicolinearity in X1. Indicator (dummy)
variables are considered for the categorical variables. Variables are column centred and
scaled to unit variance.

The relationships between (X1, X2, X3) and Y can be investigated using the global
components (t(1), . . . , t(h)). The graphical displays in Fig. 1 depict the loadings associ-
ated with the first two components t(1) and t(2) for mbRA (γ = 0) and mbPLS regression
(γ = 1). It highlights the relationships among the explanatory variables from X1, X2 and
X3, and makes it possible to identify some risk factors associated with the condemnation
reasons (Y table). The graphical displays associated with mbRA and mbPLS show that
the Y variables are strongly related to the first two components. For simplicity sake, we
will only interpret the graphical display associated with mbRA. The condemnation rate
at slaughterhouse for infectious reason (INFECT ) is in particular associated with the
age of the poultry house (ebanage in X1), the frequency of visits of the farmer to the
poultry house during the starting period (EPassage in X1) and the standard chicken type
(eilotyp5 in X1), among others. The condemnation rate at slaughterhouse for traumatic
reason (TRAUMA) is in particular linked to the presence of an operator at the eviscera-
tion line (ievinbr in X3) and the average lairage time at the slaughterhouse (dattentemoy
in X2), among others. This means that particular care with respect to these variables
should be taken in order to reduce the number of carcasses which are condemned at
slaughterhouse.

Fig. 1. Plots of the variable loadings associated with the first two components, for mbRA and mbPLS .
13 (resp. 14) variables that were not deemed important for the interpretation of the mbRA (resp. mbPLS )
graphical display were discarded from the plot (although these variables were included in the analysis). Y vari-
ables are bold with a grey background, X1 variables are normal, X2 variables are slanted and X3 variables are
bold.
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Fig. 2. Fitting and prediction ability as functions of the number of components introduced in the model. Com-
parison of mbCR (optimal parameter), mbRA (γ = 0), mbPLS (γ = 1).

The choice of the optimal model (i.e., optimal number of components and γ param-
eter) is a compromise achieved by both minimizing the root mean square error of cali-
bration (RMSEC ) and validation (RMSEV ), which respectively reflect the fitting ability
and the prediction ability of the model under consideration. The cross-validation pro-
cedure is repeated (m = 200) times by setting one third of the individuals out and
by varying the γ value from 0 to 1 with an increment of 0.01. We undertake a com-
parison of mbCR, mbRA and mbPLS on the basis of RMSEC and RMSEV criteria.
Figure 2 shows RMSEC and RMSEV criteria as functions of the number h of compo-
nents (t(1), . . . , t(h)) introduced in the model. It can be seen in Fig. 2 that mbCR, mbRA
and mbPLS have comparable fitting abilities, although mbRA slightly outperforms the
other methods. Insofar as the prediction is concerned, the continuum approach mbCR
outperforms mbPLS and mbRA especially for the first four dimensions. We can notice
that the performances of the methods under study, especially the fitting ability, depend
on the number of components introduced in the model. It leads to the usual dilemma be-
tween performance (i.e., keep a large number of components) and parsimony (i.e., reduce
the number of components). A compromise between a correct fitting and a good predic-
tion ability makes the choice easier and leads to a model with two components for all
the methods considered herein. The best method to predict Y from (X1, X2, X3) is ob-
tained by mbCR with two components. For a two-dimensional model, the median value
from (m = 200) cross-validations of the optimal γ parameter is 0.98. The median value
is given because the optimal parameter distribution is bimodal: 17% of the γ value are
comprised between 0 and 0.19 and 83% between 0.77 and 1. This kind of optimal param-
eter value, close to one of the bound of the continuum, is also found in other continuum
methods (Gonzalez et al., 2008; Hwang, 2009).

The importance of each block Xk for explaining Y is reflected by the coefficients

a
(h)2

k for a given dimension h. For h components introduced in the model, the im-

portance of the block Xk is given by the average value ak
(1−h)2 of the coefficients

(a(1)2

k , . . . , a
(h)2

k ) associated with dimensions (1, . . . , h). Table 3 gives the importance
of the rearing features (X1), the transport conditions (X2) and the slaughtering conditions
(X3) in the explanation of the official reasons for condemnation at slaughterhouse (Y ).



