
INFORMATICA, 2010, Vol. 21, No. 4, 533–552 533
© 2010 Vilnius University

Facilitating Ontology Development
with Continuous Evaluation

Dejan LAVBIČ, Marjan KRISPER
University of Ljubljana, Faculty of Computer and Information Science
Laboratory for Data Technology
Tržaška 25, 1000 Ljubljana, Slovenia
e-mail: dejan.lavbic@fri.uni-lj.si, marjan.krisper@fri.uni-lj.si

Received: January 2010; accepted: March 2010

Abstract. In this paper we propose facilitating ontology development by constant evaluation of
steps in the process of ontology development. Existing methodologies for ontology development
are complex and they require technical knowledge that business users and developers don’t poses.
By introducing ontology completeness indicator developer is guided throughout the development
process and constantly aided by recommendations to progress to next step and improve the quality
of ontology. In evaluating the ontology, several aspects are considered; from description, partition,
consistency, redundancy and to anomaly. The applicability of the approach was demonstrated on Fi-
nancial Instruments and Trading Strategies (FITS) ontology with comparison to other approaches.

Keywords: ontology development methodology, ontology evaluation, ontology completeness,
rapid ontology development, semantic web.

1. Introduction

The adoption of Semantic Web technologies is less than expected and is mainly limited
to academic environment. We are still waiting for wide adoption in industry. We could
seek reasons for this in technologies itself and also in the process of development, be-
cause existence of verified approaches is a good indicator of maturity. As technologies
are concerned there are numerous available for all aspects of Semantic Web applications;
from languages for capturing the knowledge, persisting data, inferring new knowledge to
querying for knowledge etc. In the methodological sense there is also a great variety of
methodologies for ontology development available, as it will be further discussed in Sec-
tion 2, but the simplicity of using approaches for ontology construction is another issue.
Current approaches in ontology development are technically very demanding and require
long learning curve and are therefore inappropriate for developers with little technical
skills and knowledge. In majority of existing approaches an additional role of knowledge
engineer is required for mediation between actual knowledge that developers possess and
ontology engineers who encode knowledge in one of the selected formalisms. The use
of business rules management approach (Smaizys and Vasilecas, 2009) seems like an
appropriate way to simplification of development and use of ontologies in business ap-
plications. Besides simplifying the process of ontology creation we also have to focus on

534 D. Lavbič, M. Krisper

very important aspect of ontology completeness. The problem of error-free ontologies has
been discussed in Fahad and Quadir (2008), Porzel and Malaka (2004), and several types
of errors were identified – inconsistency, incompleteness, redundancy, design anomalies
etc. All of these problems have to already be addressed in the development process and
not only after development has reached its final steps.

In this paper we propose a Rapid Ontology Development (ROD) approach where
ontology evaluation is performed during the whole lifecycle of the development. The idea
is to enable developers to rather focus on the content than the formalisms for encoding
knowledge. Developer can therefore, based on recommendations, improve the ontology
and eliminate the error or bad design. It is also a very important aspect that, before the
application, the ontology is error free. Thus we define ROD model that introduces detail
steps in ontology manipulation. The starting point was to improve existing approaches
in a way of simplifying the process and give developer support throughout the lifecycle
with continuous evaluation and not to conclude with developed ontology but enable the
use of ontology in various scenarios. By doing that we try to achieve two things (1) guide
developer through the process of ontology construction and (2) improve the quality of
developed ontology.

The remainder of the paper is structured as follows. In the following Section 2 state of
the art is presented with the review of existing methodologies for ontology development
and approaches for ontology evaluation. After highlighting some drawbacks of current
approaches Section 3 presents the ROD approach. Short overview of the process and
stages is given with the emphasis on ontology completeness indicator. The details of
ontology evaluation and ontology completeness indicator are given in Section 3.3, where
all components (description, partition, redundancy and anomaly) that are evaluated are
presented. In Section 4 evaluation and discussion about the proposed approach according
to the results obtained in the experiment of Financial Instruments and Trading Strategies
(FITS) is presented. Finally in Section 5 conclusions with future work are given.

2. Related Work

2.1. Review of Related Approaches

Ontology is a vocabulary that is used for describing and presentation of a domain and
also the meaning of that vocabulary. The definition of ontology can be highlighted from
several aspects. From taxonomy (Corcho et al., 2003; SanJuan and Ibekwe-SanJuan,
2006; Veale, 2006) as knowledge with minimal hierarchical structure, vocabulary (Bech-
hofer and Goble, 2001; Miller, 1995) with words and synonyms, topic maps (Dong and
Li, 2004; Park and Hunting, 2002) with the support of traversing through large amount
of data, conceptual model (Jovanović and Gašević, 2005; Mylopoulos, 1998) that em-
phasizes more complex knowledge and logic theory (Corcho et al., 2003; Dzemyda and
Sakalauskas, 2009; Waterson and Preece, 1999) with very complex and consistent knowl-
edge.

