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Abstract. We present a novel dynamic network interdiction model that accounts for interactions
between an interdictor deploying resources on arcs in a digraph and an evader traversing the net-
work from a designated source to a known terminus, wherein the agents may modify strategies in
selected subsequent periods according to respective decision and implementation cycles. For the
resulting minimax model, we develop a reformulation that facilitates a direct solution procedure
using commercial software or via a proposed alternating heuristic. We examine certain related sta-
bility and convergence issues, demonstrate special convergence cases, and provide insights into the
computational performance of the solution procedures.
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1. Introduction

The act of interdicting flow through a network is most often modeled in the form of
a static two-player, two-stage, sequential game with perfect information (i.e., a Stack-
elberg game), in which an interdictor allocates resources, followed by the subsequent
decisions made by an evader to direct flow through the network from a source to a termi-
nus. As with most models, this is a simplification of reality. Accordingly, in this work we
seek to enhance the foregoing modeling approach by considering the dynamic interaction
between agents within the context of such a network interdiction problem, wherein op-
ponent strategies are not static. A motivation for our model is to provide an application
framework to examine, and possibly validate, the observe-orient-decide-act cycle (a.k.a.,
OODA loop), a theory developed by Boyd (1986), which serves as the foundation for
military operational planning cycles as motivated by his following maxim for successful
operations:

“Observe-orient-decide-act more inconspicuously, more quickly, and with more
irregularity as basis to keep or gain initiative as well as shape and shift main
effort: to repeatedly and unexpectedly penetrate vulnerabilities and weaknesses
exposed by that effort or other effort(s) that tie-up, divert, or drain-away adversary
attention (and strength) elsewhere.”
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To this end, we extend over the temporal domain the problem of minimizing the max-
imum flow pertaining to an evader from a single source to a known terminus, considering
the simultaneous allocation of multiple resource types to achieve (partial) arc interdic-
tions, but with additional objective function penalties as well as an allowance for different
durations for the interdictor and evader OODA loops. We then reformulate the model to
facilitate a direct solution as a mixed-integer nonlinear program, and we examine stability
issues under three conditions for relative loop lengths and for two categories of problem
structure.

The network interdiction problem has been examined for several decades within the
context of a variety of modeling approaches, optimization objectives, and solution tech-
niques. Pertinent to our efforts is the previous research on network interdiction to min-
imize an adversary’s maximum flow through a network. Wollmer (1964) examined this
problem on a planar graph under the assumption of no (or uniform) interdiction costs,
and developed a dynamic programming approach to optimally identify a prescribed num-
ber of arcs for removal (i.e., discrete or binary interdiction). Wollmer (1969), as well as
McMasters and Mustin (1970), examined a variant of this work to consider an adversary
seeking to minimize a prescribed flow cost through a network, wherein flow costs are lin-
early proportional to the arc capacities. Ghare et al. (1971) examined a similar problem,
but without the assumption of a planar graph, and developed an exact branch-and-bound
algorithm. This problem was also addressed by Phillips (1993), where it was referred
to as the Network Inhibition Problem. Several variants were formulated that allow for
partial interdiction of arcs, all of which were proven to be NP-Hard. In 1993, Wood pub-
lished a seminal work for network interdiction modeling, incorporating existing graph
theory techniques and introducing some new variations to expand the applicability of the
models. Of particular note, Wood proposed different deterministic network interdiction
formulations to account for partial arc interdiction, multiple sources and sinks, undirected
networks, multiple resources, and multiple commodities, and designed effective solution
techniques.

In contrast, the extension of network interdiction strategies and responses over mul-
tiple cycles in the temporal domain is found less frequently in the published literature.
Exceptions include the exploration of network interdiction within trilevel optimization
frameworks by Brown et al. (2006) and, more recently, by Lim and Smith (2008). Also,
Lunday and Sherali (2009a) consider such a framework in which an interdictor deploys
overt resources prior to an evader’s selection of a path through a network to maximize
the subsequent probability of evasion, followed, in turn, by the deployment of additional
(covert) resources of which the evader is unaware. These recent trends account for an in-
creasing number of interactions between opponents in the interdiction problem and reflect
a greater need to shift towards dynamic model formulations involving multiple strategic
and response cycles, which is the principal motivation for this paper. In addition, our dy-
namic network interdiction model also builds upon the general multi-objective approach
of others (Royset and Wood, 2007), applying preemptive weights within a nonpreemp-
tive formulation (Sherali and Soyster, 1983), and we examine related stability and con-
vergence issues.
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The remainder of this paper is organized as follows. In Section 2, we propose and for-
mulate a dynamic network interdiction model that seeks to minimize the maximum value
of a regret function that is comprised of a weighted combination of the interdictor’s costs,
the evader’s maximum flow, and the evader’s penalties due to interdiction. The resulting
minimax problem is reformulated in Section 3 as a mixed-integer nonlinear program to
facilitate a direct solution approach, either using a standard software or, particularly for
larger-sized instances, via a proposed alternative fixing heuristic. Thereafter, in Section
4, we study certain stability, convergence, and computational issues related to the play-
ers’ strategies. We demonstrate the efficacy of the alternative heuristic in Section 5, and
we conclude the paper in Section 6 with a summary and recommendations for future
research.

2. Dynamic Network Interdiction Problem

In this section, we outline the underlying assumptions for our model, the dynamic net-
work interdiction problem, and then present the notation along with the model formula-
tion as a mixed-integer minimax programming problem.

2.1. Modeling Assumptions

For our model, we assume that the topology and characteristics of the network are static,
i.e., the set of nodes and arcs and the uninterdicted upper bounds on arc flows are constant,
as are the interdiction costs for each arc and resource type combination. Lim and Smith
(2008) have examined a problem involving network characteristic changes over time, but
this aspect is outside the modeling scope of the dynamic process considered herein. In
contrast, we consider the dynamic interaction between the strategies and responses of
the interdictor and evader based on the evolving state of the network resulting from their
periodic, sequential decisions.

Within a game theoretic framework, the static network interdiction problem is a two-
player, two-stage, sequential game with perfect information (i.e., a Stackelberg game). By
adding the temporal domain, we extend the game to a finite, or possibly infinite, number
of moves. However, a simple temporal replication of the static model would merely create
a series of identical two-stage subgames. To affect a dynamic model, we propose a set
of behavioral assumptions to construct a finite series of two-player, simultaneous (i.e.,
strategic) and sequential games (Osborne, 2004), wherein a simultaneous game occurs
during any period in which both players may change strategies, and a sequential game
occurs otherwise.

2.1.1. Temporal Domain
We first define a reaction time as the time necessary for an actor (interdictor or evader) to
implement an OODA loop, i.e., to (a) observe the current state of the network; (b) orient
the current problem within the context of the objectives; (c) decide on changes to strategy;
and (d) act to implement the changes. In order to facilitate modeling, we assume that the
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strategic decisions are such that both the interdictor and evader reaction times, denoted
γI and γE , respectively, can be reasonably taken to be constant integer units of time.

