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1. Introduction

In this paper, we consider the stochastic differential equation

Xt = c +

t∫
0

f(Xs) ds +

t∫
0

g(Xs) dBH
s , t ∈ [0; 1], c ∈ R, (1)

where BH
t is the fractional Brownian motion (fBm) with the Hurst index 1/2 < H < 1.

fBm is a continuous-time Gaussian process {BH
t , t � 0} with BH

0 = 0 and the covari-
ance function

E
[
BH

t BH
s

]
=

1
2
(

|t|2H + |s|2H − |t − s|2H
)
.

The Hurst index H determines the correlation between the increments of fBm. If
H < 1/2, these increments are negatively correlated, if H > 1/2, the increments are
positively correlated, and if H = 1/2, the process is a regular Brownian motion. In
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this paper the case H > 1/2 is considered since it allows to model various phenom-
ena possessing the long-range dependance property. The second integral in (1) is that of
Riemann–Stieltjes defined pathwise. For 0 < α � 1, C1+α(R) denotes the set of all
C1-functions g: R → R such that

sup
x

|g′(x)| + sup
x �=y

|g′(x) − g′(y)|
|x − y|α < ∞.

Let f be a Lipschitz function, g ∈ C1+α(R), 0 < α � 1. It is known (Lyons, 1994;
Dudley, 1999; Kubilius, 2000; Nualart and Rǎşcanu, 2002) that there exists a unique
strong solution of (1).

The fractional Brownian motion and processes based on it have found many ap-
plications in fields as diverse as economics and finance, physics, chemistry, medicine
and environmental studies. Computer science is not an exception – fBm has been em-
ployed in telecommunication traffic studies (for an overview, see Li, 2010 and the ref-
erences therein), fractal image compression (Davis, 1996), image object detection (see,
i.e., Wenlu and Weixin, 1997) and other studies. Obviously, if some phenomenon can
be modeled by fBm or a process based on it, the estimation of the fBm’s parameter, the
Hurst index H , is an important problem.

In 1961, Gladyshev (1963) derived a limit theorem for a statistic based on the first
order quadratic variations of fBm. This yielded an estimator of H which was strongly
consistent. In 1997, another estimator was introduced by Istas and Lang (1997) which
again employed the first order quadratic variations and it was asymptotically normal for
H ∈ (1/2; 3/4). In 2005, Bégyn (2005) considered the second order quadratic variations
along general subdivisions for processes with Gaussian increments. A more complete
survey about asymptotic behavior of quadratic variations for Gaussian processes can be
found in the thesis Bégyn (2006). In 2006, Berzin and León (2008) proposed a CLT for es-
timators of H and the diffusion function g for several specific cases of (1). In 2008–2010,
Kubilius and Melichov (2008, 2009, 2010) studied the behavior of the first and second or-
der quadratic variations of the pathwise solution of (1) and have shown that the quadratic
variation based estimators remain strongly consistent in that case as well.

The goal of this paper is to compare the behavior of the estimators based on quadratic
variations with some of the other known estimators, namely the naive and ordinary least
squares Gladyshev and η-summing oscillation estimators, the variogram estimator and
the IR estimator. These estimators are described in Section 1.2. Most of them were ex-
amined for Gaussian processes. The models chosen for comparison of these estimators
were the fractional Ornstein–Uhlenbeck (O-U) and the fractional geometric Brownian
motion (gBm). The initial inference about the behavior of these estimators was drawn for
the O-U process which is Gaussian, while the gBm process was used to check how the
estimators behave in a non-Gaussian case.

In order to achieve that, a sufficient amount of fBm sample paths is required. These
sample paths were generated using the circulant matrix embedding method, as described
in Coeurjolly (2000) and the references therein. Let n denote the length of the sam-
ple path. The circulant matrix embedding method uses a fast Fourier transform which
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bypasses matrix computations and therefore is sufficiently fast even for large values
of n. 100 sample paths of the length n = 214 + 1 were generated for each value of
H ∈ {0.55, 0.6, . . . , 0.95} on the unit interval t ∈ [0; 1].