Facilitating Ontology Development with Continuous Evaluation 535

Ontologies are used for various purposes such as natural language processing (Staab
et al., 1999), knowledge management (Davies et al., 2006), information extraction
(Wiederhold, 1992), intelligent search engines (Heflin and Hendler, 2000), digital li-
braries (Kesseler, 1996), business process modeling (Brambilla et al., 2006; Ciuksys and
Caplinskas, 2007; Magdalenic et al., 2009) etc. While the use of ontologies was primarily
in the domain of academia, situation now improves with the advent of several method-
ologies for ontology manipulation. Existing methodologies for ontology development in
general try to define the activities for ontology management, activities for ontology devel-
opment and support activities. Several methodologies exist for ontology manipulation and
will be briefly presented in the following section. CommonKADS (Schreiber et al., 1999)
is in fact not a methodology for ontology development, but is focused towards knowl-
edge management in information systems with analysis, design and implementation of
knowledge. CommonKADS puts an emphasis to early stages of software development
for knowledge management. Enterprise Ontology (Uschold and King, 1995) recommends
three simple steps: definition of intention; capturing concepts, mutual relation and expres-
sions based on concepts and relations; persisting ontology in one of the languages. This
methodology is the groundwork for many other approaches and is also used in several
ontology editors. METHONTOLOGY (Fernandez-Lopez et al., 1999) is a methodology
for ontology creation from scratch or by reusing existing ontologies. The framework en-
ables building ontology at conceptual level and this approach is very close to prototyping.
Another approach is TOVE (Uschold and Grueninger, 1996) where authors suggest us-
ing questionnaires that describe questions to which ontology should give answers. That
can be very useful in environments where domain experts have very little expertise of
knowledge modeling. Moreover authors of HCONE (Kotis and Vouros, 2003) present
decentralized approach to ontology development by introducing regions where ontology
is saved during its lifecycle. OTK Methodology (Sure, 2003) defines steps in ontology
development into detail and introduces two processes – Knowledge Meta Process and
Knowledge Process. The steps are also supported by a tool. UPON (Nicola et al., 2005)
is an interesting methodology that is based on Unified Software Development Process and
is supported by UML language, but it has not been yet fully tested. The latest proposal
is DILIGENT (Davies et al., 2006) and is focused on different approaches to distributed
ontology development.

From information systems development point of view there are several methodologies
that share similar ideas found in ontology development. Rapid Ontology Development
model, presented in this paper follows examples mainly from blended, object-oriented,
rapid development and people-oriented methodologies (Avison and Fitzgerald, 2006). In
blended methodologies, that are formed from (the best) parts of other methodologies,
the most influential for our approach was Information Engineering (Martin and Finkel-
stein, 1981) that is viewed as a framework within which a variety of techniques are used
to develop good quality information systems in an efficient way. In object-oriented ap-
proaches there are two representatives – Object-Oriented Analysis (OOA; Booch, 1993)
and Rational Unified Process (RUP; Jacobson et al., 1999). Especially OOA with its five
major activities: finding class and objects, identifying structures, indentifying subjects,

536 D. Lavbič, M. Krisper

defining attributes and defining services had profound effect on our research, while it was
extended with the support of design and implementation phases that are not included in
OOA. The idea of rapid development methodologies is closely related to ROD approach
and current approach addresses the issue of rapid ontology development which is based
on rapid development methodologies of information systems. James Martin’s RAD (Mar-
tin, 1991) is based on well known techniques and tools but adopts prototyping approach
and focuses on obtaining commitment from the business users. Another rapid approach
is Dynamic Systems Development Method (DSDM; Consortium, 2005) which has some
similarities with Extreme Programming (XP; Beck and Andres, 2004). XP attempts to
support quicker development of software, particularly for small and medium-sized appli-
cations.

Comparing to techniques involved in information systems development, the ontology
development in ROD approach is mainly based on holistic techniques (rich pictures, con-
ceptual models, cognitive mapping), data techniques (entity modeling, normalization),
process techniques (decision trees, decision tables, structured English) and project man-
agement techniques (estimation techniques).

The ROD approach extends reviewed methodologies by simplifying development
steps and introducing continuous evaluation of developed ontology. This is achieved by
ontology completeness indicator that is based on approaches for ontology evaluation.
Based on existing reviews in (Brank et al., 2005; Gangemi et al., 2006; Gómez-Pérez,
1999; Hartmann et al., 2004) we classify evaluation approaches into following categories:

• compare ontology to “golden standard” (Maedche and Staab, 2002),
• using ontology in an application and evaluating results (Porzel and Malaka, 2004),
• compare with source of data about the domain to be covered by ontology (Brewster

et al., 2004), and
• evaluation done by humans (Lozano-Tello and Gómez-Pérez, 2004; Noy et al.,

2005).

Usually evaluation of different levels of ontology separately is more practical than
trying to directly evaluate the ontology as whole. Therefore, classification of evaluation
approaches based on the level of evaluation is also feasible and is as follows: lexical,
vocabulary or data layer, hierarchy or taxonomy, other semantic relations, context or ap-
plication level, syntactic level, structure, architecture and design. Prior the application
of ontologies we have to assure that they are free of errors. The research performed by
Fahad and Quadir (2008) resulted in classification and consequences of ontology errors.
These errors can be divided into inconsistency errors, incompleteness errors, redundancy
errors and design anomalies.

2.2. Problem and Proposal for Solution

The review of existing approaches for ontology development in this section pointed
out that several drawbacks exist. Vast majority of ontology development methodologies
define a complex process that demands a long learning curve. The required technical
knowledge is very high therefore making ontology development very difficult for non-
technically oriented developers. Among methodologies for ontology development there

Facilitating Ontology Development with Continuous Evaluation 537

is a lack of rapid approaches which can be found in traditional software development ap-
proaches. On the other hand methodologies for traditional software development also fail
to provide sufficient support in ontology development. This fact can be confirmed with the
advent of several ontology development methodologies presented at the beginning of this
section. Majority of reviewed methodologies also include very limited evaluation support
of developed ontologies. If this support exists it is limited to latter stages of development
and not included throughout the process.