Considering this definition, we assume that the dynamic network interdiction occurs
over a fixed horizon of time, indexed by γ = Δγ , 2Δγ , . . . , Γ, wherein the discretization
of time (Δγ) is based on the greatest common factor of interdictor and evader reaction
times, and where Γ is an integer multiple of Δγ . This requires that interdictor and evader
strategies may change only in certain specified time periods, which might be different,
and we impose constraints accordingly.

Note that for an initial network state at γ = 0, we may assume that both actors have
implemented an initial strategy as determined by an optimal solution to the underlying
static model. This is an appropriate assumption if we are interested in the evolution of
interdictor-evader strategies over time, rather than their growth from a null solution. Oth-
erwise, we assume an initial solution with no interdiction resources applied to the network
and no evader flow.

2.1.2. Strategic Objectives
To manifest a true dynamic behavior, we assume that the interdictor does not merely seek
to minimize the maximum flow of an evader; such an objective would only consider net-
work characteristics to determine the interdictor’s strategy. Instead, the objective must
consider other time-variant factors. Accordingly, we formulate a multiobjective program
in which the interdictor seeks to minimize a maximum regret function that is comprised
of a linearly weighted combination of three objectives summed over all time periods:
(1) the maximum evader flow through the network; (2) the cost of interdictor actions;
and (3) penalties incurred upon the evader by attempting to send flow in excess of the
interdicted arc capacities. As such, our objective formulation is related to multi-criteria
decision making (e.g., see Steuer (1986) and Zavadskas et al. (2009) on possible tech-
niques to address such problems). Whereas the measure of maximum flow is no different
from the static model, we will elaborate on the other measures after a formal presentation
of the model in Section 2.2.

Furthermore, we assume that the interdictor and evader employ myopic strategies.
That is, each reaction cycle is constrained such that during a time period (γ) in which
an actor implements a strategy, that actor assesses the state of the network and the oppo-
nent’s strategy, then makes a decision on the subsequent strategy to implement in period
(γ + γI) or (γ + γE), as appropriate. We also assume that the evaluation of the network
and strategies to support decision-making are based only on the situation in the particular
action period γ, i.e., the decisions are not affected by the state of the network in time
periods between an observation and a subsequent action.

As another dynamic element in our model, we consider strategic costs incurred by the
interdictor, as measured in consistent monetary units. We assume that these costs include
strategy implementation costs, strategy adjustment costs, and resource level adjustment
costs. We also assume that these costs are subject to both an overall budget as well as a
budget specific to each time period. The discretization of budget authorizations over fiscal
periods often occurs in practice for interdictor agencies. To account for the cost of imple-
menting interdictor strategies, we assume that these costs are linearly proportional to the
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interdiction level of each arc and resource-type combination. In considering the costs for
adjusting strategies by raising or lowering specific resource type allocations on a given
arc between time periods, we also assume that these costs are linearly proportional to
the amount of change. We maintain that the foregoing proportional factors for costs may
vary based on the resource type and the arc on which the interdictor applies and/or alters a
strategy, but is invariant over time. Furthermore, we allow for different marginal costs for
increasing versus decreasing applications of a strategy. Finally, we incorporate available
resource level adjustment costs, assuming that the interdictor may alter the availability of
resources types within specified bounds between periods, and subject to an overall bound
on the availability of each resource type. Each of these changes to resource availabilities
incurs a cost specific to the period in which it occurs, and the marginal costs may also
differ for increasing or decreasing resource type availabilities.

Our proposed model also considers a third component in the objective function: linear
penalties on the evader for attempting to send flow on arcs in excess of their respective
interdicted capacities. In application, these penalties result from a misperception between
the state of the network when the current strategy was decided upon and the actual net-
work state during implementation.

2.2. Dynamic Network Interdiction – Model Formulation

To formulate our model, we define the following sets, decision variables, and parameters
based on the stated assumptions from Section 2.1:

Set Notation:

• γ ∈ {0, Δγ , 2Δγ , . . . , Γ}: the time domain, discretized as previously outlined with
the following terminology:

– γI , γE : interdictor and evader reaction times, respectively.
– Δγ : the discretization of time, where Δγ is the greatest common factor of γI

and γE .
– Γ: time horizon (an integer multiple of Δγ).
– ΓI ≡ nIγI , ΓE ≡ nEγE : the final periods in which the interdictor and

evader can implement changes, where nI = � Γ
γI

� and nE = � Γ
γE

�.

• i ∈ N : set of nodes in the network.
• (i, j) ∈ A: set of directed arcs in the network.
• G[N, A]: the underlying network.
• k ∈ K: set of resource types for interdiction.

Primary Decision Variables:

• pγ
ijk: the percentage of capacity reduction for arc (i, j) during time period γ as

affected by the application of interdictor resource type k.
• Rγ

k : the total amount of units of resource type k procured for interdiction during
time period γ.

• xγ
ij : the maximal flow solution on arc (i, j) based on the residual capacity in time

period γ.
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• yγ
ij : the amount of non-negative flow that the evader attempts to transport over

arc (i, j) during time period γ. (For time period γ = 0, we assume y0
ij = x0

ij ,
∀(i, j) ∈ A.)

Secondary Decision Variables (influenced by (p, R, x, y)):
• pγ+

ijk, pγ−
ijk: the increase and decrease, respectively, in percentage of capacity reduc-

tion for arc (i, j) between time periods (γ − γI) and γ, ∀γ ∈ {γI , 2γI , . . . , Γ}, as
affected by the application of interdictor resource type k.

• δγ
ijk: a binary decision variable to enforce the logical constraint that only pγ+

ijk or

pγ−
ijk may be non-zero for any combination of γ ∈ {γI , 2γI , . . . , Γ}, (i, j) ∈ A,

k ∈ K.
• Rγ+

k , Rγ−
k : the increase and decrease, respectively, in total amount of units of

resource k available for interdiction between time periods (γ − γI) and γ,
∀γ ∈ {γI , 2γI , . . . , Γ}.

• ψγ
k : a binary decision variable to enforce the logical constraint that only Rγ+

k or
Rγ−

k may be non-zero for any combination of γ ∈ {γI , 2γI , . . . , Γ}, k ∈ K.
• zγ : the maximum flow capacity through the network from node s to node t in time

period γ.
• yγ+

ij : the amount of flow the evader attempts to transport over arc (i, j) during time
period γ in excess (if at all) of the interdicted capacity during time period γ.

Auxiliary Decision Variables (defined for notational convenience):

• Cγ : the total cost (in monetary units) for the interdictor to change strategies be-
tween time periods (γ − Δγ) and γ.

• Dγ : the total cost (in monetary units) for the interdictor to implement a strategy
during time period γ.

• Eγ : the total cost (in monetary units) for the interdictor to change levels of resource
types between time periods (γ − Δγ) and γ.

• P γ : the penalty incurred by the evader (not necessarily in monetary units) by at-
tempting to send units of flow across the network in excess of interdicted arc ca-
pacities during time period γ.

Parameters:

• w = (wC , wP , wF ): a vector of positive relative weights in the multi-criteria objec-
tive function, corresponding to the interdictor costs, evader penalty, and maximum
flow, respectively. Given wC and wP , we determine wF so as to weight the network
flow component in the objective function preemptively higher in order to ensure the
definitional role of zγ (see Proposition 1 below).