The next step would be to use the generated fBm data to construct sample paths of the
considered processes. However, it’s not always possible to find and use the explicit solu-
tion of (1), therefore this solution needs to be replaced by a time discrete approximation.
For a process Xt, its Milstein approximation at points tnk , k = 1, . . . , n is defined as

Xn
k = Xn

k−1 + f
(
Xn

k−1

)
Δtk + g

(
Xn

k−1

)
ΔBH

k +
1
2
g
(
Xn

k−1

)
g′(Xn

k−1

)(
ΔBH

k

)2
,

where g′ denotes the derivative of g and Xn
0 = c. The fractional Ornstein–Uhlenbeck

(O-U) and the fractional geometric Brownian motion (gBm) processes are defined as

dXt = −μXt dt + σ dBH
t , X0 = c,

dXt = μXt dt + σXt dBH
t , X0 = c.

(O-U)
(gBm)

The solutions of these equations are, respectively,

Xt = e−μt

(
c + σ

t∫
0

eμs dBH
s

)
and Xt = c exp

(
μt + σBH

t

)
.

In fact, for the O-U process the Milstein approximation is reduced to the Euler one due
to g′(Xn

k−1) = (σ)′ = 0. The constants were chosen as c = 1, μ = 0.5, σ = 0.7 in the
O-U case and c = 1, μ = 0.2, σ = 0.5 in the gBm case. The error introduced by using
these approximated sample paths was negligible compared to the errors of the estimators
themselves and will be ignored further on. All computations were performed using the R
software environment (R Development Core Team, 2009).

1.1. fBm Generation

The algorithm to generate one sample path of the length n, using the circulant matrix
embedding method, is as follows:

• Choose M = 2p � 2(n − 1). Define the M -vector

V =

(
r(0), r(1), . . . , r

(
M

2
− 1

)
, r

(
M

2

)
, r

(
M

2
− 1

)
, . . . , r(2), r(1)

)
,

where

r(k) =
1

2n2H

[
|k + 1|2H − 2k2H + |k − 1|2H

]
is the autocovariance function of the fractional Gaussian noise.
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• Compute W = (w1, . . . , wM ), the fast Fourier transformation of V . All the coor-
dinates of W must be non-negative. If this is not the case, the value of p must be
increased until this requirement is met.

• Generate Uj , Vj ∼ N (0, 1) for all 1 � j < M
2 and let Z1 = U1, ZM

2 +1 = V1,

Zj =
1√
2

(
Uj + iVj

)
, ZM+2−j =

1√
2

(
Uj − iVj

)
, 1 < j � M

2
.

Then, define the M -vector U as

Uk =
√

wkZk, k = 1, . . . , M.

• Compute Y as an inverse fast Fourier transformation of the complex vector U and
define X as

Xk = Xk−1 + �(Yk), X0 = 0, k = 1, . . . , n,

�(Y ) denoting the real part of the complex variable Y .

The obtained vector X is the desired sample path of the fractional Brownian motion
with the Hurst index H .

1.2. Estimators

1.2.1. Discrete Variation Estimators
For a real-valued process X = {Xt, t ∈ [0, 1]}, we define the first and second order
quadratic variations as

V (1)
n (X, 2) =

n∑
k=1

(
Δ(1)

k X
)2

, V (2)
n (X, 2) =

n−1∑
k=1

(
Δ(2)

k X
)2

,

where

Δ(1)
k X = X(tnk ) − X

(
tnk−1

)
,

Δ(2)
k X = X

(
tnk+1

)
− 2X

(
tnk

)
+ X

(
tnk−1

)
, tnk =

k

n
.