This paper introduces a novel approach in ontology modeling based on good practices
and existing approaches (Allemang and Hendler, 2008; Cardoso et al., 2007; Fahad and
Quadir, 2008; Fernandez-Lopez et al., 1999; Sure, 2003; Uschold and King, 1995) while
trying to minimize the need of knowing formal syntax required for codifying the ontol-
ogy and therefore bringing ontology modeling closer to business users who are actual
knowledge holders. Based on the findings from the comparison of existing methodolo-
gies for ontology development and several evaluation approaches it has been noted that
no approach exist that would constantly evaluate ontology during its lifecycle. The idea
of proposed ROD approach with ontology completeness evaluation presented in Sec-
tion 3 is to create a feedback loop between developed ontology and its completeness by
introducing indicator for completeness. With ROD approach detailed knowledge of de-
velopment methodology is also not required as the process guides developers through the
steps defined in methodology. By extending existing approaches with constant evaluation
the quality of final artifact is improved and the time for development is minimized as
discussed in Section 3.3.

3. Rapid Ontology Development

3.1. Introduction to ROD Process

The process for ontology development ROD (Rapid Ontology Development) that we pro-
pose is based on existing approaches and methodologies (see Section 2) but is enhanced
with continuous ontology evaluation throughout the complete process. It is targeted at
domain users that are not familiar with technical background of constructing ontologies.

Developers start with capturing concepts, mutual relations and expressions based on
concepts and relations. This task can include reusing elements from various resources or
defining them from scratch. When the model is defined, schematic part of ontology has
to be binded to existing instances of that vocabulary. This includes data from relational
databases, text file, other ontologies etc. The last step in bringing ontology into use is
creating functional components for employment in other systems.

3.2. ROD Stages

The ROD development process can be divided into the following stages: pre-develop-
ment, development and post-development as depicted in Fig. 1. Every stage delivers a spe-
cific output with the common goal of creating functional component based on ontology

538 D. Lavbič, M. Krisper

Fig. 1. Process of rapid ontology development (ROD).

that can be used in several systems and scenarios. In pre-development stage the output
is feasibility study that is used in subsequent stage development to construct essential
model definition. The latter artifact represents the schema of problem domain that has to
be coupled with instances from the real world. This is conducted in the last stage post-
development which produces functional component for usage in various systems.

The role of constant evaluation as depicted in Fig. 1 is to guide developer in progress-
ing through steps of ROD process or it can be used independently of ROD process. In
latter case, based on semantic review of ontology, enhancements for ontology improve-
ment are available to the developer in a form of multiple actions of improvement, sorted
by their impact. Besides actions and their impacts, detail explanation of action is also
available (see Fig. 2).

In case of following ROD approach, while developer is in a certain step of the pro-
cess, the OC measurement is adapted to that step by redefinition of weights (see Fig. 5
for distribution of weights by ROD steps) for calculation (e.g., in Step 2.1 of ROD pro-
cess where business vocabulary acquisition is performed, there is no need for semantic
checks like instance redundancy, lazy concept existence or inverse property existence, but
the emphasis is rather on description of TBox and RBox component and path existence
between concepts).

Facilitating Ontology Development with Continuous Evaluation 539

Fig. 2. Display of ontology completeness (OC) results and improvement recommendations.

When OC measurement reaches a threshold (e.g., 80%) developer can progress to the
following step (see Fig. 3). The adapted OC value for every phase is calculated on-the-fly
and whenever a threshold value is crossed, a recommendation for progressing to next step
is generated. This way developer is aided in progressing through steps of ROD process
from business vocabulary acquisition to functional component composition.

In case that ontology already exists, with OC measure we can place the completeness
of ontology in ROD process and start improving ontology in suggested phase of devel-
opment (e.g., ontology has taxonomy already defined, so we can continue with Step 2.4
where ad hoc binary relations identification takes place).

3.3. Ontology Evaluation and Ontology Completeness Indicator

Ontology completeness (OC) indicator used for guiding developer in progressing through
steps of ROD process and ensuring the required quality level of developed ontology is

540 D. Lavbič, M. Krisper

Fig. 3. OC calculation.

defined as

OC = f(C, P, R, I) ∈ [0, 1],

where C is set of concepts, P set of properties, R set of rules and I set of instances.
Based on these input the output value in an interval [0, 1] is calculated. The higher the
value, more complete the ontology is. OC is weighted sum of semantic checks, while
weights are being dynamically altered when traversing from one phase in ROD process
to another. OC can be further defined as

OC =
n∑

i=1

w′
i · leafConditioni

where n is the number of leaf conditions and leafCondition is leaf condition, where se-
mantic check is executed. For relative weights and leaf condition calculation the follow-
ing restrictions apply

∑
i w′

i = 1, ∀w′
i ∈ [0, 1] and ∀leafConditioni ∈ [0, 1]. Relative

weight w′
i denotes global importance of leafConditioni and is dependent on all weights

from leaf to root concept.
The tree of conditions in OC calculation is depicted in Fig. 4 and contains semantic

checks that are executed against the ontology. The top level is divided into TBox, RBox

Facilitating Ontology Development with Continuous Evaluation 541

Fig. 4. Ontology completeness (OC) tree of conditions, semantic checks and corresponding weights.

and ABox components. Subsequent levels are then furthermore divided based on ontology
error classification (Fahad and Quadir, 2008). Aforementioned sublevels are description,
partition, redundancy, consistency and anomaly.