• uij : uninterdicted flow capacity for arc (i, j).
• B: the net budget (in monetary units) available for the interdictor over the duration

of the time periods examined.
• Bγ : the budget (in monetary units) available for the interdictor for use between

time periods (γ − Δγ) and γ.
• cijk, dijk: the cost (in resource and monetary units, respectively) to completely

interdict arc (i, j) using resource k during any time period.
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• αijk, ωijk: the cost (in monetary units) to add or remove, respectively, a unit of
interdiction resource k on arc (i, j) between time periods (γ − Δγ) and γ. (Recall
that we do not assume αijk = ωijk, as resource deployment and retraction costs
may differ.)

• Rk: the maximum amount of units of resource k available for interdiction over all
periods. For examination of strategy evolution, we recommend utilizing R0

k < Rk

to consider any resource types that are not fully procured at the outset of the prob-
lem. In order to model the addition of a resource type over time, we set R0

k ≡ 0 for
the resource type of interest. One can further affix this value to zero for a subset
of immediate subsequent time periods, if the model should account for a resource
type that will only be available for procurement after a specified point in time.

• Ak, Ωk: the cost (in monetary units) to increment or decrement, respectively, the
availability of resource type k by a single unit between any time periods (γ − Δγ)
and γ. We assume Ak + Ωk � 0, ∀k ∈ K, to prevent a benefit to the interdictor
by cyclically incrementing and decrementing resources without relevance to the
network interdiction problem. (We do not assume Ak = Ωk, as procurement costs
are assuredly greater than costs of withdrawing resource availability; moreover, Ωk

might be negative, reflecting a savings.)
• gij : the positive penalty cost (not necessarily in monetary units) per unit of flow

that an evader attempts to send on arc (i, j) in excess of the interdicted capacity of
the arc, for any given time period.

• x̂0
ij , ẑ

0, ŷ0
ij , p̂

0
ijk, R̂0

k: the respective values for xγ
ij , z

γ , yγ
ij , p

γ
ijk, Rγ

k , at time period
γ = 0, which characterize the initial state of the network and the opponent strate-
gies.

Based on these decision variable definitions, we denote a period-specific solution to be

νγ =

⎧⎪⎨⎪⎩
(
pγ, pγ+, pγ−, δγ, Rγ, Rγ+, Rγ−, ψγ, xγ , zγ, yγ, yγ+, yγ−, Cγ, Dγ, Eγ, P γ

)
,

∀γ ∈ {γI , 2γI , . . . , Γ},(
pγ, Rγ, xγ, zγ, yγ, yγ+, yγ−, Cγ, Dγ, Eγ, P γ

)
, ∀γ /∈ {γI , 2γI , . . . , Γ},

wherein each component is a vector over the arc and/or resource-type indices as defined
above. Hence, a feasible solution to the model is given by:

ν =
(
νγ , γ = 0, Δγ , . . . , Γ

)
.

Accordingly, the proposed dynamic network interdiction problem (DNIP) can be formu-
lated as follows:

DNIP: min
p,R

max
x,y

∑
γ∈{Δγ ,2Δγ ,...,Γ}

[
wC

(
Dγ + Cγ + Eγ

)
− wP P γ + wF zγ

]
, (1)

subject to
∑

j:(i,j)∈A

xγ
ij −

∑
j:(j,i)∈A

xγ
ji =

⎧⎨⎩
zγ , if i = s

0, if i �= s, t

−zγ , if i = t

⎫⎬⎭ , ∀i ∈ N,

γ ∈ {Δγ , 2Δγ , . . . , Γ}, (2)
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(i,j)∈A

cijk pγ
ijk � Rγ

k , ∀k ∈ K, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (3)

xγ
ij � uij

(
1 −

∑
k∈K

pγ
ijk

)
, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (4)

∑
k∈K

pγ
ijk � 1, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (5)

(xγ
ij , pγ

ijk) � 0, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (6)

Dγ =
∑

(i,j)∈A

∑
k∈K

dijkpγ
ijk, ∀γ ∈ {Δγ , 2Δγ , . . . , Γ}, (7)

pγ
ijk = p

(γ−Δγ)
ijk , ∀(i, j) ∈ A, k ∈ K, γ /∈ {γI , 2γI , . . . , ΓI }, (8)

Rγ
k = R

(γ−Δγ)
k , ∀k ∈ K, γ /∈ {γI , 2γI , . . . , ΓI }, (9)

xγ
ij = x

(γ−Δγ)
ij , ∀(i, j) ∈ A, γ /∈ {γI , 2γI , . . . , ΓI }, (10)

zγ = z(γ−Δγ), ∀γ /∈ {γI , 2γI , . . . , ΓI }, (11)

yγ
ij =

{
x

(γ−γE)
ij , ∀(i, j) ∈ A, γ ∈ {γE , 2γE , . . . , ΓE },

y
(γ−Δγ)
ij , ∀(i, j) ∈ A, γ /∈ {γE , 2γE , . . . , ΓE },

(12)

pγ
ijk − p

(γ−γI)
ijk = pγ+

ijk − pγ−
ijk, ∀(i, j) ∈ A, k ∈ K, γ ∈ {γI, 2γI, . . . , ΓI}, (13)

pγ+
ijk � δγ

ijk, ∀(i, j) ∈ A, k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (14)

pγ−
ijk � 1 − δγ

ijk, ∀(i, j) ∈ A, k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (15)

δγ
ijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K, ∀γ ∈ {γI , 2γI , . . . , ΓI }, (16)(
pγ+

ijk, pγ−
ijk

)
� 0, ∀(i, j) ∈ A, k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (17)

Cγ =

⎧⎨⎩
∑

(i,j)∈A

∑
k∈K

cijk

(
αijkpγ+

ijk+ ωijkpγ−
ijk

)
, ∀γ ∈ {γI, 2γI, . . . , ΓI },

0, ∀γ /∈ {γI , 2γI , . . . , ΓI },

(18)

Rγ
k − R

(γ−γI)
k = Rγ+

k − Rγ−
k , ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (19)

Rγ+
k � Rkψγ

k , ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (20)

Rγ−
k � Rk(1 − ψγ

k ), ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (21)

ψγ
k ∈ {0, 1}, ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (22)

Rγ
k � Rk, ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (23)(
Rγ

k , Rγ+
k , Rγ−

k

)
� 0, ∀k ∈ K, γ ∈ {γI , 2γI , . . . , ΓI }, (24)

Eγ =

⎧⎨⎩
∑
k∈K

(
AkRγ+

k + ΩkRγ−
k

)
, ∀γ ∈ {γI , 2γI , . . . , ΓI },

0, ∀γ /∈ {γI , 2γI , . . . , ΓI },
(25)

Cγ + Dγ + Eγ � Bγ , γ ∈ {Δγ , 2Δγ , . . . , Γ}, (26)∑
γ∈{Δγ ,2Δγ ,...,Γ}

(
Cγ + Dγ + Eγ

)
� B, (27)
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yγ+
ij � yγ

ij − uij

(
1 −

∑
k∈K

pγ
ijk

)
, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (28)

yγ+
ij � uij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (29)

yγ+
ij � 0, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (30)