From Multiblock Partial Least Squares to Multiblock Redundancy Analysis 23

Table 3

Importance of (X1, X2, X3) in the Y explanation for the optimal model with (h = 2) components. Compar-
ison of the block weight of multiblock Redundancy Analysis (γ = 0), continuum mbCR (γopt. = 0.98) and
multiblock PLS (γ = 1)

mbRA (γ = 0) mbCR (γopt. = 0.98) mbPLS (γ = 1)

%a1
(1−2)2 51% 51% 48%

%a2
(1−2)2 39% 39.5% 44%

%a3
(1−2)2 10% 9.5% 8%

Total 100% 100% 100%

As discussed above, a prediction model can be set up by regressing the Y variables
on the basis of the first two global components. Table 4 gives a comparison of the re-
gression coefficients obtained by mbRA, mbCR and mbPLS . We use the results of the
(m = 200) cross-validated regression coefficients in order to compute the standard devi-
ations for the various coefficients. Each variable from X is considered to be significantly
linked with each variable from Y when the 95% confidence interval associated with the
regression coefficient does not contain zero. It turns out that 19 (46%) explanatory vari-
ables are interpreted in a same way whatever the method used. For example, the variable
eprod1 (i.e., presence of other animal productions on the farm, in X1) is a risk factor
both for the infectious and the traumatic reasons for all the methods under study. We
can notice that 15 (37%) explanatory variables have a different interpretation when us-
ing mbPLS instead of mbRA or mbCR. For example, the variable denstransa (i.e.,
chicken density in crates, in X2) is highlighted as a risk factor for infectious reason only
by mbPLS (positive regression coefficients). The X variables which most influence Y ,
especially the infectious reason (INFECT ), are in particular the frequency of visits of
the farmer to the poultry house during the starting period (EPassage , in X1), the area
of the poultry house (exsurf500 , in X1) and factors related to whether the production
is made with standard chicken (eilotyp5 , in X1) or the presence of the farmer during
bird crating (enlelev1 , in X2). This means that particular care with respect to these vari-
ables should be taken in order to reduce the number of carcasses which are condemned
at slaughterhouse.

4. Concluding Remarks

For the purpose of exploring and modelling the relationships between one block of vari-
ables Y and several blocks of explanatory variables (X1, . . . , XK), we propose an ex-
tension of Redundancy Analysis in order to improve the fitting ability of multiblock PLS
regression. As mbPLS and mbRA are based on the same criterion to be maximized asso-
ciated with different norm constraints, we also investigate a continuum approach, called
multiblock Continuum Redundancy PLS regression (mbCR). The key feature of this ap-
proach is the shrinkage of the variance-covariance matrices (X ′

kXk) towards the identity
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Table 4

Comparison of the regression coefficients of X = [X1|X2|X3] on Y using two global components. X vari-
ables which have a regression coefficient with an asterisk have a significant link with Y

Block Variable mbRA (γ = 0) mbCR (γ = 0.98) mbPLS (γ = 1)

INFECT TRAUMA INFECT TRAUMA INFECT TRAUMA

X1 ebasax100 0.02 −0.05 0.03 −0.05 0.01 −0.04∗
cchaleur 0.04 0.01 0.04 0.01 0.04 0.04
ebabor1 −0.04 −0.07* −0.03 −0.08* −0.01 −0.06*
ebanage 0.10* 0.01 0.09* 0.01 0.01 −0.01
ebchauf1 −0.04 −0.01 −0.05 −0.01 −0.02 −0.02
ebdetrem1 −0.07* −0.08* −0.05 −0.08* −0.02 −0.06*
EBlum −0.07* −0.05* −0.06* −0.05 −0.02 −0.06*
ebomat4 0.03 −0.07* 0.03 −0.07* −0.01 −0.06 *
ecstress1 0.03 0.04 0.04 0.04 0.05* 0.05*
edesins2 −0.08* −0.01 −0.08* −0.01 −0.03 −0.03
eilotyp4 −0.08 0.06 −0.03 0.06 0.04 0.04
eilotyp5 −0.19* 0.10* −0.14* 0.10* 0.00 0.09*
EPassage −0.26* 0.00 −0.19* −0.02 −0.05* −0.07*
eprod1 −0.13* −0.05* −0.12* −0.06* −0.05* −0.07*
ESatpres1 0.07 0.01 0.05 0.01 −0.02 0.01
eshomo1 0.07 −0.03 0.07* −0.04 0.01 −0.02
estri1 −0.06 −0.02 −0.05 −0.02 0.02 −0.01
exsurf500 −0.25* −0.01 −0.24* −0.01 −0.09* −0.01
exsurfpc 0.06 0.04 0.06 0.04 0.03* 0.02
frac −0.02 −0.01 −0.01 0.00 0.02 −0.01
pesmor2 0.09 0.02 0.09* 0.02 0.06* 0.04*
pesmor 0.11 0.04 0.09* 0.04 0.06* 0.06*
psani1 0.06* 0.02 0.06* 0.02 0.03* 0.01
reso5 −0.08 −0.04 −0.05 −0.03 0.03 0.00
souche3 0.18 0.00 0.08* 0.03 0.06* 0.03
symp −0.03 0.07 0.04 0.04 0.06* 0.03