This proposed structure can be easily adapted and altered for custom use. Leafs in the
tree of OC calculation are implemented as semantic checks while all preceding elements
are aggregation with appropriate weights. Algorithm for ontology completeness (OC)
price is depicted in Algorithm 1, where X is condition and w = w(X, Y) is the weight
between condition X and condition Y .

Each leaf condition implements a semantic check against ontology and returns value
leafCondition ∈ [0, 1].

Figure 5 depicts the distribution of OC components (description, partition, redun-
dancy, consistency and anomaly) regarding individual phase in ROD process (see Sec-
tion 3.2). In first two phases 2.1 and 2.2 developer deals with business vocabulary iden-
tification and enumeration of concepts’ and properties’ examples. Evidently with afore-
mentioned steps emphasis is on description of ontology, while partition is also taken into
consideration. The importance of components description and partition is then in latter
steps decreased but it still remains above average. In Step 2.3 all other components are

542 D. Lavbič, M. Krisper

’ Evaluation is executed on top condition “OC components” with weight 1

Evaluate (X, w)

priceOC = 0

mark condition X as visited

if not exists sub-condition of X

’ Execute semantic check on leaf element

return w · exec(X)

else for all conditions Y that are sub-conditions of X such that Y is not visited

’ Aggregate ontology evaluation prices

if w(X, Y) �= 0

priceOC + = Evaluate(Y, w(X, Y))

return w · priceOC

End

Algorithm 1. Ontology completeness evaluation algorithm.

Fig. 5. Impact of weights on OC sublevels in ROD process.

introduced (redundancy, consistency and anomaly), because developer is requested to de-
fine taxonomy of schematic part of ontology. While progressing to the latter steps of ROD
process emphasis is on detail description of classes, properties and complex restriction
and rules are also added. At this stage redundancy becomes more important. This trend of
distributions of weights remains similarly balanced throughout the last Steps 2.5 and 2.6
of development phase. In post-development phase when functional component composi-
tion is performed, ontology completeness calculation is mainly involved in redundancy,

Facilitating Ontology Development with Continuous Evaluation 543

description and anomaly checking. The details about individual OC components are em-
phasized and presented in details in the following subsections.

3.3.1. Description
Description of ontology’s components is very important aspect mainly in early stages
of ontology development. As OC calculation is concerned there are several components
considered:

• existence of entities (classes and properties) and instances,
• (multiple) natural language descriptions of TBox and RBox components and
• formal description of concepts and instances.

The notion of existence of entities is very straightforward; if ontology doesn’t contain
any entities than we have no artifacts to work with. Therefore the developer is by this
metric encouraged to first define schematic part of ontology with classes and properties
and then also to add elements of ABox component in a form of individuals.

Next aspect is natural language descriptions of entities. This element is despite of its
simplicity one of the most important, due to ability to include these descriptions in fur-
ther definition of complex axioms and rules (Vasilecas et al., 2009). Following business
rules approach (Vasilecas and Sosunovas, 2008) it’s feasible to create templates for en-
tering this data on-the-fly by employing this natural description of entities. Developer is
encouraged to describe all entities (classes and properties) with natural language using
readable labels (e.g., rdfs:label and rdfs:comment) that don’t add to the meaning of cap-
tured problem domain but greatly improves human readability of defined ontology. When
constructing ontology it is always required to provide labels and description in English,
but the use of other languages is also recommended to improve employment of ontology.

The last aspect of ontology description is formal description of RBox and ABox
components that concerns concepts and instances. When describing classes with prop-
erties ontologists tend to forget defining domain and range values. This is evaluated for
schematic part of ontology while for instances all required axioms are considered that
are defined in TBox or RBox. Ontologists tend to leave out details of instances that are
required (e.g., cardinality etc.).

3.3.2. Partition
Partition errors deal with omitting important axioms or information about the classifica-
tion of concept and therefore reducing reasoning power and inferring mechanisms. In OC
calculation several components are considered:

• common classes and instances,
• external instances of ABox component,
• connectivity of concepts of RBox component and
• hierarchy of entities.

The notion of common classes deals with the problem of defining a class that is a
sub-class of classes that are disjoint. The solution is to check every class Ci if exist super-
classes Cj and Ck that are disjoint. Similar is with common instances where situation can
occur where instance is member of disjointing classes.

544 D. Lavbič, M. Krisper

When decomposing classes in sub-class hierarchy it is often the case that super-class
instance is not a member of any sub-class. In that case we deal with a problem of external
instances. The solution is to check every class Ci if exist any instance that is a member
of Ci, but not a member of any class in set of sub-classes.

The aspect of connectivity of concepts deals with ontology as whole and therefore
not allowing isolated parts that are mutually disconnected. The first semantic check deals
with existence of inverse properties. If we want to contribute to full traversal among
classes in ontology the fact that every object property has inverse property defined is very
important.

The second semantic check deals with existence of path between concepts. Ontology
is presented as undirected graph G = (V, E) and we try to identify maximum discon-
nected graphs.

The last aspect of ontology completeness as partition is concerned with hierarchy of
entities. We introduce data oriented approach for definition of hierarchy of entities where
technical knowledge from domain user is not required. This is based on requirement that
for every class and property defined ontologist is requested to insert also few instances
(see preliminary steps in ROD process introduced in Section 3.2). After this requirement
is met, set of competency questions are introduced to the domain user and the result
are automatically defined hierarchy axioms (e.g., rdfs:subClassOf, owl:equivalentClass,
owl:disjointWith, rdfs:subPropertyOf and rdfs:equivalentProperty).

The approach for disjoint class recommendation is depicted in Algorithm 2, while
approach for other hierarchy axioms is analogous.