Let X be the solution of (1). It is known (see, Kubilius and Melichov, 2008, 2009, 2010)
that

Ĥn
dv1 =

1
2

− 1
2 ln 2

ln
V

(1)
2n (X, 2)

V
(1)
n (X, 2)

, Ĥn
dv2 =

1
2

− 1
2 ln 2

ln
V

(2)
2n (X, 2)

V
(2)
n (X, 2)

are strongly consistent estimators of the Hurst index H , i.e.,

Ĥn
dv1 − H

a.s.−→ 0 and Ĥn
dv2 − H

a.s.−→ 0 as n → ∞.
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Here V
(·)
2n (X, 2) corresponds to the quadratic variation of the whole sample path while

V
(·)
n (X, 2) is the variation of the subset {Xk : k = 2j, 0 � j � [n/2]} where [x] denotes

the integer part of x.

1.2.2. Gladyshev and η-Summing Oscillation Estimators
The following estimators were described in Norvaiša and Salopek (2002). The ordinary
least squares (OLS) Gladyshev and η-summing oscillation estimators require a sample
path of the length 2n +1, n ∈ N, which dictated the length of our modeled sample paths.
Define ηM = {Nm = 2m: 1 � m � M } and let

s(m) =
Nm∑
i=1

[
X

(
i

Nm

)
− X

(
i − 1
Nm

)]2

.

The naive Gladyshev estimator of the Hurst index H is given by

ĤM
gn =

log
√

s(M)2−M

log 2−M
,

and the OLS Gladyshev estimator is given by

ĤM
go =

∑M
m=1

(
zm − z̄

)2∑M
m=1

(
zm − z̄

)
m

,

where zm = log2

√
2m/s(m) for m ∈ [1, . . . , M ] and z̄ = M −1

∑M
m=1 zm.

For every m ∈ [1, . . . , M ], define

Q(m) =
Nm∑
i=1

[
max

tn
k

∈Δi,m

{
X

(
tnk

)}
− min

tn
k

∈Δi,m

{
X

(
tnk

)}]
,

where

Δi,m =
[
i − 1
Nm

;
i

Nm

]
.

The naive oscillation estimator is defined by

ĤM
osn =

log2

(
NM/Q(M)

)
log2 NM

,

and the OLS oscillation estimator is defined by

ĤM
oso =

∑M
m=1

(
zm − z̄

)2∑M
m=1

(
zm − z̄

)
Nm

,

where zm = log2

√
Nm/Q(m) and z̄ = M −1

∑M
m=1 zm.

For M = 14 we simulate estimates defined above.
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1.2.3. Variogram Estimator
The variogram of the process X = {Xt, t ∈ [0, 1]} for the lag l is defined (Chronopoulou
and Viens, 2010) as

V (l) = E
[(

Xt − Xt−l

)2]
.

In order to estimate the Hurst index H , we choose a set of lags, in our case, it was
{l = 2i, i = 0, . . . , 5}. Then Ĥn

var = b/2, where b is the slope of the linear regression
line of log(V (l)) against log(l).

1.2.4. IR Estimator
This estimator was proposed by Bardet and Surgailis (2010). For the O-U or gBm process
X = {Xt, t ∈ [0, 1]} given at points tnk = k/n, k = 0, 1, . . . , n, the IR estimator of H

can be computed using the approximated formula below

Ĥn
ir =

1
0.1468

(
1

n − 2

n−2∑
k=1

∣∣Δ(2)
k X + Δ(2)

k+1X
∣∣∣∣Δ(2)

k X
∣∣ +

∣∣Δ(2)
k+1X

∣∣ − 0.5174

)
,

where Δ(2)
k X = X(tnk+1) − 2X(tnk ) + X(tnk−1).