P γ =
∑

(i,j)∈A

gijy
γ+
ij , ∀γ ∈ {Δγ , 2Δγ , . . . , Γ}, (31)

x0
ij = x̂0

ij , ∀(i, j) ∈ A, (32)

z0 = ẑ0, (33)

y0
ij = ŷ0

ij , ∀(i, j) ∈ A, (34)

p0
ijk = p̂0

ijk, ∀(i, j) ∈ A, k ∈ K, (35)

R0
k = R̂0

k, ∀k ∈ K. (36)

The objective function (1) represents the interdictor seeking to minimize the max-
imum of a regret function, comprised of the sum over all periods of the weighted in-
terdictor costs, evader penalty, and evader maximum flow. Note that the evader penalty
component is subtracted, as we previously defined wP > 0. The negative coefficient
on the evader penalty in (1) in this minimax formulation reflects the interdictor’s goal
to maximize the minimum evader penalty, within the context of the relative weightings
of components within the regret function. Constraints (2)–(6) impose the period-specific
physical constraints on arc-wise and maximum flows based on constrained resource ap-
plications, with indexing over the temporal domain. Constraint (2) enforces conservation
of flow in the network at each node, with zγ as the maximum flow through the network
between the start and terminus nodes. Constraint (3) restricts the application of each re-
source type subject to resource availability. Constraint (4) bounds the maximum flow
on each arc by the modified upper bound due to the interdictive effects of the applied
resources. Constraint (5) limits the level of interdiction for each arc to at most com-
plete interdiction. Constraint (6) enforces non-negativity of the xγ

ij- and pγ
ijk-decision

variables, and Constraint (7) computes the cost of interdictor strategy implementation.
We model the restrictions on player decisions due to their respective reaction times in
Constraints (8)–(12). Constraints (8)–(10) ensure that the interdictor cannot change el-
ements of strategy in time periods other than those that are multiples of the reaction
time, γI , which likewise restricts the maximum flow in (11). Constraint (12) determines
that an evader will only change behavior in time periods that are multiples of the corre-
sponding reaction time, γE , and will do so based on a myopic observation of the state
of the network at the beginning of the OODA loop (to allow for time to revise strate-
gies). The model determines the interdictor changes and related costs via Constraints
(13)–(27). Constraint (13) computes the the absolute positive and negative changes to
arc and resource type combinations for periods in which the interdictor may alter strate-
gies, Constraints (14)–(16) ensure that only one of pγ+

ijk or pγ−
ijk may be non-zero for any

time period, and Constraint (17) enforces these fluctuations to be non-negative. (With-
out Constraints (14)–(16) and (17), both fluctuations would be positive in the case where
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αijk and ωijk are non-zero and of opposite sign, with αijk + ωijk < 0.) Constraint
(18) calculates the cost due to period-specific fluctuations as determined via Constraints
(13)–(17). Constraint (19) calculates the (absolute) changes in resource type availabili-
ties for periods in which the interdictor may alter strategies, as bounded by Constaints
(20)–(24). For this subset of periods, Constraints (20)–(22) ensure that only one of Rγ+

k

or Rγ−
k may be non-zero for any period and resource type combination. Constraint (23)

provides upper bounds on the absolute availability of all resource types in each period
γ, γ ∈ {γI , 2γI , . . . , ΓI , }, and the non-negativity of these resource availabilities and
inter-cycle fluctuations are enforced by Constraint (24). Upper and lower bounds are in-
duced on Rγ

k , ∀k ∈ K, γ /∈ {γI , 2γI , . . . , ΓI , } via Constraint (9). Constraint (25)
determines period-specific costs due to (absolute) changes in resource type availabili-
ties, as calculated by Constraints (19)–(24). Constraint (26) enforces the budget specific
to each time period, while Constraint (27) enforces the overall budget. The model uti-
lizes Constraints (28)–(31) to determine the evader penalties for the third component
of the objective function, based on the evader possibly attempting to transport units of
flow that exceed interdicted arc capacities. Constraint (28) enforces a lower bound on
the amount of flow the evader attempts to transport over each arc and time period in
excess (if at all) of the interdicted capacity, Constraints (29) provides upper bounds,
and Constraint (30) ensures non-negativity of this measure. Constraint (31) determines
the penalty cost for each time period, based on the calculation of yγ+

ij via Constraints
(28)–(30). Given that x0

ij � uij and y0
ij � uij , ∀(i, j) ∈ A, and noting (4), we have

that yγ
ij � uij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}. Hence, with pγ > 0, the objec-

tive function (1) will enforce yγ+
ij = max{0, yγ

ij − uij(1 −
∑

k∈K pγ
ijk)}, ∀(i, j) ∈ A,

γ ∈ {Δγ , 2Δγ , . . . , Γ} via (28) and (30), whence (29) is essentially redundant. Neverthe-
less, we retain (29) for convenience in further analysis and algorithmic implementation.
Finally, Constraints (32)–(36) impose the initial states of the process.

Observe that by (18)–(24), we can rewrite the objective function (1) as

min
p,R

{ ∑
γ∈{Δγ ,2Δγ ,...,Γ}

wC

(
Dγ + Cγ + Eγ

)
+ max

x,y

∑
γ∈{Δγ ,2Δγ ,...,Γ}

[
− wP P γ + wF zγ

]}
. (37)

Hence, given wP , in order to ensure the definitional maximum flow role of zγ , we deter-
mine wF so that the relative weighting in the inner maximization problem in (37) assures
the preemptive relationship

∑
γ∈{Δγ ,2Δγ ,...,Γ}

zγ �
∑

γ∈{Δγ ,2Δγ ,...,Γ}

[
− wP P γ

]
. (38)



A Dynamic Network Interdiction Problem 563

This is accomplished via Proposition 1 as stated below.

PROPOSITION 1. Given a decision maker’s choice of wP , suppose that we correspond-
ingly select

wF = 1 +

(
Γ/Δγ

)[
wP UBP

]
ε

, (39)

where UBP =
∑

(i,j)∈A gijuij , and where ε > 0. Then, the preemptive relationship
(38) is satisfied within a tolerance ε with respect to the deviation of

∑
γ∈{Δγ ,2Δγ ,...,Γ} zγ

from its maximum attainable value.

Proof. Denote the components within the inner maximization objective function in (37)
as

f1 ≡
∑

γ∈{Δγ ,2Δγ ,...,Γ}
zγ , and f2 ≡

∑
γ∈{Δγ ,2Δγ ,...,Γ}

[
− wP P γ

]
,

and let f1max, f2max, and f2min indicate the maximum or minimum attainable values for
the corresponding functions over the feasible region for the inner maximization problem
in Problem DNIP, given any feasible (p, R) to the outer problem. Following Sherali and
Soyster (1983), to enforce that an optimal solution to this inner maximization problem
does not deviate more than ε from f1max, we must have that:

wF f1max + f2min > wF

(
f1max − ε

)
+ f2max. (40)

Solving Equation (40) for wF , we obtain

wF >
f2max − f2min

ε
. (41)

From Constraints (29), (30), and (31), we obtain that 0 � P γ � UBP , where UBP is
as defined in the proposition. Hence, regardless of the outer problem solution (p, R), we
have that f2max � 0 and f2min � (Γ/Δγ)(−wP UBP ), which yields

f2max − f2min �
(
Γ/Δγ

)[
wP UBP

]
. (42)

Hence, from (42), using wF given by (39) satisfies (41), and so (39) yields a valid choice
for wF .