X2 enlcais2 −0.11* −0.05 −0.11* −0.06 −0.07* −0.08*
enlcharg 0.00 −0.13* 0.00 −0.13* −0.03 −0.09*
enlelev1 −0.18* −0.02 −0.17* 0.00 −0.07* 0.02
iplum1 0.07* 0.05 0.07* 0.05 0.06* 0.02
iras1 −0.05 −0.03 −0.05 −0.03 −0.04* −0.03
isolei1 −0.15* −0.08* −0.13* −0.06* −0.02 −0.06*
pmenl −0.04 −0.16* −0.04 −0.16* −0.04 −0.13*
pmortrans 0.14* −0.12 0.11* −0.07 0.08* −0.01
denstransa −0.04 0.14 0.00 0.08 0.07* 0.02
dattentemoy −0.04 −0.05 −0.04 −0.05 −0.03 −0.06*
dcais 0.09* 0.01 0.09* 0.00 0.04* 0.00

X3 ievinbr 0.08* 0.14* 0.07* 0.13* 0.04 0.09*
ilaic1 −0.02 0.06* −0.02 0.06* 0.01 0.05*
inspeca3 −0.08 −0.13* −0.07* −0.10* −0.05* −0.06*
naxpop1000 −0.03 0.03 −0.04 0.00 −0.05* −0.03*

matrices. This continuum is easy to grasp and implement because the solutions are de-
rived from an eigenanalysis of a matrix. The practical advantage of the mbCR approach
lies in the fact that the tuning parameter makes it possible to explore a wide range of
methods in order to find an optimal set of coefficients. This approach gives a unified
framework so as to deal with potential multicolinearity problems.
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The tuning parameter stands as a regularization parameter as it improves the condi-
tioning of each matrix (X ′

kXk). The optimal value of this parameter may be determined
through a cross-validation procedure. From the simulation study, we show that multiblock
Redundancy Analysis has a better fitting ability than multiblock PLS but has a lower pre-
diction ability for medium and high level of multicolinearity. The continuum approach
can be viewed as a ridge-type regularization of multiblock Redundancy Analysis. We
show that whatever the size of the sample size and the level of multicolinearity, mbCR
has similar or better fitting and prediction ability than mbPLS and mbRA. From the case
study, we found that mbCR slightly outperforms mbPLS and mbRA. To summarize, we
can advice to use mbCR in lieu of mbRA or mbPLS when the level of multicolinearity
is high. When no multicolinearity occurs, the proposed multiblock Redundancy Analysis
could be recommended.

Moreover, further research is needed in order to investigate more deeply the bene-
fits gained from introducing the regularization procedure considering that it entails the
cost of introducing a new parameter. Another topic for future research is to investi-
gate the connection between the tuning parameter and the number of components to
be introduced in the model. Different tuning parameters (γ1, . . . , γK) could also be
included in the model, depending of the level of multicolinearity within each datasets
(X1, . . . , XK).
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Nuo daugiabloki ↪u mažiausi ↪u kvadrat ↪u iki daugiablokės pertekliškumo
analizės: kontinumo metodas
Bougeard STÉPHANIE, Qannari El MOSTAFA, Lupo CORALIE, Hanafi MOHAMED

Daugiablokis dalinis mažiausi ↪u kvadrat ↪u (DMK) metodas yra dažnai taikomas regresiniuose
uždaviniuose, tiriant ir modeliuojant s ↪aryšius tarp duomen ↪u bazės ir keli ↪u duomen ↪u bazi ↪u. Šis
metodas yra DMK, susiejančio dvi duomen ↪u bazes, apibendrinimas. Darbe yra pasiūlytas DMK
plėtinys daugiablokėje formuluotėje. Parodyta, kad daugiablokis DMK ir daugiablokė pertek-
liškumo analizė maksimizuoja t ↪a pat↪i kriterij ↪u skirtingais ribojimais. Pasirodo, abu sprendiniai
priklauso tai pačiai kontinumo aibei, tiriamai darbe.