2. Estimation for the Ornstein–Uhlenbeck Process

2.1. Dependance on the Value of the Hurst Index

The first goal of this paper is to compare the behavior of these estimators for different
values of the Hurst index H . Table 1 presents the biases H − H = E(Ĥ − H) as well as
the mean squared errors defined as MSE(Ĥ) = E(Ĥ − H)2 for the sample path lengths
of, respectively, 214 + 1 and 210 + 1 points. Figure 1 illustrates this further presenting
the boxplots of the considered estimators for the length of sample paths n = 214 + 1
points. Here and further in this paper the figures related to the estimators Ĥgn and Ĥgo

are omitted, since their behavior does not significantly differ from the behavior of Ĥosn

and Ĥoso. The numbers printed in bold correspond to the estimators that performed better
than the others for the specific value of H and the measure considered.

It can be seen that the estimators Ĥdv1, Ĥvar, Ĥgn and Ĥosn exhibit increases of the
biases and the mean squared errors for larger values of H . Ĥgo and Ĥoso seem to be less
dependant on that, however, they tend to slightly undervalue the Hurst index when it is
close to 1. Ĥir tends to slightly undervalue H when H < 3/4 and to overvalue it when
H > 3/4; the most likely cause of this are the numerical constants in the formula used
for this estimator. The behavior of Ĥdv2 does not change noticeably for different values
of H .

Another interesting observation is the, comparatively, very low mean squared errors
of Ĥgn and Ĥosn which they display as long as the Hurst index is not too close to 1.
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Table 1

Comparison of the estimators for the O-U process

H 0.55 0.7 0.8 0.95

MSE dv1 0.008 0.005 0.008 0.020

dv2 0.015 0.011 0.011 0.010

var 0.007 0.009 0.014 0.024

gn 0.002 0.002 0.003 0.021

osn 0.004 0.004 0.005 0.025

go 0.038 0.037 0.048 0.050

oso 0.041 0.037 0.050 0.053

ir 0.022 0.019 0.019 0.022

H − H dv1 0.000 0.001 −0.001 −0.009

dv2 0.000 0.001 −0.002 −0.001

var 0.000 −0.001 0.000 −0.012

gn 0.037 0.037 0.037 0.041

osn 0.060 0.060 0.060 0.063

go −0.013 −0.024 −0.019 −0.032

oso −0.004 0.017 −0.009 −0.020

ir −0.019 −0.009 −0.001 0.028

(a) N = 214 + 1

H 0.55 0.7 0.8 0.95

dv1 0.027 0.024 0.026 0.030

dv2 0.050 0.054 0.050 0.044

var 0.029 0.031 0.038 0.040

gn 0.006 0.006 0.010 0.040

osn 0.010 0.011 0.015 0.048

go 0.092 0.061 0.071 0.068

oso 0.093 0.060 0.073 0.071

ir 0.074 0.067 0.069 0.077

dv1 0.000 −0.004 −0.001 −0.016

dv2 0.001 0.000 −0.002 0.008

var 0.000 −0.012 −0.007 −0.025

gn 0.051 0.052 0.052 0.062

osn 0.084 0.084 0.084 0.091

go −0.010 −0.035 −0.030 −0.044

oso 0.003 −0.023 −0.014 −0.028

ir −0.009 −0.004 −0.004 0.039

(b) N = 210 + 1

However these estimators also possess the largest bias. Ĥgo and Ĥoso, the OLS versions
of these two estimators behave in a completely different way – they have smaller biases
which are comparable to those of the other considered estimators, but this comes at the
cost of a heavily increased MSE.

2.2. Dependance on the Length of the Sample Path

The second goal of this paper is to compare the behavior of these estimators for different
lengths of sample paths as well as to illustrate how the estimators’ variances fluctuate as
the length of sample paths is increased. Table 2 shows the mean squared errors and the
biases for the Hurst index values of 0.65 and 0.85, respectively. Figure 2 boxplots of the
estimators for H = 0.85.

The first obvious observation is that the bias of Ĥgn and Ĥosn increases as the length
of sample paths is decreased. Ĥgo and Ĥoso do not share this property, however their
mean squared errors display only minor decreases when longer sample path lengths are
taken. The other estimators show a rather regular decrease of their mean squared errors
which is further illustrated by Fig. 3 presenting the plots of log(SD) against log(n) for
H ∈ {0.55, 0.6, . . . , 0.95} where SD denotes the standard deviations.