Using this approach of recommendation, domain users can define axioms in ontology
without technical knowledge of ontology language, because with data driven approach

recommendDisjointWithClasses

τsibling
⊆ = {} ← Set of all sub-class pairs (C, D)

Qn ← Competency questions

disjointClassRecommend = {}
for each Ci ∈ TBox

add all sub-class pairs of class Ci to τsibling
⊆

for each sub-class pair (Cj , Ck) ∈ TBox where Cj ⊆ Ci ∧ Ck ⊆ Ci ∧ Cj �= Ck

if ∃i(Cj), i(Ck) ∈ ABox : (¬Q1(Cj , Ck) ∧ ¬Q3(Cj , Ck)) then

if Cj ∩ Ck �= {} then

disjointClassRecommend = disjointClassRecommend ∪ (Cj , Ck)

end if

end if

end for

end for

price = 1 − |disjointClassRecommend|/|τsibling
⊆ |

return disjointClassRecommend and price

end

Algorithm 2. Recommend disjoint axiom between classes.

Facilitating Ontology Development with Continuous Evaluation 545

(using instances) and competency questions the OC calculation indicator does that auto-
matically.

Redundancy occurs when particular information is inferred more than once from en-
tities and instances. When calculating OC we take into consideration following compo-
nents:

• identical formal definition and
• redundancy in hierarchy of entities.

When considering identical formal definition, all components (TBox, RBox and
ABox) have to be checked. For every entity or instance Ai all belonging axioms are
considered. If set of axioms of entity or instance Ai is identical to set of axioms of entity
or instance Aj and Ai �= Aj , then entities or instances Ai and Aj have identical formal
definition. This signifies that Ai and Aj describe same concept under different names
(synonyms).

Another common redundancy issue in ontologies is redundancy in hierarchy. This in-
cludes sub-class, sub-property and instance redundancy. Redundancy in hierarchy occurs
when ontologist specifies classes, properties or instances that have hierarchy relations
(rdfs:subClassOf, rdfs:subPropertyOf and owl:instanceOf) directly or indirectly.

3.3.3. Consistency
In consistency checking of developed ontology the emphasis is on finding circulatory er-
rors in TBox component of ontology. Circulatory error occurs when a class is defined as a
sub-class or super-class of itself at any level of hierarchy in the ontology. They can occur
with distance 0, 1 or n, depending upon the number of relations involved when traversing
the concept down the hierarchy of concepts until we get the same from where we started
traversal. The same also applies for properties. To evaluate the quality of ontology re-
garding circulatory errors the ontology is viewed as graph G = (V, E), where V is set of
classes and E set of rdfs:subClassOf relations.

3.3.4. Anomaly
Design anomalies prohibit simplicity and maintainability of taxonomic structures within
ontology. They don’t cause inaccurate reasoning about concepts, but point to problem-
atic and badly designed areas in ontology. Identification and removal of these anomalies
should be necessary for improving the usability and providing better maintainability of
ontology. As OC calculation is concerned there are several components considered:

• chain of inheritance in TBox component,
• property clumps and
• lazy entities (classes and properties).

The notion of chain of inheritance is considered in class hierarchy, where developer
can classify classes as rdfs:subClassOf other classes up to any level. When such hier-
archy of inheritance is long enough and all classes have no appropriate descriptions in
the hierarchy except inherited child, then ontology suffers from chain of inheritance. The
algorithm for finding and eliminating chains of inheritance is depicted in Algorithm 3.

The next aspect in design anomalies is property clumps. This problem occurs when
ontologists badly design ontology by using repeated groups of properties in different

546 D. Lavbič, M. Krisper

findChainOfInheritance

price = 1

axiom(C) = [type, entity, value] ← Axiom of class C

A(C) = ∀axiom(C) : entity = C ← Set of asserted axioms of class C

A−
⊆(C) ← Set of asserted axioms of class C without rdfs:subClassOf axioms

chainsOfInheritance = {}
while ∃Ci, Cj ∈ TBox ∧ ∃C1, C2, . . . , Cn ∈ TBox : (Cj ⊆ Cn ⊆ Cn−1 ⊆ . . .

⊆ C2 ⊆ C1 ⊆ Ci) ∧ (∀C1, C2, . . . , Cn : |superClass(Cn)| = 1 ∧ A−
⊆(Cn)

= {}) ∧ |A−
⊆(Ci)| > 0 ∧ |A−

⊆(Cj)| > 0 then

price = price − n/ndirect
⊆

chainsOfInheritance = chainsOfInheritance ∪ {Ci, Cj , {C1, C2, . . . , Cn }}
end while

return chainsOfInheritance and price

end

Algorithm 3. Find chain of inheritance.

findPropertyClumps

price = 1

nR ← Number of properties (datatype and object)

V ← Classes and properties

E ← Links between classes and properties

propertyClumps = {}
while exist complete bipartite sub-graph K′

m,n of graph G(V, E)

select K′′
m,n from K′

m,n, where max(m′′ · n′′/(m′′ + n′′))

propertyClumps = propertyClumps ∪ K′′
m,n

remove all edges from G(V, E) that appear in K′′
m,n

price = price − (m′′ · n′′ − (m′′ + n′′))/nR

end while

return propertyClumps and price

end

Algorithm 4. Find property clumps.

class definitions. These groups should be replaced by an abstract concept composing
those properties in all class definitions where this clump is used. To identify property
clumps the following approach depicted in Algorithm 4 is used.