REMARK 1. Note that by enforcing the definitional role of zγ via Proposition 1, the pa-
rameter wF can be quite large, which might also induce a relatively higher priority to
minimizing the maximum flow (though not necessarily preemptively) with respect to the
overall objective function. However, this can be counter-balanced by subsequently adjust-
ing the parameter wC so that the ratio wC/wF reflects the interdictor’s relative priority
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for minimizing costs (the first term in (37)) versus minimizing the maximum flow. Also,
in regard to Proposition 1, note that whereas we can derive wF to exactly satisfy (38) by
using an equivalent integerized model for DNIP (assuming rational data) and applying a
derivation similar to that in Bazaraa et al. (2005) to obtain a minimal possible decrement
in f1max that would suffice for use as ε in (41) (or (39)), this would involve computing
maximal absolute determinants of bases, which is practically intractable. Besides, such a
theoretical value of ε would be much too small, resulting in an inordinately large value
of wF in (39). Hence, in our computations, we shall rely on using (39) for a specified
tolerance of ε ≡ 10−3.

3. Solution Procedures

In this section, we reformulate Problem DNIP as an equivalent mixed-integer nonlinear
program by taking the dual of the inner maximization problem. This consequently enables
the application of available commercial software such as BARON (Ryoo and Sahinidis,
1996), which is designed for mixed-discrete nonconvex formulations, to derive a global
optimal solution.

Toward this end, define the associated dual variables for the relevant constraints as
shown in Table 1. Then, writing the dual to the inner maximization problem, we obtain
the following equivalent representation, Problem P, where we have denoted p0γ

ij as the
nonnegative slack in Constraint (5), and where Ψγ

ij ≡ θγ
ij + τγ

ij , ∀(i, j) ∈ A, γ ∈
{Δγ , 2Δγ , . . . , Γ}:

Table 1

Dual variables for reformulating problem DNIP

Dual Definition Associated

variable constraint

β βγ
i , ∀i ∈ N, γ ∈ {Δγ , 2Δγ , . . . , Γ} (2)

θ θγ
ij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ} (4)

μ μγ
ij , ∀(i, j) ∈ A, γ /∈ {γI , 2γI , . . . , ΓI } (10)

λ λγ , ∀γ /∈ {γI , 2γI , . . . , ΓI } (11)

σ σγ
ij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ} (12)

τ τγ
ij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ} (28)

φ φγ
ij , ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ} (29)

π πγ , ∀γ ∈ {Δγ , 2Δγ , . . . , Γ} (31)

ξ ξij , ∀(i, j) ∈ A (32)

ζ ζ (33)

η ηij , ∀(i, j) ∈ A (34)



A Dynamic Network Interdiction Problem 565

P: min
∑

γ∈{Δγ ,2Δγ ,...,Γ}

[
wC

(
Cγ + Dγ + Eγ

)
+

∑
(i,j)∈A

uij

(
p0γ

ij Ψγ
ij + φγ

ij

)]
+

∑
(i,j)∈A

(
x̂0

ijξij + ŷ0
ijηij

)
+ ẑ0ζ (43)

s.t. βγ
t − βγ

s = wF

+

⎧⎪⎨⎪⎩
−λγ + λ(γ+Δγ), if γ(mod γI) �= 0 and (γ + Δγ)(mod γI) �= 0,
−λγ , if γ(mod γI) �= 0 and (γ + Δγ)(mod γI) = 0,

λ(γ+Δγ), if γ(mod γI) = 0 and (γ + Δγ)(mod γI) �= 0,
0, if γ(mod γI) = 0 and (γ + Δγ)(mod γI) = 0,

⎫⎪⎬⎪⎭,

∀γ ∈ {Δγ , 2Δγ , . . . , Γ}, (44)

βγ
i − βγ

j + θγ
ij

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μγ
ij + μ

(γ+Δγ)

ij + σ
(γ+γE)
ij , if

{
γ(mod γI) �= 0
(γ + Δγ)(mod γI) �= 0
(γ + γE)(mod γE) = 0

}
,

−μγ
ij + μ

(γ+Δγ)

ij , if

{
γ(mod γI) �= 0
(γ + Δγ)(mod γI) �= 0
(γ + γE)(mod γE) �= 0

}
,

−μγ
ij + σ

(γ+γE)
ij , if

{
γ(mod γI) �= 0
(γ + Δγ)(mod γI) = 0
(γ + γE)(mod γE) = 0

}
,

−μγ
ij , if

{
γ(mod γI) �= 0
(γ + Δγ)(mod γI) = 0
(γ + γE)(mod γE) �= 0

}
,

μ
(γ+Δγ)

ij + σ
(γ+γE)
ij , if

{
γ(mod γI) = 0
(γ + Δγ)(mod γI) �= 0
(γ + γE)(mod γE) = 0

}
,

μ
(γ+Δγ)

ij , if

{
γ(mod γI) = 0
(γ + Δγ)(mod γI) �= 0
(γ + γE)(mod γE) �= 0

}
,

σ
(γ+γE)
ij , if

{
γ(mod γI) = 0
(γ + Δγ)(mod γI) = 0
(γ + γE)(mod γE) = 0

}
,

0, if

{
γ(mod γI) = 0
(γ + Δγ)(mod γI) = 0
(γ + γE)(mod γE) �= 0

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (45)

σγ
ij + τγ

ij =

{
σ

(γ+Δγ)
ij , if (γ + γE)(mod γE) �= 0,

0, if (γ + γE)(mod γE) = 0,

∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (46)

φγ
ij − τγ

ij − gijπ
γ � 0, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (47)

Ψγ
ij = θγ

ij + τγ
ij , ∀ (i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (48)

πγ = −wP , ∀γ ∈ {Δγ , 2Δγ , . . . , Γ}, (49)
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ξij = σγE

ij + μ
Δγ

ij , ∀(i, j) ∈ A, (50)

ζ = λΔγ , ∀(i, j) ∈ A, (51)

ηij = σ
Δγ

ij , ∀ (i, j) ∈ A, (52)

(θγ
ij , φ

γ
ij , τ

γ
ij , Ψ

γ
ij) � 0, ∀(i, j) ∈ A, k ∈ K, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (53)

constraints (3), (7)–(9), (13)–(27), (35)–(36),∑
k∈K

pγ
ijk + p0γ

ij = 1, ∀(i, j) ∈ A, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (54)

p0γ
ij � 0 and pγ

ijk � 0, ∀(i, j) ∈ A, k ∈ K, γ ∈ {Δγ , 2Δγ , . . . , Γ}, (55)

where the nonnegativity of the Ψγ
ij-variables are implied by the other restrictions in (48)

and (53), but are retained in (53) for convenience in implementation.
Observe that Problem P is a nonlinear mixed-integer 0-1 program, where the only

nonlinearity appears in the bilinear terms p0γ
ij ψγ

ij within the objective function (43). Be-
cause the direct application of the commercial solver BARON requires the scaling of the
weights in (43) to overcome convergence difficulties when solving certain categories of
DNIP instances, as will be discussed in the following section, we also propose the follow-
ing alternating heuristic that addresses the bilinear p0γ

ij Ψγ
ij-terms in (43) via an iterative

fixing technique, as in Cooper (1964).