Figure 3 shows the rate at which the standard deviation decreases as the sample path
length is increased. It can be seen that this rate depends on the value of H for all the
estimators except Ĥdv2 and Ĥir. The general trend is that this rate is lower for higher
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Fig. 1. Boxplots of the estimators for the O-U process of sample path length n = 214 + 1.
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Fig. 2. Boxplots of the estimators for the O-U process for H = 0.85, n = 2k , k = 8, . . . , 14.
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Fig. 3. Dependance of log(SD) against log(n) for the O-U process, H ∈ {0.55, 0.6, . . . , 0.95}.
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Table 2

Comparison of the estimators for the O-U process for sample path lengths N = 2k + 1

k 8 10 12 14

MSE dv1 0.053 0.025 0.014 0.007

dv2 0.102 0.055 0.027 0.013

var 0.067 0.033 0.018 0.009

gn 0.013 0.006 0.003 0.002

osn 0.021 0.011 0.006 0.004

go 0.084 0.063 0.049 0.039

oso 0.086 0.064 0.050 0.040

ir 0.172 0.079 0.037 0.018

H − H dv1 −0.005 0.000 0.002 0.001

dv2 −0.016 0.000 0.001 0.000

var −0.021 −0.003 −0.001 0.001

gn 0.064 0.051 0.043 0.037

osn 0.105 0.084 0.070 0.060

go −0.036 −0.028 −0.021 −0.016

oso −0.017 −0.014 −0.011 −0.009

ir −0.043 −0.013 −0.014 −0.013

(a) H = 0.65

k 8 10 12 14

dv1 0.045 0.030 0.019 0.013

dv2 0.089 0.051 0.025 0.012

var 0.068 0.042 0.029 0.019

gn 0.028 0.015 0.009 0.005

osn 0.036 0.020 0.012 0.008

go 0.095 0.077 0.063 0.053

oso 0.102 0.082 0.067 0.057

ir 0.170 0.095 0.038 0.021

dv1 −0.016 −0.008 −0.005 −0.003

dv2 −0.015 0.005 −0.002 −0.001

var −0.038 −0.018 −0.010 −0.005

gn 0.070 0.054 0.044 0.037

osn 0.110 0.086 0.071 0.061

go −0.054 −0.043 −0.035 −0.028

oso −0.033 −0.027 −0.022 −0.018

ir −0.039 0.019 0.011 0.008

(b) H = 0.85

values of H which is most notable for Ĥgn and Ĥosn. On the other hand Ĥdv2 and Ĥir

display no dependance of this kind. Also, if we consider the linear regression log(SD) ∼
log(n) for these two estimators, its slope is −0.5003 for Ĥdv2 and −0.5013 for Ĥir,
which suggests that for both these estimators SD(Ĥ(·)) ∼ O(n−1/2).

3. Estimation of the geometric Brownian motion

3.1. Dependance on the Value of the Hurst Index

Table 3 presents the mean squared errors and the biases for the sample path lengths of 214

and 210. Boxplots of these estimators for the sample path length n = 214 can be found
in Fig. 4. It can be seen that, for the non-Gaussian gBm process, the estimators Ĥgn and
Ĥosn display higher biases for all the values of H .

An interesting observation is that, in the case of the O-U process the mean squared
errors of Ĥgn and Ĥosn were the lowest of all the considered estimators, while for the
gBm model their mean squared errors surpassed those of Ĥdv1, Ĥdv2 and Ĥvar.