The last aspect of design anomalies is lazy entities, which is a leaf class or property
in the taxonomy that never appears in the application and does not have any instances.
Eliminating this problem is quite straightforward; it just requires checking all leaf entities
and verifying whether it contains any instances. In case of existence those entities should
be removed or generalized or instances should be inserted.

Facilitating Ontology Development with Continuous Evaluation 547

4. Evaluation

4.1. Method

The ROD process was evaluated on Financial Instruments and Trading Strategies (FITS)
ontology that is depicted in Fig. 6.

When building aforementioned ontology one of the requirements was to follow Se-
mantic Web mantra of achieving as high level of reuse as possible. Therefore the main
building blocks of FITS ontology are all common concepts about financial instruments.
Furthermore every source of data (e.g., quotes from Yahoo! Finance in a form of CSV
files and direct Web access, AmiBroker trading program format etc.) is encapsulated in
a form of ontology and integrated into FITS ontology. Within every source of data devel-
oper can select which financial instrument is he interested in (e.g., GOOG, AAPL, PCX,
KRKG etc.). The last and the most important component are financial trading strate-
gies that developers can define. Every strategy was defined in its own ontology (e.g.,
FI-Strategy-Simple, FI-Strategy-SMA, FI-Strategy-Japanese etc.). The requirement was
also to enable open integration of strategies, so developer can select best practices from
several developers and add its own modification.

Two different approaches in constructing ontology and using it in aforementioned
use case were used. The approach of rapid ontology development (ROD) was compared
to ad-hoc approach to ontology development, which was based on existing methodolo-
gies CommonKADS, OTK and METHONTOLOGY. With ROD approach the proposed
method was used with tools IntelliOnto and Protégé. The entire development process
was monitored by iteration, where ontology completeness price and number of ontology
elements (classes, properties and axioms with rules) were followed.

At the end the results included developed ontology, a functional component and in-
formation about the development process by iteration. The final version of ontology was
reviewed by a domain expert, who confirmed adequateness. At implementation level on-
tology was expected to contain about 250 to 350 axioms of schematic part and numerous
instances from various sources.

Fig. 6. Financial instruments and trading strategies (FITS).

548 D. Lavbič, M. Krisper

4.2. Results and Discussion

The process of ontology creation and exporting it as functional component was evaluated
on FITS ontology and the results are depicted in Figs. 7 and 8. Charts represent ontol-
ogy completeness price and number of ontology elements regarding to iterations in the
process.

Comparing ROD to ad-hoc approach the following conclusions can be drawn:

• the number of iterations to develop required functional component using ROD ap-
proach (30) is less than using ad-hoc approach (37) which results in 23% less iter-
ations;

• ontology developed with ROD approach is throughout the development process
more complete and more appropriate for use than in ad-hoc, due to continuous
evaluation and simultaneous alerts for developers.

During the process of ontology construction based on ROD approach the developer
was continuously supported by ontology evaluation and recommendations for progress-
ing to next steps. When developer entered a phase and started performing tasks associ-
ated with the phase, ontology completeness was evaluated as depicted in Fig. 2. While
OC was less than a threshold value, developer followed instructions for improving on-
tology as depicted in Fig. 3. Results of OC evaluation are available in a simple view,
where basic statistics about ontology is displayed (number of concepts, properties, rules,
individuals etc.), progress bar depicting completeness, and details about evaluation, im-
provement recommendations and history of changes. The core element is progress bar
that denotes how complete ontology is and is accompanied with a percentage value. Fol-
lowing are recommendations for ontology improvement and their gains (e.g., remove
circulatory errors (+10%), describe concepts in natural language (+8%), connect con-
cepts (+7%) etc.). When improvement is selected (e.g., remove circulatory errors) the

Fig. 7. OC assessment and number of ontology elements through iterations and phases of ROD process.

Fig. 8. OC assessment and number of ontology elements through iterations of ad-hoc development process.

Facilitating Ontology Development with Continuous Evaluation 549

details are displayed (gain, task and details). The improvement and planned actions are
also clearly graphically depicted on radar chart (see Fig. 2). The shaded area with strong
border lines presents current situation, while red dot shows TO-BE situation if we follow
selected improvement.

When OC price crosses a threshold value (in this experiment 80%) a recommendation
to progress to a new phase is generated. We can see from our example that for instance
recommendation to progress from phase 2.5 to phase 2.6 was generated in 20th iteration
with OC value of 91.3%, while in 19th iteration OC value was 76.5%.

As Fig. 7 depicts ontology completeness price and number of ontology elements are
displayed. While progressing through steps and phases it’s seen that number of ontology
elements constantly grow. On the other hand OC price fluctuate – it’s increasing till we
reach the threshold to progress to next phase and decreases when entering new phase.
Based on recommendations from the system, developer improves the ontology and OC
price increases again. With introduction of OC steps in ontology development are con-
stantly measured while enabling developers to focus on content and not technical details
(e.g., language syntax, best modeling approach etc.).