Alternating Heuristic (AH)

Step 1. Given a heuristic relative improvement tolerance ε2 > 0 on the objective func-
tion value, compute a lower bound on p0γ

ij via (3), (9), (23), (54), and (55) as p̄0γ
ij ≡

max{0, 1 −
∑

k∈K
Rk

cijk
}, ∀(i, j) ∈ A, and solve Problem P by replacing p0γ

ij Ψγ
ij with

p̄0γ
ij Ψγ

ij , ∀(i, j) ∈ A, in (43) to attain a lower bounding solution. Let (p0, Ψ) = (p̂0, Ψ̂)
in this resulting solution.

Step 2. Fix Ψ ≡ Ψ̂ in P and solve the resulting problem to obtain an optimal revised so-
lution vector p̂0 for p0, and let V̂1 be the corresponding optimal objection function value
of (43).

Step 3. Fix p0 ≡ p̂ in P and solve the resulting problem to obtain an optimal revised solu-
tion vector Ψ̂ for Ψ, and let V̂2 be the corresponding optimal objective function value of
(43). If |(V̂1 − V̂2)/V̂1| < ε2, terminate the procedure and prescribe the resulting solution.
Otherwise, proceed to Step 4.

Step 4. Continue alternating between the solutions of the restricted problems in Steps 2
and 3 until any solution fails to improve the objective function value in (43) by at least
100ε2%, whence terminate the procedure with the final solution obtained.
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4. Illustration of Stability and Convergence Behavior

In this section, we consider two types of problem structures as embodied by two simple
illustrative examples and examine the convergence of period-specific optimal strategies
for three combinations of interdictor and evader reaction times or decision cycle lengths,
(γI , γE) ∈ {(2, 2), (2, 3), (3, 2)}, and three time horizons, Γ ∈ {6, 12, 18}. We examine
Problem P for two instances with network topology and parameters displayed in Figs. 1a
and 1b, which have the following structural difference. Denote Z to be the number of
distinct optimal solutions for deployment of the resources Rk, ∀k ∈ K, in the problem of
minimizing the maximum flow through the network for a static formulation. The instance
in Fig. 1a has Z = 1, and for such a case, we expect that, given sufficient budgetary
resources and time periods, and a relatively small ratio wC/wF , the distinct strategy that
minimizes the maximum evader flow will be manifested as the stable equilibrium (i.e.,
under such an outcome, the interdictor would not choose to incur costs related to the
redeployment of resources for the purposes of inflicting penalties upon the evader). On
the other hand, for the instance displayed in Fig. 1b, the interdiction costs have been
modified to ensure that alternative minimax flow solutions exist, thereby yielding Z > 1
and allowing for the possibility of the interdictor altering strategies between periods in
order to inflict evader penalties, depending on the respective weights (wC , wP ) and the
related cost parameters.

Note that the value ε = 10−3 as specified in Fig. 1 is the parameter used for deter-
mining wF via Proposition 1, whereas we employ a tighter relative optimality tolerance
of 10−9 (i.e., 10−7%) for solving Problem P via the commercial solver BARON Version
8.1.5 (Ryoo and Sahinidis, 1996) using the GAMS modeling language on a computer
having an Intel Model T7100 Core 2 Duo Processor (dual core with a 1.8 GHz speed)
and 2.0 GB of RAM. For our analysis, we assume that the interdictor begins with no
available resources, and that the evader begins with the maximum uninterdicted flow
through the network (ẑ0, x̂0

ij , ∀(i, j) ∈ A), along with a consistent perception thereof by
way of setting ŷ0

ij = x̂0
ij , ∀(i, j) ∈ A. We employed BARON with a time limit of 360,

1800, and 3600 CPU seconds for the respective time horizons of Γ ∈ {6, 12, 18}.

Fig. 1. Two structurally different DNIP instances.
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The derived value for wF varies for each instance in accordance with Proposition 1.
For all three cases of (γI , γE) ∈ {(2, 2), (2, 3), (3, 2)}, we have Δγ = 1, and the
computation of wF by Proposition 1 for both instances in Fig. 1, given their iden-
tical uninterdicted upper bounds on arc flows, uij , ∀(i, j) ∈ A, results in wF =
{1 + (1.5 × 107), 1 + (3.0 × 107), 1 + (4.5 × 107)} for the respective time horizons
Γ ∈ {6, 12, 18}.

REMARK 2. In order to ensure the fidelity of the solver BARON, we scaled the objec-
tive function in (1) to yield wF = 106 for each instance examined, with the parameters
(wC , wP ) linearly scaled accordingly. Without such scaling, the solver returned null so-
lutions, wherein the interdictor did not procure or deploy any resources. Null solutions
do represent a global optimal solution for cost-prohibitive instances of DNIP, wherein
the procurement and/or deployment costs for resources exceed their interdiction benefit
in (1); e.g., via empirical analysis, this occurs when wC > 108 for the instances presented
in Fig. 1 with Γ = 6. However, the parameters for the instances in Fig. 1 are not cost-
prohibitive, and we further ensured the implausibility of null solutions (without scaling
of the objective function) by setting wC ≡ 0 and running both instance structures for
the different (Γ, γI , γE)-combinations. However, BARON still reported null solutions.
Therefore, our proposed scaling of the objective function is necessary from the viewpoint
of assuring BARON’s fidelity, and we apply this scaling technique for all the runs reported
in the remainder of this section. We further note that we did not apply a scaling method
as for example that utilized by Kurilovas and Dagiene (2009), wherein the weights are
linearly scaled such that their sum equals one, in order to prevent further fidelity issues
that would result from (wP , wC) → (0, 0), as effected by our application of preemptive
weighting within a nonpreemptive formulation.

Note that for wP ≡ 0, Proposition 1 yields wF = 1 as a legitimate choice
for any ε > 0. Accordingly, we tested the different (Γ, γI , γE)-combinations with
(wC , wP , wF ) = (1, 0, 1) for both instances represented in Fig. 1, and verified that, in the
absence of penalties inflicted upon the evader, the interdictor strategy indeed converges
to a minimax net flow solution and does not exhibit oscillations, while minimizing costs
associated with the redeployment of resources. This validates that the model reflects the
intended interdictor and evader behaviors in the absence of evader penalties.