The behavior of Ĥdv2 and Ĥir does not display notable differences for these two
processes.
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Table 3

Comparison of the estimators for the gBm process

H 0.55 0.7 0.8 0.95

MSE dv1 0.008 0.006 0.009 0.021

dv2 0.016 0.012 0.011 0.010

var 0.008 0.010 0.015 0.025

gn 0.032 0.030 0.034 0.049

osn 0.035 0.032 0.037 0.054

go 0.033 0.046 0.053 0.049

oso 0.035 0.049 0.056 0.053

ir 0.022 0.019 0.019 0.022

H − H dv1 0.000 0.001 0.000 −0.006

dv2 0.000 0.001 −0.002 0.000

var 0.000 0.001 0.000 −0.009

gn 0.055 0.051 0.061 0.059

osn 0.080 0.076 0.086 0.082

go −0.014 −0.016 −0.021 −0.026

oso −0.003 −0.006 −0.011 −0.014

ir −0.019 −0.009 −0.001 0.028

(a) N = 214 + 1

H 0.55 0.7 0.8 0.95

dv1 0.030 0.026 0.029 0.030

dv2 0.054 0.054 0.055 0.046

var 0.032 0.039 0.044 0.038

gn 0.047 0.044 0.051 0.079

osn 0.053 0.048 0.058 0.088

go 0.055 0.072 0.080 0.066

oso 0.057 0.077 0.084 0.070

ir 0.074 0.067 0.069 0.077

dv1 −0.001 −0.001 0.000 −0.012

dv2 0.001 0.000 −0.002 0.007

var 0.000 −0.006 −0.008 −0.020

gn 0.077 0.072 0.086 0.086

osn 0.112 0.106 0.120 0.116

go −0.020 −0.027 −0.036 −0.038

oso −0.001 −0.009 −0.019 −0.020

ir −0.009 −0.002 −0.004 0.039

(b) N = 210 + 1

3.2. Dependance on the Length of the Sample Path

Table 4 presents the mean squared errors and the biases for H = 0.65 and H = 0.85.
Figure 5 shows the boxplots of the estimators considered for H = 0.85, while Fig. 6
presents the plots of log(SD) against log(n).

Compared to the O-U case the biases of Ĥgn and Ĥosn are higher for all sample path
lengths. The mean squared errors of Ĥgn, Ĥosn, Ĥgo and Ĥoso are higher for all sample
path lengths. In the case of relatively short sample paths (28 − 210) and H > 3/4, the
estimators Ĥgo and Ĥoso have at times severely overestimated the Hurst index H with
the estimated value being higher than 2. Those values were excluded from their boxplots.
The slope of the linear regression log(SD) ∼ log(n) is −0.5015 for Ĥdv2 and −0.5011
for Ĥir, which does not differ significantly from the O-U case.

4. Conclusions

• The estimators Ĥgn and Ĥosn, despite showing the least mean squared errors in the
O-U case, have also shown much higher biases than other estimators considered
in this paper. This bias increases as the sample path length is decreased but shows
no dependance on the value of the Hurst index H as long as H is not too close to
1. When H > 0.9, this bias increases further. In the gBm case the mean squared
errors of these two estimators were greater than those of Ĥdv1, Ĥdv2 and Ĥvar.
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Fig. 4. Boxplots of the estimators for the gBm process for sample path length n = 214 + 1.
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Fig. 5. Boxplots of the estimators for the gBm process for H = 0.85, n = 2k , k = 8, . . . , 14.
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Fig. 6. Dependance of log(SD) against log(n) for the gBm process, H ∈ {0.55, 0.6, . . . , 0.95}.
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Table 4