5. Conclusions and Future Work

Current methodologies and approaches for ontology development require very experi-
enced users and developers, while we propose ROD approach that is more suitable for
less technically oriented users. With constant evaluation of developed ontology that is
introduced in this approach, developers get a tool for construction of ontologies with sev-
eral advantages: (1) the required technical knowledge for ontology modeling is decreased,
(2) the process of ontology modeling doesn’t end with the last successful iteration, but
continues with post-development activities of using ontology as a functional component
in several scenarios and (3) continuous evaluation of developing ontology and recom-
mendations for improvement. In ontology evaluation several components are considered:
description, partition, redundancy, consistency and anomaly. Description of ontology’s
components is very important aspect mainly in early stages of ontology development and
includes existence of entities, natural language descriptions and formal descriptions. This
data is furthermore used for advanced axiom construction in latter stages. Partition errors
deal with omitting important axioms and can be in a form of common classes, external
instances, hierarchy of entities etc. Redundancy deals with multiple information being
inferred more than once and includes identical formal definition and redundancy in hi-
erarchy. With consistency the emphasis is on finding circulatory errors, while anomalies
do not cause inaccurate reasoning about concepts, but point to badly designed areas in
ontology. This includes checking for chain of inheritance, property clumps, lazy entities
etc. It has been demonstrated on a case study from financial trading domain that a devel-
oper can build Semantic Web application for financial trading based on ontologies that
consumes data from various sources and enable interoperability. The solution can easily
be packed into a functional component and used in various systems.

550 D. Lavbič, M. Krisper

The future work includes improvement of ontology completeness indicator by includ-
ing more semantic checks and providing wider support for functional components and
creating a plug-in for most widely used ontology editors for constant ontology evalua-
tion. One of the planned improvements is also integration with popular social networks
to enable developers rapid ontology development, based on reuse.

References

Allemang, D., Hendler, F. (2008). Semantic Web for Working Ontologist: Effective Modeling in RDFS and OWL.
Elsevier, Amsterdam.

Avison, D., Fitzgerald, G. (2006). Information Systems Development: Methodologies, Techniques and Tools,
4th edn. McGraw–Hill, Maidenhead.

Bechhofer, S., Goble, C. (2001). Thesaurus construction through knowledge representation. Data Knowl. Eng.,
37(1), 25–45.

Beck, K., Andres, C. (2004). Extreme Programming Explained: Embrace Change, 2nd edn. Addison–Wesley,
Boston.

Booch, G. (1993). Object Oriented Analysis and Design with Applications, 2nd edn. Addison–Wesley, Santa
Clara.

Brambilla, M. et al. (2006). A software engineering approach to design and development of semantic web
service applications. In: 5th International Semantic Web Conference, Athens, USA.

Brank, J., Grobelnik, M., Mladenić, D. (2005). A survey of ontology evaluation techniques. In: Conference on
Data Mining and Data Warehouses (SiKDD), Slovenia, Ljubljana.

Brewster, C. et al. (2004). Data driven ontology evaluation. In: International Conference on Language Re-
sources and Evaluation, Portugal, Lisbon.

Cardoso, J., Hepp, M., Lytras, M. (2007). The Semantic Web: Real World Applications from Industry. Springer,
Berlin.

Ciuksys, D., Caplinskas, A. (2007). Reusing ontological knowledge about business process in IS engineering:
process configuration problem. Informatica, 18(4), 585–602.

Consortium, D. (2005). DSDM Manual, version 4.2. Tesseract Publishing, Surrey.
Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A. (2003). Methodologies, tools and languages for building

ontologies: where is their meeting point? Data Knowl. Eng., 46(1), 41–64.
Davies, J., Studer, R., Warren, P. (2006). Semantic Web Technologies – Trends and Research in Ontology-Based

Systems. Chichester, Wiley.
Dong, Y., Li, M.S. (2004). HyO-XTM: a set of hyper-graph operations on XML topic map toward knowledge

management. Future Gener. Comput. Syst., 20(1), 81–100.
Dzemyda, G., Sakalauskas, L. (2009). Optimization and knowledge-based technologies. Informatica, 20(2),

165–172.
Fahad, M., Quadir, M.A. (2008). Ontological errors – Inconsistency, Incompleteness and Redundancy. In: In-

ternational Conference on Enterprise Information Systems (ICEIS) 2008’, Barcelona, Spain.
Fernandez-Lopez, M. et al. (1999). Building a chemical ontology using methontology and the ontology design

environment. Intell. Syst., 14(1).
Gangemi, A. et al. (2006). Modelling ontology evaluation and validation. In: 3rd European Semantic Web

Conference (ESWC 2006). Springer, Berlin.
Gómez-Pérez, A. (1999). Evaluation of taxonomic knowledge in ontologies and knowledge bases. In: 12th

Banff Workshop on Knowledge Acquisition, Modelling, and Management (KAW ’99).
Hartmann, J. et al. (2004). D1.2.3 Methods for ontology evaluation.
Heflin, J., Hendler, J. (2000). Searching the web with SHOE In: Artificial Intelligence for Web Search. AAAI

Press, Menlo Park, pp. 36–40.
Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software Development Process. USA, Addison–

Wesley, Boston.
Jovanović, J., Gašević, D. (2005). Achieving knowledge interoperability: an XML/XSLT approach. Expert Syst.

Appl., 29(3), 535–553.

Facilitating Ontology Development with Continuous Evaluation 551

Kesseler, M. (1996). A schema based approach to HTML authoring. World Wide Web J., 96(1).
Kotis, K., Vouros, G. (2003). Human centered ontology management with HCONE. In: IJCAI ’03 Workshop on

Ontologies and Distributed Systems.
Lozano-Tello, A., Gómez-Pérez, A. (2004). ONTOMETRIC: a method to choose the appropriate ontology.