Examining the instance represented in Fig. 1a for the case where neither the overall
nor period-specific budgets represent active constraints in an optimal solution, the results
were consistent across all (Γ, γI , γE)-combinations considered. In an optimal solution,
the interdictor utilizes the maximum available amount of each resource type at the earliest
opportunity (i.e., Rγ+

k = Rk, for γ = γI , ∀k ∈ K, and Rγ+
k = 0 otherwise), and

deploys them in a manner to minimize the maximum flow for the remaining periods,
resulting in pγ

1t1 = pγ
s22 = 0.25 for γ ∈ {γI , γI + Δγ , γI + 2Δγ , . . . , Γ}, and pγ

ijk = 0
otherwise. For several other instances of Problem DNIP having a distinct optimal solution
to minimize the maximum flow, and without budget limitations, we observed a similar
attainment of a stable strategic equilibrium in a single decision cycle.
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Table 2
Optimal pγ

ijk
-values for the instance of Fig. 1a with (Γ, γI , γE) = (6, 3, 2) and

Bγ = 100, ∀γ ∈ {Δγ , . . . , Γ}

γ pγ
s11 pγ

s21 pγ
1t1 pγ

2t1 pγ
s12 pγ

s22 pγ
1t2 pγ

2t2

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0.2357 0 0 0.2497 0 0

4 0 0 0.2357 0 0 0.2497 0 0

5 0 0 0.2357 0 0 0.2497 0 0

6 0 0 0.25 0 0 0.25 0 0

In contrast to the foregoing single-cycle convergence to an equilibrium solution, the
outcome was quite different for the case of active budget constraints at optimality in the
instance represented in Fig. 1a (enforced by setting Bγ = 100, ∀γ ∈ {Δγ , . . . , Γ},
where a single-period budget equals the total cost to procure all available resources).
For a particular representative instance having (Γ, γI , γE) = (6, 3, 2), Table 2 presents
the optimal pγ

ijk-values, with dashed lines demarcating the interdictor’s decision cycles
(with implied initial values of p0

ijk = 0, ∀(i, j) ∈ A, k ∈ K). These results exhibit
two noteworthy characteristics. First, convergence to the same equilibrium strategies as
before is still attained, albeit at a later time period (γ = 6). Second, the interdictor
procures less than the maximum available resources in period γI = 3, and then given
these resources, allocates them in that same period to minimize the maximum evader
flow. Within the context of the regret function (1) or (43), this is preferable to procuring
all the resources Rk, ∀k ∈ K, during period γI = 3, but then not having any remaining
capital to deploy any of these available resources until the next decision cycle, i.e., when
γ = 2γI = 6.

Next, consider the instance in Fig. 1b. Using a relative optimality tolerance of
10−7% as before, the solver BARON attained a global optimal solution for six of
the nine (Γ, γI , γE)-combinations within the specified time limit. However, for the in-
stances with (Γ, γI , γE) ∈ {(6, 3, 2), (12, 2, 3), (12, 3, 2)}, the solver terminated due
to the imposed computational time limit, but it did attain relative optimality gaps of
{0.00017%, 0.64%, 0.47%}, respectively. Upon extending the computational time limit
to 18,000 CPU seconds (i.e., 5 CPU hours) for these instances, an optimal solution was
only attained for (Γ, γI , γE) = (12, 2, 3) after 9552 CPU seconds, but no improvement
resulted in the objective function value for the other two instances. (We mention here
that when we replaced p0γ

ij in (43) with (1 −
∑

k∈K pγ
ijk), ∀(i, j) ∈ A, before utilizing

the solver BARON to optimize Problem P, the resulting formulation prevented BARON
from converging to an optimal solution for any of the (Γ, γI , γE)-combination instances
within 18,000 CPU seconds of computational effort.)
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Table 3
Reported optimal (expected) non-zero pγ

ijk
-values for the instance of Fig. 1b with

(γI , γE) ∈ {(2, 2), (2, 3), (3, 2)}, given Γ = 12, (wC , wP , wF ) = (0.3̄, 0.3̄, 106),
and ε = 0.001, terminated at 18,000 CPU seconds (i.e., 5 CPU hours) of effort

γ (γI , γE) = (2, 2) (γI , γE) = (2, 3) (γI , γE) = (3, 2)

pγ
s21 pγ

1t1 pγ
s22 pγ

1t2 pγ
s21 pγ

1t1 pγ
s22 pγ

1t2 pγ
s21 pγ

1t1 pγ
s22 pγ

1t2

1 0 0 0 0.25 0 0 0 0 0 0 0 0

2 0.25 0 0 0.25 0.25 0 0.2306 0.0194 0 0 0 0

3 0.25 0 0 0.25 0.25 0 0.2306 0.0194 0.2475 0.0025 0 0.25

4 0.25 0 0 0.25 0.0841 0.1659 0 0.25 0.2475 0.0025 0 0.25

5 0.25 0 0 0.25 0.0841 0.1659 0 0.25 0.2475 0.0025 0 0.25

6 0.25 0 0 0.25 0.0841 0.1659 0.1402 0.1098 0.2052 0.0448 0 0.25

7 0.25 0 0 0.25 0.0841 0.1659 0.1402 0.1098 0.2052 0.0448 0 0.25

8 0.25 0 0 0.25 0.1146 0.1354 0.25 0 0.2052 0.0448 0 0.25

9 0.25 0 0 0.25 0.1146 0.1354 0.25 0 0.2360 0.0140 0 0.25

10 0.25 0 0 0.25 0.1061 0.1439 0.0256 0.2244 0.2360 0.0140 0 0.25

11 0.25 0 0 0.25 0.1061 0.1439 0.0256 0.2244 0.2360 0.0140 0 0.25

12 0.25 0 0 0.25 0.1061 0.1439 0.25 0 0.2360 0.0140 0.0621 0.1879

Table 3 presents the non-zero (and expected non-zero) pγ
ijk-values in the reported

optimal solutions for (γI , γE) = {(2, 2), (3, 2)} as well as the incumbent solution at
termination for (γI , γE) = (3, 2), for the particular case of Γ = 12. As before, the
dashed lines demarcate the interdictor’s decision cycles (with implied initial values of
p0

ijk = 0, ∀(i, j) ∈ A, k ∈ K).
The optimal and near-optimal solutions produced in Table 3 exhibit that, as in the

case of the instance of Fig. 1a, the interdictor utilizes the maximum available amount of
each resource type at the earliest opportunity and deploys them in a manner to minimize
the maximum flow for the remaining periods. Furthermore, as evident from Table 3, we
observed oscillations in strategies for some (Γ, γI , γE)-combinations, although not nec-
essarily at a period within {2γI , 3γI , . . . , Γ}. Note that, given the prescribed interdictor
strategy, the evader minimizes penalties among the resulting alternative maximal flow
solutions, as preemptively enforced by Proposition 1. The same interdictor pattern of re-
source procurement and deployment, as well as similar patterns of oscillatory behavior,
were obtained for Γ ∈ {6, 18} (not shown here). Also, similar to the differing nature of
the oscillations among the (γI , γE)-combinations in Table 3, we observed no identifiable
trend over the (γI , γE)-combinations in the solutions obtained for the time horizons of
Γ ∈ {6, 18}.

Thus, we find that, given moderate time horizons, when the objective component
weights of DNIP are scaled as per Remark 2, optimal solutions are obtained for instances
having unique static minimax net flow interdictor strategies, and the results turn out to be
either optimal or near-optimal for instances having alternative optimal static minimax net
flow interdictor strategies.
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5. Computational Performance with Larger-Sized Networks

In this section, we consider larger-sized networks for Problem P, and we compare the
performance of direct optimization via the commercial solver BARON (Version 8.1.5)
with the alternating heuristic AH prescribed in Section 3. Both procedures were coded
using the GAMS modeling language while invoking the solver CPLEX (Version 11.1) to
optimize the corresponding mixed-integer programs.