Comparison of the estimators for the gBm process for sample path lengths N = 2k + 1

k 8 10 12 14

MSE dv1 0.052 0.028 0.016 0.007

dv2 0.103 0.065 0.028 0.013

var 0.073 0.036 0.020 0.011

gn 0.066 0.050 0.041 0.034

osn 0.075 0.056 0.044 0.037

go 2.411 0.097 0.061 0.048

oso 0.556 0.090 0.063 0.050

ir 0.172 0.079 0.037 0.018

H − H dv1 −0.002 0.001 0.002 0.001

dv2 −0.020 −0.002 0.000 0.000

var −0.013 0.001 0.001 0.002

gn 0.093 0.074 0.062 0.054

osn 0.137 0.110 0.092 0.079

go 0.223 −0.009 −0.011 −0.010

oso 0.065 0.006 0.001 0.000

ir −0.043 −0.013 −0.014 −0.013

(a) H = 0.65

k 8 10 12 14

dv1 0.047 0.033 0.023 0.016

dv2 0.094 0.053 0.026 0.013

var 0.082 0.050 0.032 0.023

gn 0.082 0.059 0.046 0.037

osn 0.092 0.065 0.049 0.040

go 0.104 0.085 0.071 0.060

oso 0.109 0.090 0.075 0.064

ir 0.169 0.095 0.038 0.021

dv1 −0.005 −0.001 0.001 0.000

dv2 −0.016 0.003 −0.002 −0.001

var −0.025 −0.007 −0.002 0.001

gn 0.094 0.075 0.062 0.054

osn 0.136 0.108 0.091 0.078

go −0.038 −0.028 −0.022 −0.017

oso −0.011 −0.009 −0.006 −0.004

ir −0.039 0.019 0.011 0.008

(b) H = 0.85

• The estimators Ĥgo and Ĥoso, the ordinary least squares versions of the previous
estimators, display totally different behavior – their biases are comparable to those
of the other estimators. However, their mean squared errors are considerably higher
than those of other estimators and tend to decrease only slightly as the sample path
length is increased. Additionally, both of these estimators require the sample path
length to be equal to 2k +1, k ∈ N, which means that, for sample paths of different
length, some of the observations must be truncated.

• The estimators Ĥdv1 and Ĥvar behaved differently for "small" and "large" values
of H . As H ∈ (1/2; 3/4), they displayed the best characteristics while for higher
values of H their performance was close to or worse than that of other estimators.
Ĥvar displayed increased biases for shorter sample paths.

• The characteristics of Ĥdv2 were slightly worse than those of Ĥdv1 and Ĥvar for
shorter sample paths and H < 3/4, and they were similar or better for longer
sample paths and H > 3/4. Additionally, this estimator showed no notable depen-
dance of its behavior on the value of H . Ĥir displayed such a dependance only for
rather long sample paths, but its biases and mean squared errors were higher. Hav-
ing considered the linear regression log(SD) ∼ log(n) for these two estimators,
the results suggest that for both these estimators SD(Ĥ(·)) ∼ O(n−1/2).

• Calculation times for the estimators Ĥdv1, Ĥdv2 and Ĥosn were about 0.02s with
100 sample paths of the length N = 28 + 1 and about 0.4s with 100 sample paths
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of the length N = 214 + 1. Calculation times of Ĥgn were about twice lower and
those of Ĥgo, Ĥoso and Ĥir were 2–5 times higher.

As a conclusion, the results of this study suggest that when there’s a reason to expect the
Hurst index to be high or when the Hurst index is estimated from a sufficiently long sam-
ple path, the Ĥdv2 estimator performs best. If either of these assumptions is not present,
then the Ĥdv1 and Ĥvar would likely give a more precise estimate.
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Apie stochastini ↪u diferencialini ↪u lygči ↪u, valdom ↪u trupmeninio Brauno
judesio, sprendini ↪u Hursto indekso ↪ivertini ↪u palyginim ↪a

K ↪estutis KUBILIUS, Dmitrij MELICHOV

Straipsnyje pateikiamas Hursto indekso ↪ivertini ↪u tyrimas trupmeniniams Ornštein–Ulenbeck ir
Black–Scholes modeliams. Nagrinėjama ↪ivertini ↪u skaitini ↪u charakteristik ↪u priklausomybė tiek nuo
Hursto indekso reikšmės, tiek nuo trajektorijos ilgio.