J. Database Manag., 15(2), 1–18.
Maedche, A., Staab, S. (2002). Measuring similarity between ontologies. In: European Conference on Knowl-

edge Acquisition and Management (EKAW 2002), Spain, Madrid.
Magdalenic, I., Radosevic, D., Skocir, Z. (2009). Dynamic generation of web services for data retrieval using

ontology. Informatica, 20(3), 397–416.
Martin, J. (1991). Rapid Application Development. MacMillan, Indianapolis.
Martin, J., Finkelstein, C. (1981). Information Engineering, Vols. 1 and 2. Prentice–Hall, New Jersey.
Miller, G.A. (1995). WordNet: a lexical database for English. Commun. ACM, 38(11), 39–41.
Mylopoulos, J. (1998). Information modeling in the time of the revolution. Inf. Syst., 23(3–4), 127–155.
Nicola, A.D., Navigli, R., Missikoff, M. (2005). Building an eProcurement ontology with UPON methodology.

In: 15th e-Challenges Conference, Ljubljana, Slovenia.
Noy, N.F., Guha, R., Musen, M.A. (2005). User ratings of ontologies: Who will rate the raters? In: Symposium

on Knowledge Collection from Volunteer Contributors, Stanford, USA.
Park, J., Hunting, S. (2002). XML Topic Maps: Creating and Using Topic Maps for the Web. Addison–Wesley,

Boston.
Porzel, R., Malaka, R. (2004). A task-based approach for ontology evaluation. In: Workshop on Ontology Learn-

ing and Population, Valencia, Spain.
SanJuan, E., Ibekwe-SanJuan, F. (2006). Text mining without document context. Inf. Process. Manag., 42(6),

1532–1552.
Schreiber, G. et al. (1999). Knowledge Engineering and Management – The CommonKADS Methodology. MIT

Press, Cambridge.
Smaizys, A., Vasilecas, O. (2009). Business rules based agile ERP systems development. Informatica, 20(3),

439–460.
Staab, S. et al. (1999). A system for facilitating and enhancing web search. In: International Working Confer-

ence on Artificial and Natural Neural Networks: Engineering Applications of Bio-Inspired Artificial Neural
Networks (IWANN ’99)’.

Sure, Y. (2003). Methodology, Tools & Case Studies for Ontology Based Knowledge Management, Institute
AIFB, University of Karlsruhe.

Uschold, M., King, M. (1995). Towards a methodology for building ontologies. In: Workshop on Basic Onto-
logical Issues in Knowledge Sharing (IJCAI ’95), Montreal, Canada.

Uschold, M., Grueninger, M. (1996). Ontologies: principles, methods and applications. Knowl. Sharing Rev.,
11(2).

Vasilecas, O., Sosunovas, S. (2008). Practical application of BRTL approach for financial reporting domain. Inf.
Technol. Control, 37(2), 106–113.

Vasilecas, O., Kalibatiene, D., Guizzardi, G. (2009). Towards a formal method for transforming ontology ax-
ioms to application domain rules. Inf. Technol. Control, 38(4), 271–282.

Veale, T. (2006). An analogy-oriented type hierarchy for linguistic creativity. Knowl.-Based Syst., 19(7), 471–
479.

Waterson, A., Preece, A. (1999). Verifying ontological commitment in knowledge-based systems. Knowl.-
Based Syst., 12(1–2), 45–54.

Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE Comput., 25(3), 38–
49.

552 D. Lavbič, M. Krisper

D. Lavbič is a teaching assistant at University of Ljubljana, Faculty of Computer and
Information Science. He graduated in 2004 and received his PhD in 2010 at Faculty of
Computer and Information Science at University of Ljubljana. He is author of 5 origi-
nal scientific papers and more than 10 published scientific conference contributions. His
research interests are intelligent agents, Multi-Agent Systems, knowledge management,
ontologies, business rules and Semantic Web. His work is mainly oriented toward using
Semantic Web technologies in business applications. He has been involved in several re-
search and commercial projects on strategic planning, methodologies for IS development,
using intelligent agents and business process automatization and management.

M. Krisper received the MSc degree in information systems engineering from the Uni-
versity of Ljubljana, Ljubljana, Slovenia, in 1977 and the PhD degree in expert systems
from the University of Belgrade, Belgrade, Yugoslav ia, in 1989. He is an associate pro-
fessor, the Chair of Information Science, and the head of the Information Systems Labora-
tory at the University of Ljubljana, Faculty of Computer and Information Science. His re-
search interests include information systems, information systems development method-
ologies, information systems strategic planning, and electronic business. Dr. Krisper is
a member of the Association of Information Systems and a senior member of the Project
Management Institute Slovenian Chapter.

Ontologijos kūrimo proceso palengvinimas naudojant nuolatin ↪i

↪ivertinim ↪a

Dejan LAVBIČ, Marjan KRISPER

Straipsnyje pasiūlytas ontologijos kūrimo proceso palengvinimas naudojant nuolatin↪i atliekam ↪u
žingsni ↪u ↪ivertinim ↪a. Egzistuojančios ontologijos kūrimo metodikos yra sudėtingos ir reikalauja
specifini ↪u technini ↪u žini ↪u, kuri ↪u verslininkai ir kūrėjai neturi. Siūloma ↪ivesti ontologijos užbaig-
tumo indikatori ↪u, kurio pagalba kūrėjams visais atžvilgiais patariama, ir jie nuolat aprūpinami
rekomendacijomis kaip pereiti prie sekančio žingsnio ir pakelti ontologijos kokyb ↪e. Keletas aspekt ↪u
yra nagrinėjama ontologijos kūrimo procese. Tai aprašas, suskirstymas, neprieštaringumas, pertek-
liškumas ir anomalijos. Pasiūlyto būdo pritaikomumas ir palyginimas su kitais būdais pademon-
struotas naudojant Finansini ↪u Instrument ↪u ir Prekybos Strategij ↪u (FITS) ontologij ↪a.