As a benchmark, we first tested the performance of Heuristic AH on the two network
topologies displayed in Fig. 1, with Γ = 12 and over each of the relative decision cycle
lengths, (γI , γE) ∈ {(2, 2), (2, 3), (3, 2)}. For each of these six instances, Heuristic AH
terminated with an objective function value within 0.00% of that attained by the solver
BARON, and with a reduction in the average required computational effort from 605.32
CPU seconds to 0.33 CPU seconds or, considering only the four instances for which
BARON did not terminate due to the time limit of 1800 CPU seconds, a reduction in the
average required computational effort from 7.98 CPU seconds to 0.32 CPU seconds.

We next tested both solution procedures on a set of directed grid networks (as de-
scribed in Israeli and Wood, 2002) of different sizes with randomly generated arc at-
tributes, where, given a source node, s, and a terminus node, t, there exist m×n transship-
ment nodes arranged in a grid of m rows and n columns. A non-interdictable arc exists
from s to each transshipment node in the first column, and from each transshipment node
in the last column to t. Furthermore, an interdictable arc exists from each node in row r

and column c, i.e., in grid position (r, c), to the nodes in positions (r + 1, c), (r − 1, c),
(r, c + 1), (r + 1, c + 1), and (r − 1, c + 1), provided that a node exists in the particular
position, with the exception that there are no vertical arcs in the first or last columns.

Given such a transshipment network, the test instances were generated as follows,
without specific regard to whether alternative minimax flow solutions exist. The inter-
dictable arc capacities uij , ∀(i, j) ∈ A, were independently generated via a discrete
uniform distribution on the interval [30, 50]. We again considered instances involving
two-resources (K = 2), and we set cijk = Qijkuij , ∀(i, j) ∈ A, k ∈ K, with Qijk

being randomly generated via a discrete uniform distribution on the interval [4, 20]. We
set Rk = �2Φmax�, ∀k ∈ K, where Φmax is the maximal uninterdicted flow between
s and t. We ensured that budgetary constraints would not be tight for an optimal solu-
tion by setting B = Bγ = 3000R1(Γ/Δγ), ∀γ ∈ {Δγ , 2Δγ , . . . , Γ}. Furthermore, we
generated the following parameters in the same manner as indicated for the instances in
Fig. 1: (wC , wP ), ε, Ak, and Ωk, ∀k ∈ K, gij , ∀(i, j) ∈ A, and dijk, αijk, and ωijk,
∀(i, j) ∈ A, k ∈ K.

Restricting our attention to Γ = 12, we tested the instances represented in Table 4
for (γI , γE) ∈ {(2, 2), (2, 3), (3, 2)}. We conducted tests on a computer having an Intel
Model T7100 Core 2 Duo Processor and 2.0 GB of RAM, utilizing a relative optimality
tolerance of 10−3 for BARON, a relative heuristic improvement tolerance of ε2 = 10−3,
and a time limit of 1800 CPU seconds (checked at the completion of any Step in Heuristic
AH). For each of the larger-sized networks examined in Table 4, the solver BARON
terminated after 1800 CPU seconds of preprocessing effort with a feasible solution but
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Table 4
Performance of heuristic AH on transshipment networks with an m × n grid of nodes and

with Γ = 12: relative improvement(%) over BARON and CPU time

(m, n) (γI , γE) = (2, 2) (γI , γE) = (2, 3) (γI , γE) = (3, 2)

Imp. Time Imp. Time Imp. Time

(5, 5) 69.52 1.434 69.46 1.246 67.98 0.998

(5, 10) 69.68 1.761 71.15 1.810 69.52 1.779

(10, 5) 71.33 1.543 71.72 1.672 66.77 1.214

(10, 10) 72.48 8.010 65.91 8.521 62.10 5.553

with a lower bound of 0. For Heuristic AH, Table 4 reports the relative % improvement
of the incumbent objective function value from that attained by BARON, as well as the
computational effort (in CPU seconds) utilized by the heuristic.

This experimentation demonstrates the superior efficacy of the heuristic AH over
BARON for large-sized instances of Problem P, for which it achieved a solution having
an objective function value that was, on average, 68.97% lower than the value reported
by BARON upon its premature termination at 1800 CPU seconds, and while requiring an
average of 2.962 CPU seconds of computational effort.

6. Conclusions and Recommendations

In this paper, we have proposed and formulated a novel multi-objective dynamic network
interdiction problem, and have developed a solution procedure for which the commercial
software BARON (Version 8.1.5) attains optimal or, for moderate time horizons, near-
optimal solutions, depending on the presence of alternative optimal static strategies that
minimize the maximum evader flow. We have investigated certain stability and oscilla-
tory issues predicated on the latter structural property using two representative problem
instances, and we have also proposed an alternating heuristic procedure and demonstrated
its efficacy relative to BARON on larger-sized instances.

For future study, we propose that our model be modified to account for interdictor
costs using goal programming. For government bureaucratic agencies that act as an in-
terdictor, budgets are often soft constraints. Agencies do underspend and overspend their
budgets, both in fiscal quarters and fiscal years. They are penalized for overspending
(hopefully), but there is also an associated penalty for underspending a budget, as funds
may be diverted to other competing budget-deficit agencies. Conceptually, a combination
of these factors implies the possibility that overspending may incur a net gain up to a
certain threshold, and a penalty beyond it. Therefore, an extended model might consider
a fourth component in the weighted objective function: a penalty cost for variations in ex-
penditures from authorized budget levels. Typically, this would be weighted much lower
than the terms pertaining to the interdiction being performed, but this would depend on
the severity of the interdiction scenario and the overall fiscal state of the interdictor’s
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budgetary resources. Furthermore, we suggest the expansion of the model formulation
to account for arc-wise superadditive synergy between resources, whether in linear, con-
vex, or general nonlinear forms, as examined by Lunday and Sherali (2009b). Finally,
we propose the development of customized algorithms to solve the dynamic network
interdiction problem, wherein a suitable relaxation is designed and embedded within a
branch-and-bound framework.
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Dinaminis tinkl ↪u saugos modelis

Brian J. LUNDAY, Hanif D. SHERALI

Pateikiamas naujas dinaminis tinkl ↪u saugos modelis aprašantis tarpusavio s ↪aveik ↪a tarp tinkl ↪u
saugos agento paskirstančio savo resursus grafo lankams ir pažeidėjo agento bandančio kirsti tinkl ↪a
nuo pradinio iki galinio taško. Agentai gali periodiškai keisti savo strategijas priklausomai nuo
sprendim ↪u priimt ↪u ir panaudot ↪u ankstesniuose cikluose. Kuriant galutin ↪e minimakso tipo model↪i
buvo panaudotas naujas formulavimas palengvinantis tiesioginio sprendimo procedūr ↪a naudojant
komercin ↪e programin ↪e ↪irang ↪a arba siūlom ↪a alternatyvi ↪a euristik ↪a. Nagrinėjami stabilumo ir kon-
vergavimo klausimai bei specialūs pavyzdžiai tikslu parodyti skaičiavimo galimybes.


